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Nonlinear Schrodinger flow past an obstacle in one dimension
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The flow of a one-dimensional defocusing nonlinear Sdimger fluid past an obstacle is investigated.
Below an obstacle-dependent critical velocity, a steady dissipationless motion is possible and the flow profile
is determined analytically in several cases. At the critical velocity, the steady flow solution disappears by
merging with an unstable solution in a usual saddle-node bifurcation. It is argued that this unstable solution
represents the transition state for emission of gray solitons. The barrier for soliton emission is explicitly
computed and vanishes at the critical velocity. Above the critical velocity, the flow becomes unsteady and its
characteristics are studied numerically. It is found that gray solitons are repeatedly emitted by the obstacle and
propagate downstream. Upstream propagating dispersive waves are emitted concurrently. A hydraulic approxi-
mation is used to interpret these resul81063-651X97)11503-3

PACS numbgs): 03.40.Gc, 42.65.Vh, 67.40.Hf

[. INTRODUCTION In this equivalent formulation, it describes the flow of a NLS
fluid past an immobile obstac|@3]. In an envelope equation
The nonlinear Schiinger(NLS) equation appears in dif- context, the ternp d, also appears naturally and describes the
ferent physical problems. It is an envelope equation for smalpropagation of the wave envelope at the group velocity. The
amplitude almost monochromatic waves and it appears agpecific question that we consider is the nature of the flow
such in nonlinear opticgl] and, for instance, in the study of (i.e., steady or time-dependg¢mthen a flow of constant den-
gravity waves on deep wat¢®]. It also describes the con- sity is injected at velocityw at infinity. In Sec. Il, we first
densate dynamics of a weakly interacting Bose sa  analyze the steady solutions of E®) and focus on three
subject of renewed interep4,5]. In this latter context, two- cases which can be described analytically. These are weak
dimensional numerical simulations of NLS flow have beenpotentials, potentials of short range, and, on the contrary,
performed[6—8] in order to shed some light on vortex gen- slowly varying potentials. In every case, we find that below a
eration by a moving charge or equivalently by a flow aroundcritical velocity which depends on the characteristics of the
an obstacle in superfluitHe [9] . The aim of this paper is to potential, there is a stable steady flow solution. There also
analyze the analogous problem of NLS flow past an obstaclexists(at least one unstable flow solution which we interpret
in one dimension where it is more easily tractable and quit@s the transition state toward the creation of gray solitons. At
instructive. the critical velocity, both solutions coalesce and disappear in
We study the NLS equation with an added external locala saddle-node bifurcation so that no steady solution exists
ized repulsive potentiall moving at velocityv>0 and above the critical velocity. In order to investigate what hap-
meant to represent the motion of an impurity in the NLSpens in this regime, we resort to numerical integration in

fluid at rest atx=+oo, Sec. lll. It is found that gray solitons are continuously emit-
) 5 ted in the wake of the obstacle together with upstream propa-
1A= — I A— A+ |A[FA+U(X—vt)A. (1) gating disturbances.

The boundary conditiod=1 is imposed ak= +«. Since

we are interested in the finite density case, a repulsive sign l. STEADY FLOWS

has been chosen for the nonlinear téem appropriate for the We begin by analyzing the existence of time-independent
imperfect Bose gas and for defocusing optical mes@that  so|ytions of Eq.(3). We look for a solution in the form

a constant density solution is stable away from the impuritya x) = R(x)exfi¢(x)]. This gives

[10]. The phenomenology of E@l) turns out to be similar to

higher dimension§6], vortices being replaced in one dimen- 03, R=20,Rd,p+ Rdyyb, (4)

sion by propagating localized density depression of the form

(11,12 —vRI b= R—R(p)?>+R—R3*~U(X)R.  (5)

H 2
= (CHIN)T/2+ exp A (X Ct)], c24+N2=2 (2 Equation(4) can be interpreted as the fluid conservation
1+exgA(x—ct)] equation[14] and can readily be integrated once. This deter-
mines the gradient ofp [half the fluid velocity with our
normalization of Eq(1)] as a function ofR(x)? (the local

A(X,t)

which we call gray solitons in the following, using a nonlin-
ear optics terminology.

Equation(1) can be written in the frame of the moving fluid density,
impurity, as v 1
G A—iva A= — 9 A—At+|ARATUMA. (3 ‘9*"5:5(1_@ : ®
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Substituting Eq(6) into Eq. (5), R(x) is found to obey the
equation

UZ

IxR=—

4| R+

1

ﬁ) +R3—R+U(X)R. (7)

We want to find solution&®(x) of Eq. (7) which tend to one

at x=zxow, Linearizing Eq. (7) for large |x| as g
R(x)=1+r(x), one obtains

At =(2—0v?)r. (8)

Therefore, forw larger than the sound velocity= 2, there
are two oscillating modes around= —o and two around
x=+oo, The annulation of the amplitudes of these four
modes gives too many constraints and prevents the existence
of a localized solution for a generic potentfancer —1 is ]
imposed ak= — there remains no freedom in the second- _FIG- 1. The relation betwees,,v and g for 0<x<2 and
order equatior(7) to cancel the coefficients of the two oscil- 0-2<v<1.3. The front cut of the surface shows that for fixed
lating modes around=+c=]. On the contrary, fov<uv., (here equal to 0.2) there are two possiklefor g smaller than
there is only one diverging mode f¢x|>1. Once the am- Im and none above.

plitude of the divergent mode is chosen to vanish arounqE
x= —o, the amplitude of the convergent mode is a free pa
rameter. The amplitude of the divergent modeat+ « is a
function of this parameter and the existence of Iocalizedf
steady flow solutions depends on the existence of zeros o

quations(11) and (12) can also be grouped in a single ex-
pression forA(x,t) as in Eq.(2) if one prefers so.

The possible values of the constagtare determined as a
%mction of the potential strengtty by the relation(10),

this function which is not priori guaranteed. In fact, we are tanh V1/2— 024 x

now going to show on several examples that localized solu-  g=2(1—v%/2)%? 5 k[ 0 20] . (13
tions only exist forv<v., wherev, is a critical velocity v2/2+sintP[ 1/2— v */4X,]
which depends on the potentid(x) and is strictly less than

This relation is plotted in Fig. 1. For a given potential
strengthg, there are two possible, (and therefore two pos-
sible steady flowsfor each injection velocity smaller than
a potential-dependent critical velocity,<v.(g), whereas
We start with the simple case of a potential of range shorfor v >v.(g) there are none. The modulus and phase of these
as compared to the coherence length of the NLS equatiotwo solutions are shown in Figs. 2 and 3 fgr=2 and
[scaled to unity in Eq.(3)] which can be treated as a
(pseudo potential 5 of strengthg,

Us.

A. Short range potentials

T T I T T T T I T T T T I T T T T T T T T I T T
U(x)=gd(x). 9) |

This imposes a discontinuity in the derivatives Afat the
origin proportional tog,

&XA|O+_‘?XA|O’:QA(O)- (10
L =
For an injection speed smaller than the speed of sound at — 0.5
infinity v< /2, the integration of Eq(7) gives ‘
v? v?
R2=7+ 1-— tant?[ V1/2—v?/4(x*+x)], x=0.
11
The corresponding phase is obtained from &j.as ol Lo b b by
-4 -2 0 2 4
d(x)=1F(x) x
(2v2—p*)12 FIG. 2. The square modulus of the two time-independent solu-
=arcta = > , x>0, tions for a §-potential of strengtlg=2 and flow velocityv =0.3
exf v2—v(X+Xo)]+v -1 below the critical velocity ¢.=0.418 91). The lower curve corre-

sponds toxg - =0.112 087(the unstable solutigrand the upper one
d(x)=2f(0)—f(—x), x<0. (12 to X+ =0.696 69(the stable solution
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L L L L B LB L But v, decreases as the potential strength increases and the
critical velocity tends to zero for large,

1
Uc2§1 g>1. (16)

The loss of steady solutions can also be obtained at a
fixed velocityv (smaller than the sound spee®) by in-
creasing the potential strength frags=0. The two solutions
which exist for small potential strength merge and disappear
in a usual saddle-node bifurcationgasuch thaw .(g)=v. It
should be noted that the minimum amplitude of the critical
solution at the merging of the two solution branches does not
vanish. So, the disappearance of time-independent solutions
- . is not signaled in one dimension by the appearance of a
phase singularity in contrast to what has been predicted for
the NLS equation in higher dimensiofig].

It is instructive to look at the limiting form of the two
solutions when the potential strengjttends to zero. In this

FIG. 3. The phase of the two time-independent solutions showr¢ase, the largest root of EQL3) X, ; tends to+< and the
in Fig. 2. The upper curve corresponds to the unstable solutiogorresponding solution té\=1, the unperturbed flow. On
(Xg-) and the lower one to the stable solutiom (). the contrary, the smaller roa _ tends to zero and the lim-

iting corresponding solution is simply a gray soliton moving
v=0.3 belowv(2)=0.4189. Equation(13) determines the upstream at velocity in the fluid referential so as to stay at
critical velocity v, as a function of the potential strenggh  a fixed position in the obstacle reference frame. The maxi-

_IIIIIII|IIII|III|IIII[|II_

-4 -2 0 2 4
X

(see Fig. 4, mum of the soliton depression is on top of the repulsive
potential, the less disadvantageous location. Of the two so-
[V1+4vZ—(1+0v2)]42 lutions which merge at the saddle node bifurcation, one is
g=4(1—v§/2) 5 5 (14 presumably stable and the other one should then be unstable
205—1+\1+4v; on general grounds. The smalllimiting behavior leads us

to guess that the stable solution correspondsyto and the
One obtains, for example,~0.647 forg=1,v.~0.419 for  unstable one tex, . This is further supported by the fact
g=2, andv.=0.304 forg=3. For a small potential strength, that asg increases from 0xo + decreases toward the merg-
v, is close to the sound velocity ing valuex, , [15] (see Fig. 1and the amplitude depression
of the corresponding solution increases as physically ex-
3 pected. On the contrary, for the solution corresponding to
V=2 ﬁg » g<l. (15  xo_, xo_ increases towardy,, and the depression ampli-
tude decreases as the potential strength is increased.
This stability assignment can be checked by remembering
1.5 1T that Eq.(3) is a Hamiltonian system,

23y .

i, A= 17

SA*
with
K=H-vP+v[¢(+x)=¢(-)]. (18)

H and P are the Hamiltonian and momentum in the fluid
reference frame,

H:f dx‘ |0, A[2+ %(|A|2—1>2+ U (JAP=1) 1,

1
i 7 P= —.f dx{A* 9,A—AdA*}. (19
_0 poeoe v by v by g by e by 2|
-0 1 2 3 4 5 ) ) .
g The I_a_st term in Eq(18) imposes the appropriate boundary
condition of a constant floy16].
FIG. 4. The critical velocity . for a & potential of strengtiy. A For a given potential strength and injection velocity,

stable steady solutiofas well as an unstable onexists only below the steady solutions are local stationary pointskoflt is
the curvev(g). numerically checked below by using the gradient dynamics
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OIIIIIIIIIIIIIIIIIIIIIII Bweaprtentlals

The steady solutions of Eq3) can be analyzed quite
generally if the obstacle potential is weak. It turns out that
the bifurcation and loss of steady solution for a generic weak
potential are also described by ti@efunction pseudopoten-
tial bifurcation as we now show, the reason being that in this
case the bifurcation happens below but close & /2 for
which the extension of the gray soliton becomes very large.

For a weak potential, one solution can be obtained pertur-
batively by expanding Ed.7) around the unperturbed steady
flow as

K(xg)

R=1+rM+.... (22)

The first-order term satisfies

Lo b v b b v by ﬁxxr(l):(z—vz)r(l)(x)_i_U(X)_ (23)
-0 0.2 0.4 0.6 0.8 1
tanh(x,V1/2=v%/4 ) Forv<+/2, this gives

FIG. 5. The functionaK evaluated for solution of the forifi1) 1 +o  dy 5
and(12) as a function of the parametgy for a potential strength r'(x)=-— f Wexﬁ_ V2—vex—yU(y).
g=2 and different values of the velocity; from top to bottom: o v >
v=0.2,0.3,0.418 91the critical velocity, 0.5. At the critical ve- (24

locity, the two nontrivial extrema disappear and the barrier height  gesjdes this first solution, another perturbative solution is
vanishes. obtained by expanding the flow around a gray soliton station-

) ) ) _ ary at positionx, in the obstacle frame
associated t& that the solution corresponding i ; is a

local minimum of K. On the contrary, the solution corre- R(X) =Ro(x—xp) +sP(x)+- - - (25)
sponding taxy _ is an unstable saddle point Kf An appeal- . ) ) ,
ing interpretation of the unstable solution is that it is a tran-With the gray soliton amplitude given by

sition state in Eyring’s sensdsometimes also called b2 b2 12
“sphaleron” [17]), i.e., that it corresponds to the smallest Ro(X—Xp)={ 5 +|1— tanhz[\/llz—v2/4(x—xp)]} .
barrier that has to be overcome to create a gray soliton from 2 2

the stable steady solution. The barrier height can be obtained (26)
by computing the value dk for a function of the form(11)

. ' s(M(x) obeys the equation
and(12) usingx, as a free parameter. One obtains

2
v 1
FSV+| 1-3R5+ —| 1+ =] sV
K (o) =F[ V1—v?/2tani y1/2—v?/4x4)]— F[V1—0v?%/2] x> 0 4 3R} (x)
(20)
=U(X)Ro(X—Xp). (27)
with The arbitrariness in the position, of the zeroth-order solu-
tion is as usual fixed by requiring that the inhomogeneous
\/‘ term on the right-hand sidg.h.s) of Eq. (27) be orthogonal

F[t]= %t3—2\/§t+20arctanj V2t/v)+gt%.  (21)  to the zero mode,Ry(x—x,) of the linear operator on the
I(—*E‘It)—hand side(l.h.s) (so that no secular term appears in
s),
K(Xo) is plotted in Fig. 5. Fow <v., it has a minimum at :
Xo+ and a local maximum ak,_. The barrier height
[K(Xo-)—K(Xo~)] vanishes as tends toward.. A direct
numerical test of the role of the unstable solution would be
interesting. One could think of transforming the determinis- The two solutiong22) and (25) merge and disappear at
tic equation(3) into a Langevin equation by adding noise v, below but close taw=+/2. The deviation ob from v,
(temperaturgand friction terms. Two difficulties have to be can be related to the potentidi(x) in the following way.
noted, however. The first one particular to one dimension is Close to the sound velocity, both E2) and Eq.(25)
that any amount of noise will destroy the assumed longbecome of small amplitude so we assutaed check self-
range order. The second one is that, in this purely classicalonsistently that R deviates slightly from a constant density
setting, an ultraviolet cutoff has to be introduced in order towhen the bifurcation takes place. Writirg(x) =1+ p(x),
avoid the Rayleigh-Jeans catastrophe. Another interesting=\/2— 5, the full equation(7) becomes
possibility may be to test the response of the steady flow to
periodic perturbations, like sound waves. axxp=2\/§np+6p2+ Ux)+---. (29

fjwdx Ro(X—Xp) dxRo(X—X,)U(X) =0. (28
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The first two terms on the r.h.s. of ER9) are of similar R(x) aroundR* (vy) (which we denote simply biR* in the
magnitude wherp~ 5. Comparison with the l.h.s. of Eq. following), U(ex) around the maximum of the potential, and
(29) shows thaip varies on a long length scale proportional v aroundvy,
to 14/7. Introducing the rescaled quantitigs=7r and

x= &/\/n, one obtains that the bifurcation is described for a

small potentiall by

R(X)=R*(vo) +r(x),

U”(O)
U(€X)=U maxt 2%+..., v=ve+év. (35
Det = 2\/2r + 6124+ k3(£), (30) (€)=Unmact —5—¢ v=votév. (39
where thes-potential strength is given by Correspondingly, we expanidv,R) as
2
,
1 4o 1 + o0 — * ) — — ...
K:_ZJ dgu(i):mf dx U(x). (31) f(v,R) f(onR) f15U f22+ (36)
L/ Vg 77%) =

with
Steady solutions are found to disappeakat(2+/2/3)%? by
following the calculations of the preceding section for Eq.
(30) or simply by noting that it corresponds to the snmll-
limit (15). Finally, for a weak potential the critical velocity

v. is given by[18] fo=— dreflu, re=T2+5(vg)/R* °=12.  (37)

v
f1= =0yl re = 5 [~ 1+(203)%7),

3 + o0 2/3 - . h - . .
b2 ( f dxUx) | +hot (32 Substituting these expansions into Eg), one obtains
22} )= R*U"(0)
Al = Tezx2+ R*f,0v+6R*r2+.... (39

C. Slowly varying potentials

Potentials which vary on long length scalesmpared to  Comparing the magnitude of the different terms in E3§),
the NLS coherence lengtiprovide a last analytically trac- We Z/Sbta'”_ 1/§hat tZ‘/g bifurcation takes place for
table case. In order to keep track of the small parameter, wg™ €~ X~ € ", 6v~ €~ which justifies the expansiof35).

write the potential as)(ex) in Eq. (3) instead ofU(x). This leads us to introduce the rescaled variables
To zeroth order irg, the gradient term can be neglected in U"(0)]]2
Eq. (7) and the solution modulus is equal Ry(x) with r=p62/3{w} . x=Xe Y3R*3U"(0)|]" 1,
2
v
U(GX):Z(].—W +1—R(2)(X)Ef(U,R0(X)). (33) 43 1 |U//(0)|2 1/3
0 v=Ae""— a2 (39)
2f;] 3R

f(v,R), considered as a function &, increases wittR for i ) ) o ) )
small R, reaches a maximum &* = (v/y2)¥3, and then With these variables, the equation describing the bifurcation
decreases to zero & increases toward 1. So, for a given IS SIMply
velocity, a stationary solution only exists when the maximum

of the potentialJ ., is belowf(v,R*). The critical velocity

is attained wherR(x) =R* at Upay, @ condition which is ~ yith the boundary conditiop~|X| for |X|>1. For A<0
simply interpreted in the hydrodynamics analogy as meaningnq|A|>1 (i.e., well below the zeroth-order critical veloc-
that the local fluid velocity in the obstacle frame ity), Eq. (40) has two solutions which can be approximately

_ 2 . - .
(—v+2d,¢=—0v/R%) is equal at the potential maximum 10 gegcribed19]. One is the above “adiabatic” approximation
the local sound velocity/2R. This determines the zeroth-

order estimate o of the critical velocity as a function of the pL(X)=x’—A. (41)
maximum value of the potential as

Ixxp=p>—X?+A (40

The other is a simple example of an internal boundary layer
and describes a small gray soliton moving upstream in the

+1. (34 fluid reference frame almost at the sound velocity so as to
stand at the fixed position in the obstacle frame,

The steady solution loss at the critical velocity can be
more precisely analyzed by taking into account the gradient (X)= Z—A- 3\/W
term to lowest order. This determines as well &neprrection P- cosR(X|A|Y42)
to the critical velocityv . In order to do that we assuntand
again checla posterior) that the stable and unstable solution These approximations are compared to numerically deter-
merge forv. close tov, and that in this range of velocity mined solutions in Fig. 6. The two solutions continue to exist
they are close td&Ry(x) and differ notably from it only in a for all negativeA and for positive values ok up toA. [but,
boundary layer near the maximum of the poten(ethich we  of course, they are no longer correctly described by the ap-
suppose located at=0 for definiteness So, we expand proximations(41) and(42), which do not even make sense

02 1/3

2

v? 3

Uma=7 =3

(42)
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N ]
3
=
2
1
ISP I SR S N ST W B _0_||||||||||||||||||1_
-1 0 1 ~20 -10 0 10 20
X/VA <
FIG. /g- The two numerical solutions of Eq0) for FIG. 8. Numerical integration of E¢(3) with v=0.3 and aé
A=—10"~—4.64 (bold lines compared to their approximate potential of strengtig=2, below the critical curveu(,=0.418 91
large|A| approximationg41) and (42) (dashed lines for g=2), fromt=0 to t=30. The initial condition is the steady

solution (11) and (12) with x,,=0.696 69. The solution square
for A>0]. The critical value has been numerically deter-modulus is plotted at integer and half-integer tinglsifted upward
mined to beA .=1.466(the two solutions are shown close to by t/10). The numerical integration shows that it is stable.
merging in Fig. J. Therefore, taking into account the spatial
variation of the potential increases the zeroth-order estimate | <x<| with L up to 300. Most computations were car-

of the critical velocity to ried out with a space discretizatiohx=0.05 and a time
457 |ur(0)[]28 discretizationAt=0.01. Some runs were performed on finer
=240 516_ - 43 grids to check that the results were not affected in a signifi-
ve=vc+0. * (43 . R L
f1 R cant way by the discretization. Dissipative terms have been
added to Eq(3) in small neighborhoods of the domain ex-
ll. TIME-DEPENDENT FLOWS tremities in order to minimize wave reflections at the domain

ends.

Equation(3) was integrated numerically in order to test e first consider the case of&potential. This has been
the above analytical results and study what happens aboyg,plemented numerically either by directly enforcing Eq.
the critical velocity. We used a finite-difference semi- (10) or by choosing a potential of very short range. Identical
implicit Crank-Nicholson scheme. The obstacle was 'mpos_eéesults were obtained with both methods but the second one
at x=0 and the evolution was computed in the domainyequired a grid spacing small enough to resolve the fast

variation of the potential. The first method was therefore
4 N LA B s s s s preferred and has been used to generate the numerical results
L i shown below.
C ] We show in Fig. 8 the integration of E¢3) below the
critical velocity starting from thex, . analytical solution.
The solution is seen to be stable in time. This is also obtained
(data not shownwhen the conservative equatiot) is re-
placed by the corresponding dissipative equation
(A= — 8K/ SA*). This numerically confirms that, . so-
lutions are local minima oK.

Figures 9 and 10 show the square modulus and phase of
the solution when the initial condition is instead thg_
solution. Numerical noise is sufficient to reveal the solution
instability. After a transient behavior and emission of up-
stream and downstream propagating disturbances, the flow
approaches the stablg , solution in a region around the
origin which grows with time. A similar evolution was ob-
served for all studied injection velocities less than the critical
velocity (even quite close to.). We thus conclude that be-
low the critical linev(g) the flow relaxes toward the steady

FIG. 7. The two numerical solutions of EG40) for A=1.465  Xg 4+ Solution.
close toA =1.466 where they become identical and disappear. Above the critical linev.(g), no steady solution exists.

-
Illllllllllllllllll
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—o W 1 | L 1 1 1 ! I ! L | 1 I —Q L | 1 1 1 1 t 1 1 1 | L !
-50 0 50 —100 0 100
X X
FIG. 9. Numerical integration of Eq(3) with v=0.3 and FIG. 11. Numerical integration of E¢3). The initial condition

g=2 as in Fig. 8 but starting from the steady solutian) and(12) IS the stable steady solutiofi1,12 for v=0.3 andg=3 (X
with x,_=0.112 087. The solution square modulus is plotted at=0.345377) just below the maximum coupligg=3.045 78. The
t=0,10,20, . .. up ta=>50 (shifted upward byt/20). The integra-  €volution is computed foy =0.3 andg=4 aboveg,,. The solution
tion shows that the initiak, _ solution is unstable. It emits sound Square modulus is plotted &t0,8,16, ... up tot=80 (shifted
and gray solitons which move upstream and downstream. Aroundpward byt/16). Gray solitons moving downstream and upstream

the obstacle at=0, the flow becomes time-independent and coin-moving dispersive waves are repeatedly emitted from the obstacle
cides with the steady, , solution. (three rounds of emission can actually be seen during the time pe-

riod shown.
Figures 11 and 12 show the evolution in such a case. The
injection velocity is fixed aw. The initial condition is the clearly seenin Figs. 11 and land an upstream propagating
stable steady solution corresponding to a potential strengtlisturbance which breaks into dispersive sound waves. For
g slightly below the critical one. At=0, the potential the parameter values of Figs. 11 and 12 all the emitted soli-
strength is increased above the critical one. The numericdPns propagate downstream faster than the injection velocity
results show that waves are repeatedly emitted at the origi@nd the modulus oA vanishes at the moment of emission, as
Each round of emission consists of a downstream disturcan clearly be seen from the corresponding phase jumps in
bance formed of a number of gray solitoftsvo can be

'S
T

[av)
SN B

|
[av)
LI W DL LA A NI B

$(x)

PSR ST N SIS Y N WO S0 WO O M OO0

[T S S R R R N R

|
o]

FIG. 12. The successive phases of the solution shown in Fig. 11.
FIG. 10. The successive phases of the solution shown in Fig. Yote again the Z phase jump corresponding to each emission.
(but plotted twice as oftonThex, ;. solution can again clearly be Here, as in the following phase plots, the phases are drawn at the
seen developing around=0. Note also the 2 phase jump be- same instants as the corresponding moduli. The time order of the
tweent= 15 andt= 20, which corresponds to the vanishing of the different curves is made clear by noting that the size of the per-
solution modulus and the emission of gray solitons. turbed domain increases with time.
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_O i 1 1 I 1 I 1 1 I 1 1 I3 1 | 1 1 ] __O 1 1 1 1 I 1 1 1 1 I 1 1 1 1 l 1 1 1 1
-100 0 100 —-200 —-100 0 100 200
X X
FIG. 13. Numerical integration of E¢3). The initial condition FIG. 15. Numerical integration of Eq3) with a potential of

is the stable steady solutiqdl) and(12) for v =1.0 andg=0.29 Gaussian form44) with U, =5/16,0=10. The solution square

(3(0’*:1'300 6;) juslt below ~ the rgafxiTum cc()jupﬂnggm modulus is plotted at times=0,20,40, ... up td=180 (shifted
=0.300 28. The evolution is computed for=0.3 andg=0.39 upwards byt/40).

above g,,. The solution square modulus is plotted &t
=0,20,40, ... up ta=120 (shifted upward byt/40). As in Fig.
11, gray solitons moving downstream and upstream moving dispe
sive waves are repeatedly emitted from the obstacle.

For Upa=g/\mo and o<1, the results are indistinguish-
able from those obtained with & potential of strengthy.
Results in the other limit->1 are presented in Figs. 15 and
. ) 16. The potential is of the form44) with ¢=10 and
Fig. 12. For other parameter values, some solitons propagaj¢ —s;16. The initial condition is the steady solution at an
downstream Iegs rapidly than thg mean flow and the mOdUI“ﬁjection velocityo =0.45 and is very well approximated by
of A never vanishes, as shown in Figs. 13 and 14. the “adiabatic” solution R(x) of Eq. (33) and its corre-
The dynamics for a gener(acbne hump potential appears sponding phase. The evolution is performed at an injection
to be _qualltatlvely similar. We have studied potentials Ofvelocity of v=0.7 above the critical velocity.=0.53[in
Gaussian form, agreement with the estima(43) and slightly larger than the
zeroth-order approximation(34) vy=0.5]. As in the
_ 2 S-potential case gray solitons are repeatedly emitted and an
U0 =Umaexil = (X o)7]. (44) upstream disturbance is generated. The upstream disturbance
is, however, somewhat simpler than in thegotential case
since it is of almost constant height. The flow geometry has

4 T ¥ I T T T T I T T T T I T T
: : 5 T T [ T T T T I T T T T T T
B ; /1 ]
I ] /iiiﬂzq |
0 L }/ % ! - ] H| -
- ] or |
-2 L __ L 1 4
L J ©-
B ] - 1 :
_4 — ] _5 L .
el v L )] L 4
—100 0 100 L i
_10 1 ] I 1 1 1L L | 1 1 1 1 I 1 1
FIG. 14. The successive phases of the solution shown in Fig. 13. —200 0 200
Note that in contrast to Fig. 12, the main soliton of each round of X

emission moves downstream more slowly than the injection veloc-
ity and there is no phase jump. FIG. 16. The successive phases of the solution shown in Fig. 15.
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1.5 —— T The criticality condition fixes a first relatiopanalogous to
L . Eq. (34)] between the density; and fluid velocityw, on the
L . obstacle side of the upstream shdske Fig. 1,
2
w7 3
Unac= + p1= 5 (pPIWi/2) 1~ (48)

Two shock conditions are needed to complete the determina-
tion of p,,w; and the shock velocity as a function of the
injection conditions. The determination of these analogs of
the usual Rankine-Hugoniot conditions for a dissipationless
shock requires a careful analy$&3] since it isa priori not
obvious what the conserved quantities are when one
traverses the expanding oscillatory shock inner structure.
Here, however, we limit ourselves to cases where the injec-
tion velocity is above but close to the critical velocity, Eq.

L (34), where the steady flow disappedis the hydraulic ap-
proximation. This allows us to consider only weak shocks
and neglect the losses in the inner structure. Then, the con-
servation relation$45) and (46) across the shock give the
two relations[25]

0.5

FIG. 17. Sketch of the asymptotic hydraulic solution used to
interpret the results of Figs. 15 and 16.

N : : ~Vs(peo=p1) + peWe = p1W1=0,
some similarities with the classical case of a compressible

fluid flow through a nozzIl§20], which is itself analogous to w2 Wi
shallow-water flow. The results are indeed reminiscent of = Vg(Wee—Wq) + 7+2px— 7—2p1=0. (49

those obtained for the flow of a stratified fluid over a local-

ized topography(see, e.g.[21]). As in this latter context The fluid densityp.. and velocityw.. on the injection side of
[22], the most salient features can be described by a simplgye upstream shock are those of the undisturbed fluid at in-
“hydraulic” approximation which generalizes the static ap- finity, namely p.,.=1 and w,=—v. For a weak shock,
proximation(33) and that we now explain. 1= Pt Sp, Sp<1W;=—v+ oW, Sw<1, EqQ.(49) simply

. . . P
For a slowly varying potential, E43) can be rewritten to  rejates the velocity discontinuity to the density difference
lowest order in the slow variation as

Sw=+/26p. (50)
—+ =
9 (pW) =0, “9 In the same limit, the shock velocity is found to be
IW+WIW+2d,p+23,U=0 (46) V= —v+ 2+ dw, (51)

) » which simply means that the shock is sonic relative to the
with E)oundary conditiong(+%)=1w(+*)=—v, where  jownstream fluid. The critical conditiof48) then deter-
p=R" andw(x)=—v+2dx¢ have been introduced to em- mines the density increase of the upstream disturbance as a

phasize the hydrodynamic analogy. This leads us to expegnction of the small increase of the injection velocity above
that above the critical velocity it is useful to consider thene critical velocity,o =vg+ dv.., 0<dv,.<1

asymptotic “hydraulic” solution of Eqs(45) and (46) de-
picted in Fig. 17. It consists of a critical stationary solution 1 1+ (v2/2)13
. . . 0

developing around the obstacle with an upstream depression op=— 2o oy (52/2) 1 Ov., . (52
terminated by a moving shock and a downstream depression. V2 1+ (v/2) ™+ (vg/2)
Of course, the shock is not a solution of the full nondissipa- . .
tive Eq.(3) and the singularity of Eq€45) and (46) is regu- These _resu_lts can be compared W|th_the nu_merlcal data re-
larized instead by the development of small wavelength osported in Figs. 15 and 16. The F’OteUF'a' maximum WaS.ChO'
cillations as previously described in the literat{28,24 and Sen 10 DE o= 5(16’ for Wh'Ch _the critical mJeCt'On \(elo_t:lty
seen in Fig. 15. Similarly, the downstream depression has ty I Fhe hydraullc_ approximation,=1/2. For an injection
be replaced by a set of gray solitons. velocity v=0.7 (e, 6v.=0.2), Eq. (52 gives dp

As in Sec. Il, the profile of the stationary solution is easily = 9-6% 10", while the shock velocity and the fluid velocity
derived from Eqs(45) and (46). The conservation equation decrease downstream of the shock are obtained f_rom Egs.
(45) determines the velocity as a function of the density and®? and (51) to be V;=0.85,w=0.136. These estimates

the incoming mass flux. The density profile is then obtained€ found to be in good agreement with the numerical data of
from Eq. (46) as Fig. 15 for the square modulus increase in the obstacle up-

stream region (which has small oscillations between
8p=9.3x10"2 and 9.6<10 2) as well as for the propaga-
tion velocity of the front end of the upstream disturbance.
The phase plot is quite straight in the upstream disturbance

pwi :
W*‘P(XHU(X):Z‘*‘M- (47)
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region with a slopeg(d,¢)=0.66, which also agrees accu- 3 Al2= 0,y (A1)
rately with Sw/2. Similar agreement has been observed for

an injection velocityv =0.6 (with the same potential As  with the fluxJy, given by

explained in the Appendix, one can also attempt to determine

the gray soliton propertiegelocity, period of emissionby IJu=v(|AP=1)+i(A* 5,A— AdA*¥). (A2)
using the determined upstream solution and the exact laws of

conservation of mass and energy through the obstacle. How-he other derives from the conservation of the Hamiltonian
ever, taking into account only the main gray soliton of eachK (17),

emission does not seem sufficient to satisfy accurately the

conservation lawsespecially the energy opend does not I(H—vP)=dxJk (A3)

give as satisfactory results. . ) . .
with the energy densit§{ and momentum densit} defined

IV. CONCLUSION as in Bq.(19),
We have presented analytical and numerical results for
the steady or time-dependent flows of a nonlinear Schro
dinger fluid past an obstacle. As already mentioned, they
have some similarity with the classical case of a compress- 1
ible fluid flow through a nozzle and with results obtained for P= E(A* IA—AIAY) (A4)
the flow of a stratified fluid over a localized topography
[21,22,18. Our main result is the existence of an obstacle-and the fluxJ
dependent critical velocity above which the steady flow so- K>
lution disappears and gray solitons are repeatedly emitted. _: *_ * * _ A%
We have also explicitly obtained corrections to the classical I HIANAT = 00" A+ (AGAT = AT0,A)
criterion determining the critical velocity as the velocity for X[1—]A]2=U(x)—v?2]}
which the fluid locally reaches the sound velocity. Such cor- ) . .
rections remain to be obtained in higher dimensions. Our —0{ = 2[gAl"+ L2AA* Gy A+ AdyA*)
study can also be developed in different directions. It would +|A]2—|A[*—U(x)|A[2. (A5)
certainly be interesting to analyze wave generation more pre-

cise_ly. In the case of slowl_y varying potentials, one could, gjnce the mass, momentum, and energy contained in any
for instance, try to generalize the approach of Sec. Il C {Ginjte interval of space are bounded, the time-averaged fluxes
time-dependent flows in order to describe the soliton creatloQJM(X» and (J«(x)) should be independent of the space
and determine the corrections to the hydraulic approximapsitionx. For a slowly varying potential, the value of these

tion. The ftransition from one dimension to higher- g, a5 upstream of the obstacle can be determined from the
dimensional geometries is worth investigating as well as th‘f'lydraulic approximation, which gives

role of gray soliton§26,27 and their analogE28] in higher

1
H=[o AP+ 5 (AP= 1)+ U (AP~ 1)

dimensions. In this case, describing the obstacle by a poten- Jthydr) _ — 1) — (Wi + (0= 2)8

tial may also prove useful. Finally, the results appear poten- M v(pr= D)= (Wytv)py=(v V2) P

tially relevant in different physical contexts. Two, which (hydr)_ 3 o
seem particularly noteworthy, are nonlinear optics, where re- “K p1(W1+v)/4+p(Wy+0)(1—p—v7/2)
lated observations may have already been ni@®, and —p[—3(Wy+v)%4+1—pq]

more speculatively, condensed atomic vadéis where in-

vestigations of different forms of traps and flows may be- =v5p(1—v/\/§). (AB)

come accessible in due course.
Downstream of the obstacle, it is the passage of gray soli-
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f dtJK(X’t):E (_[2_(U+Wgs)2]3/2
APPENDIX: CONSERVATION LAWS 0 3
FOR THE NLS EQUATION WITH A POTENTIAL 2
AND GRAY SOLITON EMISSION +v(v ﬁLWgS)\/Z—(U—f—WgS . (A7)

The NLS equation has an infinite number of local conser-
vation laws. At least two still exist when a potential is addedwhere the sum is over all solitons which have passed through
as in Eq.(3). One is simply the conservation of matter which x between 0 and (wgs is the velocity in the obstacle frame
reads, in the obstacle frame, of the considered solitgn
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It can be attempted to satisfy EA7) by taking into For an injection velocity v=0.7 one obtains
account only the main soliton of each emission. This giveSI'=39.9,vng= —1.06 to be compared to the simulation val-
two equations for the period of emissidnand the velocity ues T=42wys=—0.6. While the prediction is satisfactory
ws of the emitted solitons for the period, it is quite imprecise for the gray soliton ve-
5 locity, which is small in the fluid referential frame
Top(V2=v)=2v2— (v +Wge)?, A8) (|, +Wgd<1). The main defect of the approximation ap-
pears to come from the neglect of the small solitons, which
contributes negligibly to the mass balance but quite signifi-
cantly to the balance of energy. In fact, good results are
obtained by assuming+wgs=0 and using only Eq(A8).

2
Top(V2—v)u/2=5[2- (v +wWye?1¥

+U(U+Wgs)\/2—(v+WgSZ. (A9)

be stationary points df. Sometimes, this supplementary term
is included in the momentum definition giving the so-called
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