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The effect of a lateral electric field on the ground-state energy of an electron-hole pair confined in a quantum
dot is investigated on different levels of sophistication. Two different regimes occur: a Coulomb dominated
one, where the influence of the field is weak, and a regime dominated by field induced effects. Depending on
the strength of the Coulomb interaction relative to the single-particle energies, which varies with the quantum
dot parameters, the transition between these regimes is either smooth or rather abrupt.
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I. INTRODUCTION

Nanostructures in general and their zero-dimensional re-
alizations known as quantum dots �QDs� have developed
over the last few years into one of the major research topics
of condensed matter physics. Electronic, optical, and struc-
tural properties of QDs have received a lot of attention both
experimentally and theoretically. One of the driving forces in
this research field is the wealth of possible applications as-
sociated with these new structures. For a great number of
applications it is desirable to �fine� tune, for example, the
excitonic transition energy as needed. While many studies
have, to this end, relied on ultrahigh magnetic fields and
provided deeper insight into the optical and electronic prop-
erties, this approach will fail for many practical applications
due to the large experimental effort involved. In view of an
ongoing need for miniaturization the utilization of an electric
field for a desired tuning seems to be clearly advantageous
due to its relative ease of implementation.

The quantum-confined Stark effect �QCSE� appears when
an electric field is applied on a system in which the carriers
are confined in one or several directions, including the direc-
tion of the field. Initially the effect was studied in quantum
wells1–3 and quantum wires,4,5 but more recently extensive
attention was devoted to the QCSE in QDs �Refs. 6–20� and
QD molecules.21–26 In all these cases one observes a shift of
the excitonic peak in absorption or photoluminescence �PL�
spectra which, for small fields F, has the form �E�F�
=E�F�−E�0�� pF−�F2, where p and � are, respectively,
the components of the permanent dipole moment and the
polarizability in the direction of the applied electric field. If
the symmetry of the problem rules out a preferential direc-
tion, the Stark effect is an even function of F and the expan-
sion begins with the polarizability term �p=0�.

The sign of this term was the object of some discussion in
the literature. Two conflicting effects of the electric field
have been identified: On the one hand, the field is pushing
the electrons and holes in opposite directions, as confirmed
by the decrease in the excitonic oscillator strength. The lower
one-particle energies of the carriers in their new positions
give rise to a redshift ���0� of the excitonic line. On the
other hand, the Coulomb attraction is diminished by this car-
rier separation, and this increases the electron-hole pair en-
ergy. It was argued3–5,7 that the last effect may be strong

enough to prevail over the first, therefore leading to an over-
all blueshifted QCSE ���0�.

However, this conclusion runs against a general quantum-
mechanical theorem27 which states that the ground-state en-
ergy is a concave function of any parameter that enters lin-
early in the Hamiltonian. This is a quite general result, which
does not depend on the model Hamiltonian used. It is also
not dependent on the nature of the spectrum, being valid both
for a discrete ground state �as in QDs� and for the bottom of
a continuum �as in quantum wells and quantum wires�. The
concavity of the ground-state energy implies that its second
derivative with respect to the field is negative, not only
around F=0 but in all the points of the curve E�F�. In par-
ticular, the polarizability � cannot become negative and, in
the absence of a permanent dipole, this leads to a redshifted
QCSE. The last point was clarified as early as 1985,2 by
invoking a special case of the above-mentioned theorem.
Nevertheless, papers claiming a blueshifted QCSE, both in
experiment and in theory, kept appearing3–5,7,18 without ref-
erence to this result.

Most of the theoretical calculations of the QCSE use the
effective mass approximation with a steplike or infinite bar-
rier confinement potential.2–4,6,15,18,28 The electron-hole inter-
action is treated in many cases in a self-consistent Hartree
scheme.4,18,28 More elaborated approaches to this few-body
problem involve expansion in the one-particle eigen-
functions,6 inclusion of correlations in a self-consistent
Kohn-Sham scheme,15 or variational procedures.2,3 Simpler
treatments use perturbation theory with respect to the Cou-
lomb interaction.4

In the present paper we theoretically investigate the effect
of a lateral field on the excitonic ground state of a lens-
shaped QD. It was shown29 that the confinement in such a
system is accurately described by a parabolic potential. Then
the one-particle states in an external field are given by dis-
placed oscillator states, with the energies reduced by an
amount proportional to F2. If only this redshift is considered
one obtains, with physically reasonable QD parameters, a
value of the polarizability ��10−2 meV cm2/kV2. The ex-
perimental values10,13,16,19,20 in such systems are at most of
the order of �10−3 meV cm2/kV2 showing that the reduction
of the exciton binding energy due to the charge separation
plays an important role.32 Several methods of including the
Coulomb interaction are considered and compared in the fol-
lowing.
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As the simplest attempt we analyze the perturbative ap-
proach. This leads to a reduction of the polarizability and, for
strong Coulomb couplings, even to a negative �. As dis-
cussed before, this result contradicts the concavity theorem,
and therefore it should be taken as a sign of the breakdown
of the perturbation approach rather than as physically mean-
ingful.

The next method employed is a variational calculation
in which the trial function is factorized as ��re ,rh�
=�e�re��h�rh�. The concavity theorem is of variational na-
ture, therefore it is guaranteed to hold in any variational ap-
proach. Indeed, our results show that the higher the Coulomb
strength the smaller the values of �, but without a change of
sign. One also observes that such a flat parabolic dependence
around F=0 is followed by a much steeper redshift at larger
fields. This change of regime corresponds to a sufficiently
large electron-hole separation so that the Coulomb binding
energy becomes negligible and the pair behaves as indepen-
dent carriers. The transition between the two regimes is
sharper for strong Coulomb interaction.

Since both the Coulomb and the electric field term in the
Hamiltonian depend only on the relative coordinate, it is
natural to try a factorization procedure involving this coordi-
nate. Such a factorization is exact in the particular case of
equal electron and hole oscillator frequencies in the assumed
harmonic in-plane confinement potential. Then the center of
mass motion is trivial and field independent, and the QCSE
is fully contained in the relative motion part. The latter is a
one-particle problem, with a two-dimensional potential con-
sisting of a Coulomb attractive center and a field-shifted
parabolic confinement. This problem can be exactly solved
to numerical accuracy and it shows clearly the two-regime
behavior produced by the competition between these two
attractive potentials.

In the more general case of different electron and hole
oscillator frequencies the separation into the center-of-mass
and relative motion is no longer exact, but a variational fac-
torization scheme involving a suitably chosen central coordi-
nate and the relative coordinate can be used. It turns out that
the functional to be minimized is closely related to the
ground-state energy found by the previous procedure for the
special case of equal frequencies.

II. MODEL

In order to describe the interplay between the confinement
of the carriers due to the QD, the external electric field, and
the attractive Coulomb interaction between the electron and
the hole, we use the following Hamiltonian in effective mass
approximation

H = −
�2

2me
�e +

me�e
2

2
re

2 + eFxe

−
�2

2mh
�h +

mh�h
2

2
rh

2 − eFxh −
e2

4	
0
r�re − rh�
. �1�

The first two terms of Eq. �1� describe the motion of an
electron of mass me in a harmonic confinement potential with
frequency �e. For flat lens-shaped cylindrically symmetric

QDs the in-plane part of the wave function can be approxi-
mately decoupled from the motion in the growth direction.
Furthermore, it has been shown that in this case the in-plane
potential is well described by a harmonic oscillator po-
tential.29 Due to the strong confinement in the z direction and
the fact that only lateral electric fields are investigated, we
discard in the following, for clarity, the z degree of freedom.
Therefore re= �xe ,ye� denotes the two-dimensional in-plane
vector and �e the corresponding Laplacian. The third term of
Eq. �1� incorporates the coupling of a homogeneous, con-
stant electric field F to the electronic degree of freedom with
charge −e. Due to the cylindrical symmetry one can assume,
without loss of generality, that the field is directed along the
x axis, F= �F ,0�. The second line of Eq. �1� contains the
corresponding terms for the hole with mass mh, frequency
�h, and charge e. Finally, the attractive coupling between the
electron and the hole via Coulomb interaction is given by the
third line of Eq. �1�, where 
r is the background dielectric
constant.

In the absence of Coulomb interaction the two-body prob-
lem is decoupled and can readily be solved by completing
the square for each degree of freedom. For the single-particle
ground-state energy one finds

Ei = ��i −
�eF�2

2mi�i
2 �2�

with the corresponding wave function

�i�r� � e−�1/2li
2��r − ci�

2
, �3�

where i� �e ,h� refers to either the electron or the hole, li

=�� /mi�i is the oscillator length, and ci= �
eF

mi�i
2 is the center

of the wave function in the presence of the field. In the
absence of the Coulomb interaction the center is shifted lin-
early with the electric field. The above equation shows a
quadratic dependence of the single-particle ground-state en-
ergy on F.

As discussed in the Introduction, it is rather obvious that
the ground-state energy of the electron-hole pair is reduced
by the attractive Coulomb interaction and that this attraction
becomes weaker as the electric field is increased. This hap-
pens because the electron and the hole are pulled in opposite
directions by the electric field, thus reducing the exciton
binding energy. Therefore one has two competing trends: the
pure single-particle effect, which lowers the ground-state en-
ergy as the field strength is increased and is responsible for a
redshift, and a decrease of the binding energy that has the
opposite effect. Their interplay is discussed in the following
subsections on different levels of refinement.

A. Perturbation theory

In this most simple approach the first two lines of Eq. �1�
are used as the unperturbed Hamiltonian H0, which is exactly
solvable, and the Coulomb interaction in the last line is
treated as the perturbation. The first order correction is then
given by the direct Coulomb matrix element
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Deh = −
e2

4	
0
r
	 d2re d2rh

��e�re��2��h�rh��2

�re − rh�
�4�

that describes the electrostatic interaction between the charge
distributions of the electron and the hole in their respective
unperturbed ground states given by Eq. �3�. This matrix ele-
ment can be evaluated analytically in the present situation
and yields

Deh = −
e2

4	
0
rl
�	e−�1/2l2�che

2
I0
 1

2l2che
2 � . �5�

Here I0�x� is the modified Bessel function of the first kind
and index 0, l is defined by �le

2+ lh
2, and che=ch−ce measures

the electron-hole separation, which is linear in the applied
electric field.

By means of a Taylor expansion of Eq. �5� in the electric
field F one obtains for the energy shift of the ground state of
the electron hole pair the expression

�E�F� = − �� f − �C�F2 − �CF4 + ¯ , �6�

where � f =
e2

2 � 1
me�e

2 + 1
mh�h

2 � provides the field dependence of
the free-particle energy and �C and �C are the coefficients of
the second and fourth order term in the expansion of the
Coulomb matrix element, respectively. It is clear that the
sign of the polarizability is controlled by the ratio �C /� f
which, at a closer examination, turns out to be proportional
to the Coulomb interaction energy for the charges at a dis-
tance l measured in units of ��, with � a suitable average
between the electron and hole oscillator frequencies. There-
fore the effective strength of the Coulomb interaction is a
function of the QD geometry and material parameters. With
increasing Coulomb strength the polarizability in Eq. �6� can
turn from positive to negative. As discussed above, this is in
contradiction to the concavity theorem and shows the limits
of the perturbative approach. The failure is mainly due to the
fact that in the case of strong Coulomb interaction the true
wave functions deviate considerably from the wave functions
given by Eq. �3�, which was used to evaluate the perturba-
tion. In other words, the method lacks consistency in the
sense that it computes the expectation value of the full
Hamiltonian H on the states that minimize the expectation
value of H0. This shortcoming is addressed in the next sub-
section.

B. Variational ansatz I

In this variational approach we consider the minimum of
the expectation value ���H��
 of the full Hamiltonian Eq. �1�
taken on the class of trial functions given by �normalized�
products of Gauss functions

��re,rh� � e−�xe − ce�2/2�
x
e�2−�ye�2/2�
y

e�2
e−�xh − ch�2/2�
x

h�2−�yh�2/2�
y
h�2

.

�7�

The extension 
x
i and 
y

i of the single-particle wave func-
tions in x and y directions as well as their center in the field
direction are now left as variational parameters. This ansatz
for the wave function is in part motivated by the fact that the

exact solution in the absence of Coulomb interaction is of
this form, see Eq. �3�. However, the separation between the
electron and the hole as well as their spatial extension are not
prescribed, as in the perturbative case, but can adjust them-
selves to the applied field. For the numerical evaluation, the
energy functional can be calculated analytically, up to a
single one-dimensional integral. The minimum in the six-
dimensional parameter space is then found using a simplex
search algorithm.30

Results are presented in Sec. II D in comparison with
other approaches. Let us mention here only the fact that the
concavity condition is automatically met due to the varia-
tional nature of the method employed.

C. Decomposition in relative and center coordinates

Noting that both the field and the Coulomb interaction act
only on the relative coordinate r=rh−re it is reasonable to
rewrite the problem in terms of this coordinate and a center
coordinate R, which is a suitable chosen average of the two
carrier positions

R = �ere + �hrh, with �e + �h = 1, �e,�h � 0, �8�

r = rh − re. �9�

The usual choice of �e=me / �me+mh� and �h=mh / �me+mh�
leads to R being the center of mass �c.m.�. In the case
of equal confinement energies for the electrons and holes
��e=�h� this choice provides a decoupling of the Hamil-
tonian into one part containing solely the c.m. and another
part describing the relative motion �RM�, H�re ,rh�
=Hc.m.�R�+HRM�r�, and the eigenstates are of the form
��R ,r�=��R���r�. This case will be presented in full detail
below.

Moreover, this suggests a factorization scheme as a varia-
tional ansatz for the more general situation with different
electron and hole confinement energies, when an exact fac-
torization is no longer possible. The idea is supported by
another exactly soluble case, that of vanishing Coulomb in-
teraction, but arbitrary confinement energies for the electron
and hole. In this case the ground state consists of a product
of displaced Gaussians

��re,rh� � e−�1/2le
2��re − ce�2

e−�1/2lh
2��rh − ch�2

, �10�

which keeps the factorized form in terms of R ,r too,

��R,r� � e−�1/2L2��R − C�2
e−�1/2l2��r − c�2

, �11�

provided R and r are given by Eq. �8� and the weighting
factors are proportional to the inverse square of the oscillator
lengths �i�1/ li

2�mi�i. More precisely

�i =
mi�i

me�e + mh�h
, i � �e,h� , �12�

and l2= le
2+ lh

2, 1 /L2=1/ le
2+1/ lh

2. C and c are obtained from ce
and ch in the same way as R ,r are determined by re ,rh.

In the new coordinates given by Eq. �8�, with the weight-
ing factors of Eq. �12�, the Hamiltonian Eq. �1� takes the
form
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H =
1

2M
P2 +

1

2
M�2R2 +

1

2�
p2 +

1

2
��2r2 − eF · r + VC�r�

− ��e − �h�� 1

M�
P · p + ��R · r� . �13�

The Coulomb interaction VC is given by the last term in Eq.
�1�, the momenta P and p are conjugated to the coordinates
R and r, and the frequencies � and � for the central and
relative motion, respectively, are weighted means of �e and
�h:

� =
lh
2

l2�e +
le
2

l2�h, � =
le
2

l2�e +
lh
2

l2�h. �14�

The two masses are defined via M� /�=1/L2 and �� /�
=1/ l2. Note that � is the reduced mass but in general M is
not the total mass �actually M �me+mh for �e��h�.

1. Exact solution for �e=�h

The last line of Eq. �13�, which contains the term mixing
the central and the relative motions, vanishes for �e=�h
=�. In such circumstances the separation of the two motions
becomes exact. Note also that in this case R corresponds to
the c.m. The c.m. motion is defined by a simple oscillator
Hamiltonian, and contributes to the ground-state energy with
�� which, in this case, is equal to the common energy ��.

The Coulomb interaction and the external field are present
only in the RM Hamiltonian, given by the second row of Eq.
�13�, which contains the field-displaced oscillator potential
and a Coulomb attractive center. For this one-particle prob-
lem a full solution, exact to the numerical accuracy but oth-
erwise not containing further approximations, is accessible.
We have obtained the ground-state energy and the corre-
sponding wave function by using a relaxation method.30,31

2. Variational ansatz II

Equation �11� suggests a variational approach in which
the trial function has the form

��R,r� = ��R���r� , �15�

with the central motion described by a shifted Gaussian

��R� =
1

L�	
e−�1/2L2��R − R0�2

. �16�

The spatial displacement follows the direction of the field
R0= �X0 ,0� by an amount X0, which is a variational param-
eter. We leave the RM function ��r� completely arbitrary.

The minimization problem for the expectation value
���H��
 with respect to ��r� is equivalent to finding the
ground-state energy of the following RM effective Hamil-
tonian obtained by “averaging out” the central coordinate

Heff�r,R0� = ���R��H���R�


= �� +
1

2
M�2R0

2 +
p2

2�
+

��2

2
r2

− �eF + ��e − �h���R0�r + VC�r� . �17�

One sees that the central motion contributes to the energy
with a term which is quadratic in its displacement, but also
provides an additional field term in the RM problem. Except
for these changes, Heff is of the same form as the RM Hamil-
tonian discussed in the case of equal frequencies. Therefore,
the exact solution described in the previous subsection can
be used here. More precisely, if one denotes the ground state
energy found for equal frequencies by E�F�, then the mini-
mum of the variational problem for arbitrary frequencies is
given by

E�F� = �� + min
X0

�E
F +
�e − �h

e
��X0� +

M�2

2
X0

2� .

�18�

Up to trivial terms, the functional to be minimized over X0 is
given by the ground-state energy of the equal frequency case.
Therefore the latter is not only a particular case of our prob-
lem, but is also instrumental in solving the general case.

Of course, in the particular case when �e=�h the solution
of the variational problem Eq. �18� is X0=0 and E�F�
=E�F�. Another situation in which the present variational ap-
proach recovers the exact result is the noninteracting case
VC=0.

D. Results and discussion

For the purpose of comparing the different approaches,
we consider first equal confinement energies ��e=��h.
Later we give an example involving different confinement
energies and discuss how this affects the results. All energies
are given in units of ��, as defined in Eq. �14� and for the
length unit we use l0=�� /2��. Then we have the dimen-
sionless quantities EC= 1

��
e2

4	
0
rl0
to characterize the strength

of the Coulomb coupling and �=
eFl0

�� for the electric field.
Typical results of different approaches for the energy versus
electric field curve for EC=2 are shown in Fig. 1.

In the absence of the Coulomb interaction, one finds for
the ground-state energy a quadratic dependence on the elec-
tric field E���=2−�2. Due to the attraction between the elec-
tron and the hole the ground-state energy is lowered with
respect to the noninteracting solution. The failure of the per-
turbative approach is made obvious by the nonconcavity of
the ground-state energy as a function of �. As discussed
earlier such a behavior is unphysical.

The variational procedure based on a product of Gauss-
ians in the electron and hole coordinates as described in Sec.
II B yields an even lower ground-state energy than the per-
turbative result and is concave everywhere. In contrast to the
behavior of the noninteracting electron-hole pair energy, one
finds in this approach a plateau for small �. In this region the
energy varies only slightly with the applied field. For larger
field strengths a transition occurs after which the energy fol-
lows closely the noninteracting result 2−�2.

The numerically exact result, obtained using the proce-
dure of Sec. II C 1, shows qualitatively the same behavior as
the variational procedure, but is shifted to lower energies and
the transition point occurs only at higher fields. That the
plateau region cannot exist for arbitrarily large fields is sim-
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ply due to the fact that the true energy must always be
smaller than the noninteracting energy, because of the attrac-
tive interaction between the electron and the hole. In Fig. 2
the field dependence of excitonic ground-state energy ob-
tained by the full numerical solution of Sec. II C 1 is shown
for various values of the Coulomb interaction EC. As the
Coulomb interaction is increased, the ground state is shifted
to lower energies. Correspondingly the transition point oc-
curs only for higher field strength. Furthermore the transition
becomes sharper as EC is increased.

The transition between the Coulomb-dominated regime
and the quasinoninteracting behavior can be directly seen in
the electron-hole separation

dhe =	 d2r x���r��2 �19�

as a function of the applied electric field. Results for differ-
ent values of EC are shown in Fig. 3. In the absence of the
Coulomb interaction this quantity would be strictly propor-
tional to the field, dhe=che=2�. With the Coulomb attraction
included, however, the distance dhe is kept at much lower
values in the small field region. As the field increases the
carriers become sufficiently separated for their interaction to
become negligible and the noninteracting result is recovered.
The stronger the Coulomb coupling the sharper the transition
and the later it takes place.

An intuitive picture of the two-regime behavior can be
obtained if one has in mind the competition between the two
attractive potentials present in the RM Hamiltonian: the Cou-
lomb term centered at r=0 and the field-displaced parabolic
potential. In Fig. 4 they are shown for various field values. If,
for the sake of the argument, we consider them separately,
each provides a ground-state energy indicated by a horizontal
bar. For weak fields the Coulomb potential yields a lower
ground state and is preferred, but as the field increases the
oscillator ground state gradually decreases and eventually the
system jumps into this state. If the Coulomb coupling EC is
large this transition takes place when the two competing
states are sufficiently far apart to be practically orthogonal,
and then the change of regime is in fact an anticrossing of
two noninteracting levels, and therefore quite sharp. For
lower values of EC the admixture of the two states is smooth-
ening the transition.

In Fig. 5 a cross section of the wave function is shown for
EC=1. For low fields the strong Coulomb character of the
wave function is seen in the cusp produced by the Coulomb
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|η|

Without Coulomb
Perturbation theory
Variational procedure
Exact

E
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/
�
ω

FIG. 1. Ground-state energy versus dimensionless electric field
�, in the equal confinement energy case, calculated by the methods
described in the text. For reference, the noninteracting result is also
given.
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FIG. 2. Ground-state energy as a function of the dimensionless
electric field �, for various values of the Coulomb interaction EC,
calculated as the solid line of Fig. 1. From top to bottom EC varies
from 0 to 2.5 in steps of 0.5. For larger EC one can more clearly
distinguish a plateau �due to dominating Coulomb interaction� from
the nearly free regime.
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FIG. 3. Separation of electron and hole as a function of the
dimensionless applied field � for different values of the relative
strength of the Coulomb interaction EC. From left to right: EC var-
ies from 0 to 2.5 in steps of 0.5. For larger values of EC the tran-
sition point occurs only for higher electric fields and the transition
becomes more abrupt.

ANOMALOUS STARK EFFECT IN SEMICONDUCTOR… PHYSICAL REVIEW B 76, 165302 �2007�

165302-5



singularity and in the exponential decay away from it. In the
large field limit a Gaussian function is obtained, as expected.
The transition between these limiting cases is gradual and
involves a strong mixing of the corresponding solutions.

Turning now to the more general problem of different
confinement energies we consider, for the sake of illustration,
the case of equal electron and hole envelopes le= lh= l0. Then
the frequency ratio is given by �e /�h=mh /me. In our ex-
ample we take me=0.065m0 and mh=0.17m0, which are typi-
cal values for the InGaAs system. The results are shown in
Fig. 6 for several values of EC. It is seen that qualitatively
the behavior remains unchanged, the main effect of having
different confinement energies being that the transition point
occurs at lower field strengths. This can be explained by the
fact that the parabola of the noninteracting system is steeper
in this case.

The plateau corresponding to the low-field regime is char-
acterized by a reduction of the polarizability from its nonin-

teracting value by one and even two orders of magnitude
when increasing the EC value as in Fig. 6. If the noninteract-
ing polarizability has typical values of 10−2 meV cm2/kV2

then one obtains polarizabilities in the range of
10−3 to 10−4 meV cm2/kV2. Such low values of the QCSE
have been observed in experiments and were sometimes at-
tributed to the weak potential drop felt by the QD in the case
of Schottky contacts20 but our results show that a small Stark
shift can also be an intrinsic effect.

III. SUMMARY AND CONCLUSION

The problem of the excitonic ground state in a QD with
parabolic confinement and a lateral external electric field was
considered. The interplay between these potentials on the
one hand, and the Coulomb attraction on the other, turns out
to be a nontrivial problem. This was illustrated by showing
that simple approaches can be too crude to be accurate.

The inclusion of the Coulomb interaction at the perturba-
tive level can lead to wrong results, and even change the sign
of the Stark effect. This is due to an inconsistency in the
procedure: the expectation value of the total Hamiltonian is
evaluated for states which minimize the expectation value of
the noninteracting one. In this picture the electron and the
hole are described as following faithfully the displacement of
their oscillator center, while in reality they lag behind, being
kept close together by the Coulomb attraction �see Fig. 3�.
As a consequence, the perturbative approach may lead to
negative polarizabilities, in contradiction with the concavity
theorem concerning the bias dependence of the ground state.
This casts a doubt on the perturbative result for the polariz-
ability even when still positive. One may also consider in
this problem a configuration interaction scheme, using a lim-
ited number of displaced oscillator states. This may improve
the picture but, by the same token, is not guaranteed to meet
the concavity requirement. Such procedures, albeit widely
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FIG. 4. �Color online� Sketch of the Coulomb potential together
with a series of harmonic confinement potentials shifted by the
electric field. The ground states provided separately by each poten-
tial are indicated by the horizontal bars. For weaker fields the Cou-
lomb potential yields a lower ground-state energy than the shifted
oscillator potential. For a certain field strength the two energies are
at level. This roughly marks the transition point between the two
regimes discussed in the text. For even higher fields the shifted
oscillator yields the lowest energy.
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FIG. 5. Cross section of the ground-state wave function for
EC=1 and different values of the applied bias. A transition from the
Coulomb dominated state for small fields to the shifted harmonic
oscillator state for large fields can be observed.
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at smaller fields.
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employed for calculating QD emission and absorption spec-
tra, should be used with caution in this case.

The concavity requirement is automatically met by con-
sistent variational procedures �with bias-independent varia-
tional reservoirs�, as illustrated by our variational ansatz I.
Yet the ground-state energies obtained in this scheme are not
quite satisfactory, due to the choice of the trial functions.
Simple Gaussians are not good approximates for wave func-
tions such as those of Fig. 5, especially at low fields.

A more accurate variational procedure �ansatz II� is pro-
posed instead. It is still numerically simple and is exact in
two limiting cases: in the absence of the Coulomb interaction
and in the case of equal electron and hole single-particle
energies. The method predicts a nontrivial, two-regime be-

havior. For low fields the ground state is dominated by the
Coulomb attraction, while for large fields it is oscillatorlike.
The transition between the two can be sharper or smoother,
depending on the relative strength of the Coulomb interac-
tion with respect to the one-particle energies.
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