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Nonlinear Schrödinger flow past an obstacle in one dimension

Vincent Hakim
Laboratoire de Physique Statistique, 24 rue Lhomond, 75231 Paris Cedex 05, France

~Received 19 August 1996!

The flow of a one-dimensional defocusing nonlinear Schro¨dinger fluid past an obstacle is investigated.
Below an obstacle-dependent critical velocity, a steady dissipationless motion is possible and the flow profile
is determined analytically in several cases. At the critical velocity, the steady flow solution disappears by
merging with an unstable solution in a usual saddle-node bifurcation. It is argued that this unstable solution
represents the transition state for emission of gray solitons. The barrier for soliton emission is explicitly
computed and vanishes at the critical velocity. Above the critical velocity, the flow becomes unsteady and its
characteristics are studied numerically. It is found that gray solitons are repeatedly emitted by the obstacle and
propagate downstream. Upstream propagating dispersive waves are emitted concurrently. A hydraulic approxi-
mation is used to interpret these results.@S1063-651X~97!11503-3#

PACS number~s!: 03.40.Gc, 42.65.Vh, 67.40.Hf
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I. INTRODUCTION

The nonlinear Schro¨dinger~NLS! equation appears in dif
ferent physical problems. It is an envelope equation for sm
amplitude almost monochromatic waves and it appears
such in nonlinear optics@1# and, for instance, in the study o
gravity waves on deep water@2#. It also describes the con
densate dynamics of a weakly interacting Bose gas@3#, a
subject of renewed interest@4,5#. In this latter context, two-
dimensional numerical simulations of NLS flow have be
performed@6–8# in order to shed some light on vortex ge
eration by a moving charge or equivalently by a flow arou
an obstacle in superfluid4He @9# . The aim of this paper is to
analyze the analogous problem of NLS flow past an obst
in one dimension where it is more easily tractable and q
instructive.

We study the NLS equation with an added external loc
ized repulsive potentialU moving at velocity v.0 and
meant to represent the motion of an impurity in the N
fluid at rest atx51`,

i ] tA52]xxA2A1uAu2A1U~x2vt !A. ~1!

The boundary conditionA51 is imposed atx51`. Since
we are interested in the finite density case, a repulsive
has been chosen for the nonlinear term~as appropriate for the
imperfect Bose gas and for defocusing optical media! so that
a constant density solution is stable away from the impu
@10#. The phenomenology of Eq.~1! turns out to be similar to
higher dimensions@6#, vortices being replaced in one dime
sion by propagating localized density depression of the fo
@11,12#

A~x,t !5
~c1 il!2/21exp@l~x2ct!#

11exp@l~x2ct!#
, c21l252 ~2!

which we call gray solitons in the following, using a nonlin
ear optics terminology.

Equation~1! can be written in the frame of the movin
impurity, as

i ] tA2 iv]xA52]xxA2A1uAu2A1U~x!A. ~3!
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In this equivalent formulation, it describes the flow of a NL
fluid past an immobile obstacle@13#. In an envelope equation
context, the termv]x also appears naturally and describes
propagation of the wave envelope at the group velocity. T
specific question that we consider is the nature of the fl
~i.e., steady or time-dependent! when a flow of constant den
sity is injected at velocityv at infinity. In Sec. II, we first
analyze the steady solutions of Eq.~3! and focus on three
cases which can be described analytically. These are w
potentials, potentials of short range, and, on the contr
slowly varying potentials. In every case, we find that below
critical velocity which depends on the characteristics of
potential, there is a stable steady flow solution. There a
exists~at least! one unstable flow solution which we interpr
as the transition state toward the creation of gray solitons
the critical velocity, both solutions coalesce and disappea
a saddle-node bifurcation so that no steady solution ex
above the critical velocity. In order to investigate what ha
pens in this regime, we resort to numerical integration
Sec. III. It is found that gray solitons are continuously em
ted in the wake of the obstacle together with upstream pro
gating disturbances.

II. STEADY FLOWS

We begin by analyzing the existence of time-independ
solutions of Eq.~3!. We look for a solution in the form
A(x)5R(x)exp@if(x)#. This gives

v]xR52]xR]xf1R]xxf, ~4!

2vR]xf5]xxR2R~fx!
21R2R32U~x!R. ~5!

Equation~4! can be interpreted as the fluid conservati
equation@14# and can readily be integrated once. This det
mines the gradient off @half the fluid velocity with our
normalization of Eq.~1!# as a function ofR(x)2 ~the local
fluid density!,

]xf5
v
2 S 12

1

R2D . ~6!
2835 © 1997 The American Physical Society
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2836 55VINCENT HAKIM
Substituting Eq.~6! into Eq. ~5!, R(x) is found to obey the
equation

]xxR5
v2

4 S 2R1
1

R3D1R32R1U~x!R. ~7!

We want to find solutionsR(x) of Eq. ~7! which tend to one
at x56`. Linearizing Eq. ~7! for large uxu as
R(x)511r (x), one obtains

]xxr5~22v2!r . ~8!

Therefore, forv larger than the sound velocityvs5A2, there
are two oscillating modes aroundx52` and two around
x51`. The annulation of the amplitudes of these fo
modes gives too many constraints and prevents the exist
of a localized solution for a generic potential@oncer→1 is
imposed atx52` there remains no freedom in the secon
order equation~7! to cancel the coefficients of the two osc
lating modes aroundx51`#. On the contrary, forv,vs ,
there is only one diverging mode foruxu@1. Once the am-
plitude of the divergent mode is chosen to vanish arou
x52`, the amplitude of the convergent mode is a free
rameter. The amplitude of the divergent mode atx51` is a
function of this parameter and the existence of localiz
steady flow solutions depends on the existence of zero
this function which is nota priori guaranteed. In fact, we ar
now going to show on several examples that localized s
tions only exist forv,vc , wherevc is a critical velocity
which depends on the potentialU(x) and is strictly less than
vs .

A. Short range potentials

We start with the simple case of a potential of range sh
as compared to the coherence length of the NLS equa
@scaled to unity in Eq.~3!# which can be treated as
~pseudo! potentiald of strengthg,

U~x!5gd~x!. ~9!

This imposes a discontinuity in the derivatives ofA at the
origin proportional tog,

]xAu012]xAu025gA~0!. ~10!

For an injection speed smaller than the speed of soun
infinity v,A2, the integration of Eq.~7! gives

R25
v2

2
1S 12

v2

2 D tanh2@A1/22v2/4~x6x0!#, x:0.

~11!

The corresponding phase is obtained from Eq.~6! as

f~x!5 f ~x!

5arctanS ~2v22v4!1/2

exp@A22v2~x1x0!#1v221
D , x.0,

f~x!52 f ~0!2 f ~2x!, x,0. ~12!
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Equations~11! and ~12! can also be grouped in a single ex
pression forA(x,t) as in Eq.~2! if one prefers so.

The possible values of the constantx0 are determined as a
function of the potential strengthg by the relation~10!,

g5A2~12v2/2!3/2
tanh@A1/22v2/4x0#

v2/21sinh2@A1/22v2/4x0#
. ~13!

This relation is plotted in Fig. 1. For a given potenti
strengthg, there are two possiblex0 ~and therefore two pos-
sible steady flows! for each injection velocityv smaller than
a potential-dependent critical velocity,v,vc(g), whereas
for v.vc(g) there are none. The modulus and phase of th
two solutions are shown in Figs. 2 and 3 forg52 and

FIG. 1. The relation betweenx0 ,v and g for 0,x,2 and
0.2,v,1.3. The front cut of the surface shows that for fixedv
~here equal to 0.2) there are two possiblex0 for g smaller than
gm and none above.

FIG. 2. The square modulus of the two time-independent so
tions for ad-potential of strengthg52 and flow velocityv50.3
below the critical velocity (vc50.418 91). The lower curve corre
sponds tox0,250.112 087~the unstable solution! and the upper one
to x0,150.696 69~the stable solution!.
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55 2837NONLINEAR SCHRÖDINGER FLOW PAST AN OBSTACLE . . .
v50.3 belowvc(2)50.4189. Equation~13! determines the
critical velocity vc as a function of the potential strengthg
~see Fig. 4!,

g54~12vc
2/2!

@A114vc
22~11vc

2!#1/2

2vc
2211A114vc

2
. ~14!

One obtains, for example,vc.0.647 forg51, vc.0.419 for
g52, andvc.0.304 forg53. For a small potential strength
vc is close to the sound velocity

vc5A22
3

2A2
g2/31•••, g!1. ~15!

FIG. 3. The phase of the two time-independent solutions sho
in Fig. 2. The upper curve corresponds to the unstable solu
(x0,2) and the lower one to the stable solution (x0,1).

FIG. 4. The critical velocityvc for a d potential of strengthg. A
stable steady solution~as well as an unstable one! exists only below
the curvevc(g).
But vc decreases as the potential strength increases and
critical velocity tends to zero for largeg,

vc.
1

g
, g@1. ~16!

The loss of steady solutions can also be obtained a
fixed velocity v ~smaller than the sound speedA2) by in-
creasing the potential strength fromg50. The two solutions
which exist for small potential strength merge and disapp
in a usual saddle-node bifurcation atg such thatvc(g)5v. It
should be noted that the minimum amplitude of the critic
solution at the merging of the two solution branches does
vanish. So, the disappearance of time-independent solut
is not signaled in one dimension by the appearance o
phase singularity in contrast to what has been predicted
the NLS equation in higher dimensions@7#.

It is instructive to look at the limiting form of the two
solutions when the potential strengthg tends to zero. In this
case, the largest root of Eq.~13! x0,1 tends to1` and the
corresponding solution toA51, the unperturbed flow. On
the contrary, the smaller rootx0,2 tends to zero and the lim
iting corresponding solution is simply a gray soliton movin
upstream at velocityv in the fluid referential so as to stay a
a fixed position in the obstacle reference frame. The ma
mum of the soliton depression is on top of the repuls
potential, the less disadvantageous location. Of the two
lutions which merge at the saddle node bifurcation, one
presumably stable and the other one should then be uns
on general grounds. The small-g limiting behavior leads us
to guess that the stable solution corresponds tox0,1 and the
unstable one tox0,2 . This is further supported by the fac
that asg increases from 0,x0,1 decreases toward the merg
ing valuex0,m @15# ~see Fig. 1! and the amplitude depressio
of the corresponding solution increases as physically
pected. On the contrary, for the solution corresponding
x0,2 , x0,2 increases towardx0,m and the depression ampl
tude decreases as the potential strength is increased.

This stability assignment can be checked by remembe
that Eq.~3! is a Hamiltonian system,

i ] tA5
dK

dA*
~17!

with

K5H2vP1v@f~1`!2f~2`!#. ~18!

H and P are the Hamiltonian and momentum in the flu
reference frame,

H5E dxH u]xAu21
1

2
~ uAu221!21U~x!~ uAu221!J ,

P5
1

2i E dx$A* ]xA2A]xA* %. ~19!

The last term in Eq.~18! imposes the appropriate bounda
condition of a constant flow@16#.

For a given potential strengthg and injection velocityv,
the steady solutions are local stationary points ofK. It is
numerically checked below by using the gradient dynam

n
n
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2838 55VINCENT HAKIM
associated toK that the solution corresponding tox0,1 is a
local minimum ofK. On the contrary, the solution corre
sponding tox0,2 is an unstable saddle point ofK. An appeal-
ing interpretation of the unstable solution is that it is a tra
sition state in Eyring’s sense~sometimes also called
‘‘sphaleron’’ @17#!, i.e., that it corresponds to the smalle
barrier that has to be overcome to create a gray soliton f
the stable steady solution. The barrier height can be obta
by computing the value ofK for a function of the form~11!
and ~12! usingx0 as a free parameter. One obtains

K~x0!5F@A12v2/2tanh~A1/22v2/4x0!#2F@A12v2/2#
~20!

with

F@ t#5
2A2
3

t322A2t12varctan~A2t/v !1gt2. ~21!

K(x0) is plotted in Fig. 5. Forv,vc , it has a minimum at
x0,1 and a local maximum atx0,2 . The barrier height
@K(x0,2)2K(x0,1)# vanishes asv tends towardvc . A direct
numerical test of the role of the unstable solution would
interesting. One could think of transforming the determin
tic equation~3! into a Langevin equation by adding nois
~temperature! and friction terms. Two difficulties have to b
noted, however. The first one particular to one dimensio
that any amount of noise will destroy the assumed lo
range order. The second one is that, in this purely class
setting, an ultraviolet cutoff has to be introduced in order
avoid the Rayleigh-Jeans catastrophe. Another interes
possibility may be to test the response of the steady flow
periodic perturbations, like sound waves.

FIG. 5. The functionalK evaluated for solution of the form~11!
and ~12! as a function of the parameterx0 for a potential strength
g52 and different values of the velocity; from top to bottom
v50.2,0.3,0.418 91~the critical velocity!, 0.5. At the critical ve-
locity, the two nontrivial extrema disappear and the barrier he
vanishes.
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B. Weak potentials

The steady solutions of Eq.~3! can be analyzed quite
generally if the obstacle potential is weak. It turns out th
the bifurcation and loss of steady solution for a generic we
potential are also described by thed-function pseudopoten
tial bifurcation as we now show, the reason being that in t
case the bifurcation happens below but close tovs5A2 for
which the extension of the gray soliton becomes very lar

For a weak potential, one solution can be obtained per
batively by expanding Eq.~7! around the unperturbed stead
flow as

R511r ~1!1•••. ~22!

The first-order term satisfies

]xxr
~1!5~22v2!r ~1!~x!1U~x!. ~23!

For v,A2, this gives

r ~1!~x!52E
2`

1` dy

2A22v2
exp~2A22v2ux2yu!U~y!.

~24!

Besides this first solution, another perturbative solution
obtained by expanding the flow around a gray soliton stati
ary at positionxp in the obstacle frame

R~x!5R0~x2xp!1s~1!~x!1••• ~25!

with the gray soliton amplitude given by

R0~x2xp!5H v22 1S 12
v2

2 D tanh2@A1/22v2/4~x2xp!#J 1/2.
~26!

s(1)(x) obeys the equation

]xxs
~1!1F123R0

21
v2

4 S 11
1

3R0
4D Gs~1!~x!

5U~x!R0~x2xp!. ~27!

The arbitrariness in the positionxp of the zeroth-order solu-
tion is as usual fixed by requiring that the inhomogeneo
term on the right-hand side~r.h.s.! of Eq. ~27! be orthogonal
to the zero mode]xR0(x2xp) of the linear operator on the
left-hand side~l.h.s.! ~so that no secular term appears
s(1)),

E
2`

1`

dx R0~x2xp!]xR0~x2xp!U~x!50. ~28!

The two solutions~22! and ~25! merge and disappear a
vc below but close tovs5A2. The deviation ofvc from vs
can be related to the potentialU(x) in the following way.

Close to the sound velocity, both Eq.~22! and Eq.~25!
become of small amplitude so we assume~and check self-
consistently! thatR deviates slightly from a constant densi
when the bifurcation takes place. WritingR(x)511r(x),
v5A22h, the full equation~7! becomes

]xxr52A2hr16r21U~x!1•••. ~29!

t
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55 2839NONLINEAR SCHRÖDINGER FLOW PAST AN OBSTACLE . . .
The first two terms on the r.h.s. of Eq.~29! are of similar
magnitude whenr;h. Comparison with the l.h.s. of Eq
~29! shows thatr varies on a long length scale proportion
to 1/Ah. Introducing the rescaled quantitiesr5hr and
x5j/Ah, one obtains that the bifurcation is described fo
small potentialU by

]jjr52A2r16r 21kd~j!, ~30!

where thed-potential strength is given by

k5
1

h2E
2`

1`

dj US j

Ah
D 5

1

h3/2E
2`

1`

dx U~x!. ~31!

Steady solutions are found to disappear atk5(2A2/3)3/2 by
following the calculations of the preceding section for E
~30! or simply by noting that it corresponds to the smallg
limit ~15!. Finally, for a weak potential the critical velocit
vc is given by@18#

vc5A22
3

2A2 S E
2`

1`

dx U~x! D 2/31h.o.t. ~32!

C. Slowly varying potentials

Potentials which vary on long length scales~compared to
the NLS coherence length! provide a last analytically trac
table case. In order to keep track of the small parameter
write the potential asU(ex) in Eq. ~3! instead ofU(x).

To zeroth order ine, the gradient term can be neglected
Eq. ~7! and the solution modulus is equal toR0(x) with

U~ex!5
v2

4 S 12
1

R0
4~x! D 112R0

2~x![ f „v,R0~x!…. ~33!

f (v,R), considered as a function ofR, increases withR for
small R, reaches a maximum atR*5(v/A2)1/3, and then
decreases to zero asR increases toward 1. So, for a give
velocity, a stationary solution only exists when the maximu
of the potentialUmax is below f (v,R* ). The critical velocity
is attained whenR(x)5R* at Umax, a condition which is
simply interpreted in the hydrodynamics analogy as mean
that the local fluid velocity in the obstacle fram
(2v12]xf52v/R2) is equal at the potential maximum t
the local sound velocityA2R. This determines the zeroth
order estimatev0 of the critical velocity as a function of the
maximum value of the potential as

Umax5
v2

4
2
3

2 S v22 D 1/311. ~34!

The steady solution loss at the critical velocity can
more precisely analyzed by taking into account the grad
term to lowest order. This determines as well thee correction
to the critical velocityv0. In order to do that we assume~and
again checka posteriori! that the stable and unstable solutio
merge forvc close tov0 and that in this range of velocity
they are close toR0(x) and differ notably from it only in a
boundary layer near the maximum of the potential~which we
suppose located atx50 for definiteness!. So, we expand
.

e

g

nt

R(x) aroundR* (v0) ~which we denote simply byR* in the
following!, U(ex) around the maximum of the potential, an
v aroundv0,

R~x!5R* ~v0!1r ~x!,

U~ex!5Umax1
U9~0!

2
e2x21•••, v5v01dv. ~35!

Correspondingly, we expandf (v,R) as

f ~v,R!5 f ~v0 ,R* !2 f 1dv2 f 2
r 2

2
1••• ~36!

with

f 1[2]v f uv0 ,R*5
v0
2

@211~2/v0
2!2/3#,

f 2[2]RRf uv0 ,R*51215~v0!
2/R* 6512. ~37!

Substituting these expansions into Eq.~7!, one obtains

]xxr5
R*U9~0!

2
e2x21R* f 1dv16R* r 21•••. ~38!

Comparing the magnitude of the different terms in Eq.~38!,
we obtain that the bifurcation takes place f
r;e2/3,x;e21/3,dv;e4/3 which justifies the expansion~35!.
This leads us to introduce the rescaled variables

r5re2/3F uU9~0!u
72R* G1/3, x5Xe21/3@3R* 2uU9~0!u#21/6,

dv5De4/3
1

2 f 1
F uU9~0!u2

3R* 2 G1/3. ~39!

With these variables, the equation describing the bifurcat
is simply

]XXr5r22X21D ~40!

with the boundary conditionr;uXu for uXu@1. For D,0
and uDu@1 ~i.e., well below the zeroth-order critical veloc
ity!, Eq. ~40! has two solutions which can be approximate
described@19#. One is the above ‘‘adiabatic’’ approximatio

r1~x!5Ax22D. ~41!

The other is a simple example of an internal boundary la
and describes a small gray soliton moving upstream in
fluid reference frame almost at the sound velocity so as
stand at the fixed position in the obstacle frame,

r2~x!5Ax22D2
3AuDu

cosh2~XuDu1/4/A2!
. ~42!

These approximations are compared to numerically de
mined solutions in Fig. 6. The two solutions continue to ex
for all negativeD and for positive values ofD up toDc @but,
of course, they are no longer correctly described by the
proximations~41! and ~42!, which do not even make sens
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2840 55VINCENT HAKIM
for D.0#. The critical value has been numerically dete
mined to beDc.1.466~the two solutions are shown close
merging in Fig. 7!. Therefore, taking into account the spat
variation of the potential increases the zeroth-order estim
of the critical velocity to

vc5vc
010.51

e4/3

f 1
F uU9~0!u

R* G2/3. ~43!

III. TIME-DEPENDENT FLOWS

Equation~3! was integrated numerically in order to te
the above analytical results and study what happens ab
the critical velocity. We used a finite-difference sem
implicit Crank-Nicholson scheme. The obstacle was impo
at x50 and the evolution was computed in the doma

FIG. 6. The two numerical solutions of Eq.~40! for
D52102/3.24.64 ~bold lines! compared to their approximat
large uDu approximations~41! and ~42! ~dashed lines!.

FIG. 7. The two numerical solutions of Eq.~40! for D51.465
close toDc.1.466 where they become identical and disappear
-

te

ve

d

2L,x,L with L up to 300. Most computations were ca
ried out with a space discretizationDx50.05 and a time
discretizationDt50.01. Some runs were performed on fin
grids to check that the results were not affected in a sign
cant way by the discretization. Dissipative terms have b
added to Eq.~3! in small neighborhoods of the domain e
tremities in order to minimize wave reflections at the dom
ends.

We first consider the case of ad potential. This has been
implemented numerically either by directly enforcing E
~10! or by choosing a potential of very short range. Identic
results were obtained with both methods but the second
required a grid spacing small enough to resolve the
variation of the potential. The first method was therefo
preferred and has been used to generate the numerical re
shown below.

We show in Fig. 8 the integration of Eq.~3! below the
critical velocity starting from thex0,1 analytical solution.
The solution is seen to be stable in time. This is also obtai
~data not shown! when the conservative equation~17! is re-
placed by the corresponding dissipative equat
(] tA52dK/dA* ). This numerically confirms thatx0,1 so-
lutions are local minima ofK.

Figures 9 and 10 show the square modulus and phas
the solution when the initial condition is instead thex0,2
solution. Numerical noise is sufficient to reveal the soluti
instability. After a transient behavior and emission of u
stream and downstream propagating disturbances, the
approaches the stablex0,1 solution in a region around the
origin which grows with time. A similar evolution was ob
served for all studied injection velocities less than the criti
velocity ~even quite close tovc). We thus conclude that be
low the critical linevc(g) the flow relaxes toward the stead
x0,1 solution.

Above the critical linevc(g), no steady solution exists

FIG. 8. Numerical integration of Eq.~3! with v50.3 and ad
potential of strengthg52, below the critical curve (vc50.418 91
for g52), from t50 to t530. The initial condition is the steady
solution ~11! and ~12! with x0,150.696 69. The solution squar
modulus is plotted at integer and half-integer times~shifted upward
by t/10). The numerical integration shows that it is stable.
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55 2841NONLINEAR SCHRÖDINGER FLOW PAST AN OBSTACLE . . .
Figures 11 and 12 show the evolution in such a case.
injection velocity is fixed atv. The initial condition is the
stable steady solution corresponding to a potential stren
g slightly below the critical one. Att50, the potential
strength is increased above the critical one. The numer
results show that waves are repeatedly emitted at the or
Each round of emission consists of a downstream dis
bance formed of a number of gray solitons~two can be

FIG. 9. Numerical integration of Eq.~3! with v50.3 and
g52 as in Fig. 8 but starting from the steady solution~11! and~12!
with x0,250.112 087. The solution square modulus is plotted
t50,10,20, . . . up tot550 ~shifted upward byt/20). The integra-
tion shows that the initialx0,2 solution is unstable. It emits soun
and gray solitons which move upstream and downstream. Aro
the obstacle atx50, the flow becomes time-independent and co
cides with the steadyx0,1 solution.

FIG. 10. The successive phases of the solution shown in Fi
~but plotted twice as often!. Thex0,1 solution can again clearly be
seen developing aroundx50. Note also the 2p phase jump be-
tweent515 andt520, which corresponds to the vanishing of th
solution modulus and the emission of gray solitons.
e

th

al
in.
r-

clearly seen in Figs. 11 and 12! and an upstream propagatin
disturbance which breaks into dispersive sound waves.
the parameter values of Figs. 11 and 12 all the emitted s
tons propagate downstream faster than the injection velo
and the modulus ofA vanishes at the moment of emission,
can clearly be seen from the corresponding phase jump

t

d
-

9

FIG. 11. Numerical integration of Eq.~3!. The initial condition
is the stable steady solution~11,12! for v50.3 andg53 (x0,1
50.345 377) just below the maximum couplinggm53.045 78. The
evolution is computed forv50.3 andg54 abovegm . The solution
square modulus is plotted att50,8,16, . . . up tot580 ~shifted
upward byt/16). Gray solitons moving downstream and upstre
moving dispersive waves are repeatedly emitted from the obst
~three rounds of emission can actually be seen during the time
riod shown!.

FIG. 12. The successive phases of the solution shown in Fig.
Note again the 2p phase jump corresponding to each emissio
Here, as in the following phase plots, the phases are drawn a
same instants as the corresponding moduli. The time order of
different curves is made clear by noting that the size of the p
turbed domain increases with time.
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Fig. 12. For other parameter values, some solitons propa
downstream less rapidly than the mean flow and the mod
of A never vanishes, as shown in Figs. 13 and 14.

The dynamics for a general~one hump! potential appears
to be qualitatively similar. We have studied potentials
Gaussian form,

U~x!5Umaxexp†2~x/s!2‡. ~44!

FIG. 13. Numerical integration of Eq.~3!. The initial condition
is the stable steady solution~11! and ~12! for v51.0 andg50.29
(x0,151.300 67) just below the maximum couplinggm
50.300 28. The evolution is computed forv50.3 andg50.39
above gm . The solution square modulus is plotted att
50,20,40, . . . up tot5120 ~shifted upward byt/40). As in Fig.
11, gray solitons moving downstream and upstream moving dis
sive waves are repeatedly emitted from the obstacle.

FIG. 14. The successive phases of the solution shown in Fig
Note that in contrast to Fig. 12, the main soliton of each round
emission moves downstream more slowly than the injection ve
ity and there is no phase jump.
te
us

f

For Umax5g/Aps ands!1, the results are indistinguish
able from those obtained with ad potential of strengthg.
Results in the other limits@1 are presented in Figs. 15 an
16. The potential is of the form~44! with s510 and
Umax55/16. The initial condition is the steady solution at a
injection velocityv50.45 and is very well approximated b
the ‘‘adiabatic’’ solutionR(x) of Eq. ~33! and its corre-
sponding phase. The evolution is performed at an inject
velocity of v50.7 above the critical velocityvc.0.53 @in
agreement with the estimate~43! and slightly larger than the
zeroth-order approximation~34! v050.5#. As in the
d-potential case gray solitons are repeatedly emitted and
upstream disturbance is generated. The upstream disturb
is, however, somewhat simpler than in thed-potential case
since it is of almost constant height. The flow geometry h

r-

3.
f
c-

FIG. 15. Numerical integration of Eq.~3! with a potential of
Gaussian form~44! with Umax55/16,s510. The solution square
modulus is plotted at timest50,20,40, . . . up tot5180 ~shifted
upwards byt/40).

FIG. 16. The successive phases of the solution shown in Fig.
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some similarities with the classical case of a compress
fluid flow through a nozzle@20#, which is itself analogous to
shallow-water flow. The results are indeed reminiscent
those obtained for the flow of a stratified fluid over a loc
ized topography~see, e.g.,@21#!. As in this latter context
@22#, the most salient features can be described by a sim
‘‘hydraulic’’ approximation which generalizes the static a
proximation~33! and that we now explain.

For a slowly varying potential, Eq.~3! can be rewritten to
lowest order in the slow variation as

] tr1]x~rw!50, ~45!

] tw1w]xw12]xr12]xU50 ~46!

with boundary conditionsr(1`)51,w(1`)52v, where
r5R2 andw(x)52v12]xf have been introduced to em
phasize the hydrodynamic analogy. This leads us to ex
that above the critical velocity it is useful to consider t
asymptotic ‘‘hydraulic’’ solution of Eqs.~45! and ~46! de-
picted in Fig. 17. It consists of a critical stationary soluti
developing around the obstacle with an upstream depres
terminated by a moving shock and a downstream depress
Of course, the shock is not a solution of the full nondissip
tive Eq.~3! and the singularity of Eqs.~45! and~46! is regu-
larized instead by the development of small wavelength
cillations as previously described in the literature@23,24# and
seen in Fig. 15. Similarly, the downstream depression ha
be replaced by a set of gray solitons.

As in Sec. II, the profile of the stationary solution is eas
derived from Eqs.~45! and ~46!. The conservation equatio
~45! determines the velocity as a function of the density a
the incoming mass flux. The density profile is then obtain
from Eq. ~46! as

r1
2w1

2

4r2~x!
1r~x!1U~x!5

w1
2

4
1r1 . ~47!

FIG. 17. Sketch of the asymptotic hydraulic solution used
interpret the results of Figs. 15 and 16.
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The criticality condition fixes a first relation@analogous to
Eq. ~34!# between the densityr1 and fluid velocityw1 on the
obstacle side of the upstream shock~see Fig. 17!,

Umax5
w1
2

4
1r12

3

2
~r1

2w1
2/2!1/3. ~48!

Two shock conditions are needed to complete the determ
tion of r1 ,w1 and the shock velocityVs as a function of the
injection conditions. The determination of these analogs
the usual Rankine-Hugoniot conditions for a dissipationl
shock requires a careful analysis@23# since it isa priori not
obvious what the conserved quantities are when
traverses the expanding oscillatory shock inner structu
Here, however, we limit ourselves to cases where the in
tion velocity is above but close to the critical velocityv0, Eq.
~34!, where the steady flow disappears~in the hydraulic ap-
proximation!. This allows us to consider only weak shoc
and neglect the losses in the inner structure. Then, the
servation relations~45! and ~46! across the shock give th
two relations@25#

2Vs~r`2r1!1r`w`2r1w150,

2Vs~w`2w1!1
w`
2

2
12r`2

w1
2

2
22r150. ~49!

The fluid densityr` and velocityw` on the injection side of
the upstream shock are those of the undisturbed fluid at
finity, namely r`51 and w`52v. For a weak shock,
r15r`1dr, dr!1,w152v1dw, dw!1, Eq.~49! simply
relates the velocity discontinuity to the density difference

dw5A2dr. ~50!

In the same limit, the shock velocity is found to be

Vs52v1A21dw, ~51!

which simply means that the shock is sonic relative to
downstream fluid. The critical condition~48! then deter-
mines the density increase of the upstream disturbance
function of the small increase of the injection velocity abo
the critical velocity,v5v01dv` , 0,dv`!1,

dr5
1

A2
11~v0

2/2!1/3

11~v0
2/2!1/61~v0

2/2!1/3
dv` . ~52!

These results can be compared with the numerical data
ported in Figs. 15 and 16. The potential maximum was c
sen to beUmax55/16, for which the critical injection velocity
is in the hydraulic approximationv051/2. For an injection
velocity v50.7 ~i.e., dv`50.2), Eq. ~52! gives dr
59.631022, while the shock velocity and the fluid velocit
decrease downstream of the shock are obtained from
~50! and ~51! to be Vs50.85,dw50.136. These estimate
are found to be in good agreement with the numerical dat
Fig. 15 for the square modulus increase in the obstacle
stream region ~which has small oscillations betwee
dr59.331022 and 9.631022) as well as for the propaga
tion velocity of the front end of the upstream disturbanc
The phase plot is quite straight in the upstream disturba
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region with a slopê ]xf&50.66, which also agrees accu
rately with dw/2. Similar agreement has been observed
an injection velocityv50.6 ~with the same potential!. As
explained in the Appendix, one can also attempt to determ
the gray soliton properties~velocity, period of emission! by
using the determined upstream solution and the exact law
conservation of mass and energy through the obstacle. H
ever, taking into account only the main gray soliton of ea
emission does not seem sufficient to satisfy accurately
conservation laws~especially the energy one! and does not
give as satisfactory results.

IV. CONCLUSION

We have presented analytical and numerical results
the steady or time-dependent flows of a nonlinear Sch¨-
dinger fluid past an obstacle. As already mentioned, t
have some similarity with the classical case of a compre
ible fluid flow through a nozzle and with results obtained
the flow of a stratified fluid over a localized topograp
@21,22,18#. Our main result is the existence of an obstac
dependent critical velocity above which the steady flow
lution disappears and gray solitons are repeatedly emit
We have also explicitly obtained corrections to the class
criterion determining the critical velocity as the velocity f
which the fluid locally reaches the sound velocity. Such c
rections remain to be obtained in higher dimensions. O
study can also be developed in different directions. It wo
certainly be interesting to analyze wave generation more
cisely. In the case of slowly varying potentials, one cou
for instance, try to generalize the approach of Sec. II C
time-dependent flows in order to describe the soliton crea
and determine the corrections to the hydraulic approxim
tion. The transition from one dimension to highe
dimensional geometries is worth investigating as well as
role of gray solitons@26,27# and their analogs@28# in higher
dimensions. In this case, describing the obstacle by a po
tial may also prove useful. Finally, the results appear pot
tially relevant in different physical contexts. Two, whic
seem particularly noteworthy, are nonlinear optics, where
lated observations may have already been made@29#, and
more speculatively, condensed atomic vapors@5#, where in-
vestigations of different forms of traps and flows may b
come accessible in due course.
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APPENDIX: CONSERVATION LAWS
FOR THE NLS EQUATION WITH A POTENTIAL

AND GRAY SOLITON EMISSION

The NLS equation has an infinite number of local cons
vation laws. At least two still exist when a potential is add
as in Eq.~3!. One is simply the conservation of matter whic
reads, in the obstacle frame,
r

e

of
w-
h
e
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-
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-
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] tuAu25]xJM ~A1!

with the flux JM given by

JM5v~ uAu221!1 i ~A* ]xA2A]xA* !. ~A2!

The other derives from the conservation of the Hamilton
K ~17!,

] t~H2vP!5]xJK ~A3!

with the energy densityH and momentum densityP defined
as in Eq.~19!,

H5u]xAu21
1

2
~ uAu221!21U~x!~ uAu221!

P5
1

2i
~A* ]xA2A]xA* ! ~A4!

and the fluxJK ,

JK5 i $]xxA]xA*2]xxA* ]xA1~A]xA*2A* ]xA!

3@12uAu22U~x!2v2/2#%

2v$22u]xAu211/2~A* ]xxA1A]xxA* !

1uAu22uAu42U~x!uAu2%. ~A5!

Since the mass, momentum, and energy contained in
finite interval of space are bounded, the time-averaged flu
^JM(x)& and ^JK(x)& should be independent of the spa
positionx. For a slowly varying potential, the value of thes
fluxes upstream of the obstacle can be determined from
hydraulic approximation, which gives

JM
~hydr.!5v~r121!2~w11v !r1.~v2A2!dr,

JK
~hydr.!52r1~w11v !3/41r1~w11v !~12r12v2/2!

2r1v@23~w11v !2/4112r1#

.vdr~12v/A2!. ~A6!

Downstream of the obstacle, it is the passage of gray s
tons which gives nonzero values to the time integrals ofJM
andJK . Assuming that the solitons are well separated, t
gives

E
0

t

dt JM~x,t !522( A22~v1wgs!
2,

E
0

t

dt JK~x,t !5( H 23 @22~v1wgs!
2#3/2

1v~v1wgs!A22~v1wgsD 2, ~A7!

where the sum is over all solitons which have passed thro
x between 0 andt (wgs is the velocity in the obstacle fram
of the considered soliton!.
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It can be attempted to satisfy Eq.~A7! by taking into
account only the main soliton of each emission. This giv
two equations for the period of emissionT and the velocity
ws of the emitted solitons

Tdr~A22v !52A22~v1wgs!
2, ~A8!

Tdr~A22v !v/A25
2

3
@22~v1wgs!

2#3/2

1v~v1wgs!A22~v1wgs
2. ~A9!
s.

tiv

in
a
.
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For an injection velocity v50.7 one obtains
T539.9,wgs521.06 to be compared to the simulation va
uesT.42,wgs.20.6. While the prediction is satisfactor
for the period, it is quite imprecise for the gray soliton v
locity, which is small in the fluid referential frame
(uv1wgsu!1). The main defect of the approximation a
pears to come from the neglect of the small solitons, wh
contributes negligibly to the mass balance but quite sign
cantly to the balance of energy. In fact, good results
obtained by assumingv1wgs.0 and using only Eq.~A8!.
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