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A two-dimensional electron gas in a quantum well confined by finite barriers is consid- 
ered. We present analytical expressions for the finite confinement effects of a square-well 
potential and calculate the electron-electron interaction potential, the electron-impurity 
interaction potential, the interface-roughness scattering potential and the alloy-disorder 
scattering potential. The dielectric function of the interacting electron gas, the mobility 
(for charged-impurity scattering, for interface-roughness scattering, and for alloy-disorder 
scattering), and the binding energy of hydrogenic impurities (screened and unscreened) 
are discussed. 

I. Introduction 

The calculations of electronic properties of silicon 
metal-oxide-semiconductor structures are usually 
made in the infinite barrier approximation due to the 
large barrier of 3.14 eV between the silicon conduc- 
tion band and the silicon-dioxide conduction band 
[1]. In one-dimensional periodic structures such as 
quantum wells (QW's) and superlattices such as 
AI~Gal _xAs/GaAs the confining barrier height is be- 
tween 1.0 eV for x = l  and 0 for x = 0  [2]. In this 
case the finite confinement becomes very important 
and the penetration of the electron gas into the barrier 
can be studied in the III-V compound QW's and 
superlattices. 

Charged impurities play a fundamental role in the 
understanding of the electronic properties of QW's. 
Mobility limits for charged impurity scattering in 
QW's have been discussed in the literature [3-6]. In 
order to calculate the mobility one needs to know 
the Fourier transform of the random potential and 
of the screening function [1, 7]. In the infinite barrier 
approximation analytical results have been given for 
silicon metal-oxide-semiconductor structures 1-7] and 
for quantum wells [4]. For finite barriers only numer- 
ical results are available [3, 5, 6]. In this paper we 
calculate the random potential for charged-impurity 
scattering and the electron-electron interaction poten- 

tial for QW's with finite barriers and with finite width, 
and we derive analytical results. The results of the 
finite confinement on the mobility are discussed. The 
screening properties of the two-dimensional interact- 
ing electron gas which are fundamental to many other 
calculations (excitons, electron-phonon interaction, 
hot electrons) and which are determined by the elec- 
tron-electron interaction potential, are calculated in 
this paper. 

The finite confinement in QW's has already 
been used to explain the mobility of thin quantum 
wells where the interface-roughness scattering is dom- 
inant [8]. For infinite barriers the mobility/~ for inter- 
face-roughness scattering was predicted to vary with 
the quantum well width L as # = c o n s t a n t . L  6 [4]. 
Experiments on A1As/GaAs/A1Ga QW's exhibit a 
relatively low mobility [9], whereas the 
Al~Gal_xAs/GaAs/AlxGal_xAs QW's with x~0.3 
showed a much higher mobility for comparable pa- 
rameters such as electron density and QW width [8]. 
It was argued that the penetration of the wave func- 
tion into the barrier reduces the interface-roughness 
scattering [8]. Analytical results for the mobility due 
to interface-roughness scattering are derived and dis- 
cussed in this paper. 

Alloy-disorder scattering for AlxGal_~As/GaAs/ 
AI~Gal_~As QW's was first studied by Ando [10]. 
It is worthwhile mentioning that alloy-disorder scat- 
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tering is not present in the infinite-barrier approxima- 
tion: The wave function does not penetrate into the 
AlxGal _~As. However, interface-roughness scattering 
is strongest in this case. With decreasing confinement 
one expects alloy-disorder scattering to increase due 
to the larger penetration of the wave function into 
the barrier. In case of InP/Gal_xIn~As/InP QW's, 
where the electron gas and the alloy disorder are not 
separated in space, alloy-disorder scattering is present 
even in the infinite barrier approximation and be- 
comes weaker for finite confinement [11~. In the pres- 
ent paper we present some analytical results for alloy- 
disorder scattering in QW's, and we discuss the effect 
of the finite confinement. 

The calculations of the shallow hydrogenic impur- 
ity energy levels gave evidence of finite barrier effects 
in thin QW's [12-16]. The penetration of the electron 
wave function into the barrier reduces the binding 
energy for impurities in the center of QW's in compar- 
ison to QW's with infinite barriers [17]. For a review 
on experimental results of the binding energy of hy- 
drogenic impurities in two-dimensional structures, see 
Ref. 18. 

In a recent work the density of states in silicon 
metal-oxide-semiconductor structures in the presence 
of randomly distributed charged impurities has been 
studied [19]. The binding energy of hydrogenic im- 
purities has been calculated within the separable po- 
tential approximation (SPA) and for an infinite bar- 
rier at the silicon/silicon-dioxide interface. In this ap- 
proach the binding energy is given by a q-integral 
over the electron-impurity interaction potential (pos- 
sibly screened). A very recent calculation within the 
SPA for the binding energy of shallow impurities in 
QW's with infinite barriers [20] was in good agree- 
ment with the calculation of Bastard [17]. In this 
paper we show that the calculation of the binding 
energy within the SPA for QW's with finite barriers, 
by using the analytical expression for the electron- 
impurity interaction potential, is also in reasonable 
agreement with the variational approach used in [ 1 ~  
16]. 

Our approach to calculate the binding energy for 
hydrogenic impurities uses exactly the same random 
potential that is used for the calculation of the scatter- 
ing time [3-7] and the single particle relaxation time 
[21-23]. Our presentation of analytical formulas for 
the electron-impurity interaction potential provides 
a unified theoretical frame for the calculation of bind- 
ing energies and transport properties in QW's with 
finite barriers. 

The purpose of the present paper is to derive ana- 
lytical formulas for a transparent understanding of 
finite barrier effects on the electronic properties 
(screening and mobility) of QW's. The calculations 

of the binding energies of hydrogenic impurities are 
extensive, because we want to show the good agree- 
ment with the variational calculations, and because 
we suggest that our approach can be used to get quali- 
tative and quantitative results for the binding energy 
of hydrogenic impurities in geometries other than the 
square-well confinement considered in this paper. 

The paper is organized as follows: In Sect. II we 
present the theoretical frame of our calculations (the 
model and the theory). Our results for the screening 
function, the mobility and the binding energy of hy- 
drogenic impurities are given in Sect. III. We con- 
clude in Sect. IV. 

II. Theoretical  frame 

In this section we present the model, the analytical 
results for the electron-electron interaction potential, 
the electron-impurity interaction potential, the inter- 
face-roughness scattering potential, and the alloy-dis- 
order scattering potential. 

A. The square well 

We consider a QW of width L and effective barrier 
height V. Band bending effects are neglected, but the 
Pauli principle is taken into account; V is given 
by the height of the barrier V o and the Fermi 
energy ev: V= V0--ev. Free motion of the electrons 
in the xy-plane is assumed, while the confinement 
is along the z-direction. The barriers are at z = -t-L/2 
(see the inset of Fig. 1). We use parameters for 
AlxGal _xAs/GaAs/Al~Gal _xAs QW's with 

Vo = 1.04 eV*x. (1) 

For the electron masses in z-direction we take for 
the mass in the barrier mb 

mb/mo = 0.067 + 0.071 * x (2a) 

and for the mass in the well m~ 

mz/mo = 0.067. (2 b) 

mo is the vacuum mass of the electron. Due to the 
confinement in z-direction a subband structure n = 1, 
2, 3... is defined. The wave function in z-direction 
decays exponentially in the barrier 

(B  1 e 2pZ/r for z <  --L/2 
~"(V'L'z)=~.B2e-2~/L for z>L/2  (3 a) 
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Fig. l a -e .  Form factor F~i.l(q , I~, L, z~) for the 
electron-impurity interaction potential (see (6)), for the 
lowest subband according to (7) versus wave number 
q for impurities located (a) in the center of the QW, 
(b) on the edge of the QW, and (e) in the barrier. 
Solid, dashed-dotted, dotted and dashed lines 
represent V[eV] = oo, 1, 0.3, and 0.1, respectively. The 
inset shows the position of impurities from the center 
of the QW and the height of the barrier Vo. The 
effective barrier height is V - V  o - @ .  @ is the Fermi 
energy. In cases where we do not specify 11o we use 
V-Vo. q~ is the Thomas-Fermi screening wave 
number 

and is characterized by 

�9 , ~Al*cos(2ez/L ) n = 1 , 3 , 5 . . .  
~b,(V, 1., zl =].A2 �9 sin(2ez/L) n =2, 4, 6... 

for -L/2<=z<=L/2. (3b) 

The normalization coefficients A1, A2, B1, and B2 
are given later. 

The energy levels E, (measured from the bot tom 
of the well) are expressed as 

E, = 2 h 2 e 2 / L  2 mz  (4) 

and e for n(n-1) /2<e<nn/2  is given by 

(mJmb) 112 ( C - e2) 1/2 

= f  e , t a n ( e )  for n = 1 , 3 , 5 . . .  
(5a) 

- a / t an (a )  for n=2 ,4 ,  6... 

and 

1 m= L 2 V (5b) 
C - 4  m* a .2 R" 

m*=0.067mo is the mass in the xy-plane, a* 
=eL h2/m*e z= 103 A is the effective Bohr radius and 
R=m*eg/2eZh2=5.6 meV is the effective Rydberg. 
eL = 13.1 is the dielectric constant of the host lattice�9 
The penetration into the barrier is characterized by 
fl and given by 

m=fl ~ e tan(e)  for n = 1 , 3 , 5 . . .  (5c) 
~-b = ( -  a/tan (e) for n = 2, 4, 6..." 

For QW's with infinite barriers one finds e=nn/2 
and 1/fl = 0. 

B. The electron-impurity interaction potential 

We assume a two-dimensional sheet of charged im- 
purities which are distributed randomly in the xy- 

Vei,n(q , V, L,  zi)= 

and 

plane at a distance z~ from the center of the Q W  
which is at z = 0. N~ is the impurity density�9 The Four- 
ier transform of the random potential for the subband 
n(I U,(q, V, L, zi)12>, which is induced by the impurity 
sheet, is written as [1] 

(1U.(q, V, L, zl)[2> =Ni Vei,n(q, V, L, Zi) 2 (6a) 

with 
2he 2 

Fei,n(q, V, L, zi) (6b) 
eL q 

+ o o  

Fei,,(q, V,L, zi)= ~ dzlq),(V,L,z)12e -ql=-=il. (6c) 
--o:3 

We have calculated Fei,,(q, V, L, z~) for the square-well 
confinement in terms of e and fl and the result for 
n = 1, 3, 5... is written as 

Fei,.(q, V, L, -- L/2 < zi < L/2 ) 

=4A~ c~ ch(qzi) e-qL/2 qL +4fl 

qL [ 
-4 (qL)2+ 16e z c~ L) 

8e 2 
+ ~ (1 -- ch (q zi) e - qL/2) 

--e -qL/2 cos(e) ch(qz~)(cos(e)--4--Lsin(e))]} (7a) 

and 

Fei,,(q , V, L, zi <= -- L/2) 

=4A~ {~(qL) 21+ 16e 2 eqZ'*[c~176 

�9 8e 2 ] 
+ 4e sin(e) ch(qL/2)) + ~ s  sh(qL/2)[ 

+ c~ 2(q 4fl) (qL)2-16fl 2 

* e2Ml+2zdL)  1 ]'~ 
2(qL-4f l )  e q(z'+L/2)]j (7b) 
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and Fei(q, V, L, zi> L/2) is given by replacing z i by 
- z l  in (7 b). A o is written as 

1 

Ao = 1 + sin (2 a)/(2 e) + cos 2 (a)/fl" (7 c) 

The normalization coefficients in (3) for n = 1, 3, 5... 
are expressed as: Ax=(2Ao/L) 1/2 and BI=B2 
=A1 cos(a)exp(fl). For n=2,  4, 6... we get 

Fci(q, V, L, - L/2 < zi < L/2) 

{ 1 
= 4 Ae sin z (a) ch (q zi) e-  qL/2 qL + 4~ 

qL [sin2(2~zi/L ) 
~" (qL)2 + 16a 2 

8a 2 
+ ~ L ~  (1 - ch (q zi) e - qL/2) 

�9 4 a  
--e -q/42 sin(e)ch(qzi)(sm(a)+~cos(a))]}  (8 a) 

and 

Fei,,(q , V, L, zi < -- L/2) 

=4Ae {(qL)E l+16a2 eq~'*[sin(a)(qLsin(a)sh(qL/2) 

- 4 a cos (a) ch (qL/2)) 

+ ~ L  Sh(qL/2)] 

+ sin2 (a)[-2(q/+ 4 fi)e q(z~-L/2, + 
qL 

(qL) 2 -  16fl 2 

*e2fl(l+2zdL) 2(qL1----4fi) eq(Zi+L/2)]} (8b) 

and Fei(q, V, L, zi> L/2 ) is given by replacing zi by 
- z  i in (8 b). A e is written as 

1 

Ae - -  1 - sin (2 ~)/(2 e) + sin 2 (a)/fl" (8 c) 

The normalization coefficients in (3) for n = 2, 4, 6... 
are expressed: A2=(2Ae/L) 1/2 and B I = - - B 2  = 
- A 2  sin(e)exp(fl). The form factor for n =  1 and for 
infinite barriers was given in [4]. 

In Fig. 1 we have calculated the form factor Fei,,(q, 
V, L, zi) for the lowest subband n =  1 versus q for 
various values of V and three values of zi: a) zi=O 

(impurities in the center of the QW), b) zl = L/2 (im- 
purities on the edge of the QW), e) z i = - 3 L/2 (impur- 
ities in the barrier of the QW). For  impurities in the 
center of the QW the electron-impurity interaction 
potential is reduced by the finite barriers due to the 
penetration of the electron wave function into the 
barriers and the corresponding reduction of the elec- 
tron probability at z = 0. For impurities in the barrier 
of the QW the electron impurity interaction potential 
is enhanced due to the penetration of the electron 

' wave function into the barrier. 

C. The electron-electron interaction potential 

The electron-electron interaction potential V~,,(q, V, 
L) is expressed as [1] 

2he 2 
V~,. (q, V, L) = F~,. (q, V, L) (9 a) 

e.Lq 

with 

F~,, (q, V, L) 
+0o +0o 

= ~ dzl~n(V'L'z)] 2 I 
- o o  - o o  

dz'lq~ (V,L,z')12e-qlz-z'l. 

(9b) 

We have calculated the form factor F~,,(q, V, L) for 
the electron-electron interaction potential for the 
square-well confinement. For n = 1, 3, 5... we find 

F~,.(q, V, L) 

= 2A2 {cos4(c0 [e_qL 4 1 
(qL + 4fl) ~ + fl(qE+ 4fl)] 

qL [3 aa /3 a(~)2 ) 
+a( (qL)2+16a  2) 2 a + 1 6 ( q L ) 2 + ~ 2  +16 

* sin(a) cos(a) + sin(a) cos 3 (a)] 

8a [cos(a)(?cos(a)sh(qL/2) 
+ (qL)2 + 16a 2 

+4  sin(oOch(qL/2))+~LSh(qL/2)] 

qL'2 I-2 COS2 (a) 1 
* e -  ' [ q L ~  (qL) 2+16a  2 

* ( 8 ~ L +  qLcos2(a ) -4a  sin(e)cos(e,)]} (10) 
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Fig. 2. Form factor F~. 1 (q, V, L) for the electron-electron interaction 
potential (see (9)), for the lowest subband according to (10) versus 
wave number  q. Solid, dashed-dotted, dotted, and dashed lines rep- 
resent V[eV] = 0% 1, 0.3, 0.1, respectively 

and for n = 2, 4, 6... we get 

F~,. (q, V,L) 

2 ( "  4 [ qL 4 1 
=2Ae~sln (e)[e- (qL+4fl)24 fl(qL+4fi)-] 

qL 
+ e((qL)2 + 16e2) [3e  16 e3 [3 + ~ - - ~ + 1 6 ( q ~ )  2) 

* sin(a) cos(a)-- sin3 (e) cos(a)] 

8e [sin(e)(@sin(e)sh(qL/2) 
+ (qL)2 + 16e 2 

8e 
--4 cos(a)ch (qL/2)) + ~ sh (qL/2)] 

[2 sin2 (e) 1 
* e-qL/2 [ q L + ~  (qL) 2+ 16e 2 

* - 4 e  sin(a)cos(e))]}. (8 q-L+ qLsin2 (e) (11) 

The form factor for the lowest subband n = 1 and for 
infinite barriers was given in [4]. 

In Fig. 2 we show F~, 1 (q, V, L) versus q for various 
values for the confining potential. For L = 0  and 
V=oo we get: Fc, l(q, V-oo, L = 0 ) = I .  For finite V 
and q we find F~,l(q, V, L)< 1. This indicates that 
the screening properties of the interacting electron 
gas are reduced by the finite confinement and the 
finite QW width. 

D. The interface-roughness scattering potential 

The decrease in the electron mobility in silicon metal- 
oxide-semiconductor structures at high electron den- 
sity is due to the interface-roughness of the silicon/ 
silicon-dioxide interface [1]. The local deviations 
from a plane 5z(r) are described by the autocorrela- 
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tion function (5(r)6(r '))=A 2 exp(-lr-r ' lZ/A2). A is 
the height of the roughness and A is the length of 
the roughness fluctuations. This form of interface- 
roughness scattering was introduced by Prange and 
Nee [24] in the field of magnetic-field induced surface 
states in metals. 

For QW's with infinite barriers the random poten- 
tial for interface-roughness scattering of electrons at 
z=++_L/2 in the lowest subband (]UIR, I(q, V=c~, 
L)I 2) was expressed as [4] 

([ UIR, I (q, V= o% L)I 2) =rcA2 A2 Fo(L)2e-q~A2/4, (12a) 
~ 2 h 2  

F~ = m= L 3" (12b) 

According to this expression the 'mobility in thin 
QW's was predicted to vary as/, = constant * L 6. Inter- 
face-roughness scattering for finite barriers was con- 
sidered by Price and Stern [25]. The random poten- 
tial for interface-roughness scattering at z = -  L/2 is 
written as 

(IUzR,,,(q, V,L)I z) 
=7"cA2 A2 Fn(V, g)2 Fo(L)2e -q2A2/4 (13a) 

and [25]  

F.(V, L) Fo(L ) 

= 2hmz (1 mbl(d~"12 
-md \Tzz 

+ Vl~,(z= - L/2)I 2. (13b) 

For the square-well confining potential we find for 
n = l ,  3, 5... 

F~(V, L)= 4--y { ( 1 - ~ )  e 2 sin2 (e) 

+ C* cos2(e)} Ao (14) 

and for n = 2, 4, 6... 

4 mb 2 

+ C* sin 2 (e)} A e (15) 

and C was given in (5b). For V=oo we get 
F,,(V= 0% L)=n 2. The asymptotic results for F,(V, L) 
are given by 

F,(V,L)=n2~I_3 mb 1 1/2 
t 

for C 2 >> mb/m ~ (16) 
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Fig. 3a and b. Form factor FI(V, L) for interface- 
roughness scattering (see (13)), for the lowest subband 
according to (14) (a) versus quantum well width L for 
various values for the confining potential Vand (b) 
versus confining potential Vfor various values of L. 
The dashed and solid lines represent mb=m, and mb 
= 2.06 mz, respectively 
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and 

i rnb C2 
Ft (V, L)=  re2 m~ for C ~ 0  (lVa) 

and 
F,>=2(V, L)= 0 for Ct/2<rc(n--1)/2. (17b) 

Equation (17b) represents the minimal confinement 
condition for the existence of higher subbands with 
n>2.  

In Fig. 3 we have shown FI(V, L) versus L for 
various values of V(Fig. 3 a) and versus Vfor various 
values of L (Fig. 3 b). The dashed lines in Fig. 3 b rep- 
resent mb=mz (x=0) and the solid lines represent 
rob=2.06 m~ (x= 1) (see (2)). The penetration of the 
wave function into the barrier drastically reduces, via 
FI(V, L), the interface-roughness scattering potential 
for thin QW's (see Fig. 3 a). The change in the mass 
at the interface has a considerable effect on the inter- 
face-roughness scattering potential (see Fig. 3b). 
Figure 3b can also be used to estimate the effect 
of increasing electron density on the form factor 
FI(V, L) via V= Vo--Sr. The finite barrier effect was 
applied in [8] to explain the high mobility in 
AlxGa i - xAs/GaAs/Al~Ga 1 - x As QW's with x ~ 0.3 in 
comparison to A1As/GaAs/A1As QW's [9]. 

E. The alloy-disorder scattering potential 

Alloy-disorder scattering in AlxGal_xAs/GaAs he- 
terostructures was found to be unimportant in com- 
parison to charged-impurity scattering [10]. Ando 
[10] argued that one cannot distinguish between in- 
terface-roughness scattering and alloy-disorder scat- 
tering if the fluctuation of the interface position is 
comparable to the lattice constant. However, the ex- 
periments on QW's [8, 9] indicate that A ~ 60/k. In 

the following we will derive the random potential for 
alloy-disorder scattering for large and small confining 
potentials. The QW width dependence of the scatter- 
ing potential indicates that the scattering from the 
interface roughness is different to the scattering from 
the alloy disorder. Following Ando [10] we write the 
random potential for alloy-disorder scattering in the 
n-th subband as 

1 a 3 2 
(I UAD,.(q, V, L)I 2) = ~-~-(6 v) FAD,.(V, L) (18a) 

and for QW's with the alloy disorder in the barrier 
FAD,,(V, L) is defined as 

f 
- L / 2  

FAD,, (V, L)=x(1 --x) a* j" 
--o(3 

+ ; 
L / 2  

dz l ' / ' . (g  L, z)l 4 

(18b) 

Explicitly we find 

FAD,. (V, L) 

_ a* x(1 - x )  ~fA 2 * cos4(00 for n =  1, 3, 5...  

L fl [A 2 ,sin4(e) for n = 2 , 4 , 6 . .  " 
(19) 

5 V is the spatial average of the fluctuating alloy po- 
tential over the alloy unit cell, a 3 is the alloy unit 
cell. We use: 5 V - l e V  and a = 5 . 9 ~  [10]. The 
asymptotic results for FAD , 1 (V, L) are given by 

FAD, 1 (V, L) 
~z 4 a *  (~)312 

- -  16  L x ( 1 - - x )  ~ 

- -  L ~ - ~  ] +0(1/C)} (20)  
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for C 2 >> (mb/m=) and 

1 a* m b 
FAD, I (V,, L)= ~ ~ x ( 1 -  x) ~I = 

"c {t-c[�89 (21) 

for C ~ 0 .  
In Fig. 4 we have shown 1/FAD, I(V,, L) versus the 

QW width for various confining potentials. The 
strong increase in FAD, 1 with decreasing L (for L 
>20/~) indicates the increasing alloy-disorder scat- 
tering due to the larger penetration of the wave func- 
tion into the barrier with decreasing L. For small 
QW width (L < 10/k) a decrease in FAD , 1 with decreas- 
ing QW width is found, which can also be seen from 
(21). 

For reasons of completeness we are now discuss- 
ing the case where the alloy-disorder scattering occurs 
in the QW. In this case FAD,, (V, L) is defined by 

( L/2 } 
F,D, , (V,L)=x(1--x)a*~ I dzle,(V,L,z)[ 4 �9 (22) 

~.- L/2 

We get the analytical result 

F L 3 a* ..,.(K )=~Tx(1-x)  

2 sin(2e) . sin(4e)] 
Ao z i -~ 3~ t - ~ ]  

A 2[1 2 sin(2c 0 sin(4c 0] 
3~ 4 - ~ ]  

for n =  1,3...  

for n = 2 , 4 . . .  
(23) 

The asymptotic results for the lowest subband are 
given by 

F 3 a* mb AD, t = ~ X ( 1 - - X ) { 1 - - 3 [ m ~ = I ] * / 2 + O ( 1 / C }  

for C z >> mb/mz (24) 

and 

3 a* , m~ Cz - -  - x )  FAD'I--2 L X(1 mz 

for C--, 0. (25) 

It is obvious from (24) that alloy-disorder scattering 
exists even in the limit of V~  oo (C--* oo), for alloy 
scattering in the barrier, however, the opposite is true. 
For A1As/GaAs/A1As QW's the alloy-disorder scat- 
tering does not exist because x = 1. 

IlL Results and discussion 

In this section we apply our results for the various 
form factors, given in Sect. II, to calculate the effects 
of the confinement on the screening properties of the 
interacting electron gas, the mobility due to charged- 
impurity scattering, interface-roughness scattering, al- 
loy-disorder scattering, and the binding energy of 
screened and unscreened hydrogenic impurities. 

A. Screening properties of  the electron gas 

In the random phase approximation [I]  with local 
field (exchange-correlation) correlation the dielectric 
function in the one-subband approximation e(q, V, 
L) is written as 

e(q ,V,L)=I+V~,I(q ,V,L)[1-G(q)]X~ (26) 

X~ is the Lindhard function for two dimensions 
[1, 26]. For the local field correction G(q) we use 
the Hubbard approximation [27]. For an ideally two- 
dimensional electron gas, which is characterized by 
L = 0 and V= o% the dielectric function is given by 

~ideal (q) = 1 + qs ['l -- G (q)] X~ (q~) (27) 
q ~rV 

qs is the Thomas-Fermi screening wave number: 
qs a* = 2 for valley degeneracy gv = 1. aF is the density 
of states of the free electron gas: X~ for 
q < 2k e and k e is the Fermi wave number. 

The transport properties of the two-dimensional- 
electron gas for a short-range random potential are 
determined by the screening properties at q~-2kF 
[283. In Fig. 5 we have shown e(q=2kv,  V, L)/ 
eid~a 1 (q = 2 kF) versus L for two different electron densi- 
ties N=k2e/2~z and for various confinements. The 
screening properties of the electron gas are reduced 
for QW's with finite width as well as for QW's with 
finite confinement. With increasing electron density 
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Fig. 6. Mobility ratio #(x)/#(x = 1) versus aluminium content x (con- 
fining potential, (see Eq. (1))) for charged impurity scattering accord- 
ing to (6, 7, 28) for impurities located in the center (z~=0), on the 
edge (zi = + L/2) of the QW, and in the barrier (zl = - L) 

the reduction in the screening properties becomes 
larger. However, the effect is smaller than 20% for 
QW's with L <  100 ~. If we compare the dielectric 
function for finite confinement with the screening 
function for infinite confinement, we find that the two 
differ by only about  10% for L < 2 0 0 ~ .  However, 
we mention that the finite QW width and the finite 
confinement drastically reduce the screening proper- 
ties at large wave numbers if compared with the 
screening properties of an ideally two-dimensional 
electron gas (see Fig. 2). 

B. Mobili ty for charged-impurity scattering, interface- 
roughness scattering, and alloy-disorder scattering 

The scattering time z determines the mobility #: 
# = ez/m*. In terms of the random potential (I U(q)l 2) 
the scattering time for electrons in the lowest subband 
is given by [7] 

1 1 2 k F  q2 (i U(q)l 2 ) 
z 27c@ ~o d q ( 4 k 2 - - q 2 )  1/2 e(q) 2 (28) 

For  charged impurity scattering the random po- 
tential is given in (6), (7a). The mobility for 
AlxGa I_~As/GaAs/AI~Ga, _~As QW's versus x (ver- 
sus the confining potential (see (1))) is shown in Fig. 6. 

Table 1. Absolute values of the mobility for impurity scattering for 
N=5.1011 cm -2, Ni= l*10alcm -2 and L=a*/2 (see Fig. 6) 

z 0 [cmZ\ 

1.04 1.02 * 104 2.04.104 6.46.104 
oe 0.93 * 104 2.27* 104 7.04* 10 ~ 

For  impurities located in the center of the QW (z~=0) 
the mobility increases with decreasing x, whereas the 
opposite behavior is found for impurities located in 
the barrier (z~ = - L ) .  For  impurities located on the 
edge of the QW (zi = L/2) a very weak x-dependence 
of the mobility is found. For  silicon metal-oxide-semi- 
conductors it was shown that p ~ 1/Fei(q = 2 k~) 2 [28]. 
The same behavior is found in QW's, compare Fig. 6 
with Fig. 1. The absolute values for the mobility for 
V -  1.04 eV (x = 1) and for V= o9 are given in Table 1. 
The difference in the mobility calculated in the infinite 
barrier approximation in comparison to V= 1.04 cV 
is 10% for the parameters used in Table 1. For  larger 
QW's this error is smaller due to less penetration into 
the barrier. Small finite confinement effects on the 
mobility for charged-impurity scattering have also 
been found for Al~Gal_xAs/GaAs heterostructures 
[10J. 

Finite barrier effects are also expected for the sin- 
gle particle relaxation time [21-23]. However, the fi- 
nite barrier effects are expected to be somewhat larger 
than for the scattering time, because in the single par- 
ticle relaxation time larger wave numbers (up to 2 kv) 
have a larger weight than in the scattering time (see 
also Fig. 1). 

The random potential for interface-roughness 
scattering is given in (13), (14). According to [28] we 
get the analytical results for scattering at one interface 

2 64 cruz ( 1 0 1 1 2 - 2 )  { L6q~ ] ( ~ ) 2  
' A2 A U  

*{El -G(2kF)?  F~,I ( q = 2 k  e, V, L) + ~ ? }  2 (29) 

for kfA < 1 and 

cm 2/1011 c m - Z \ / L 6 q Z ~ A 3 k ~ \ /  1 \2 
#=2.34  . . . .  ~5- - - -  

*{E1--G(2 /A)] fc ,  l ( q = 2 / A ,  V, L)-+- q~A} 2 (29b) 

for krA>> 1. For  V= co the mobility depends on L 
via the L 6 and F~. t(q, V= o% L). In Fig.7 we have 
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shown # versus L 6 for infinite confinement�9 We find: 
# = c o n s t a n t . L  6. This demonstrates that for #(L) 
there is no significant L dependence due to F~,I (q, 
V=oo, L) for 2 0 / ~ < L < 8 0 A .  The dashed and 
dashed-dotted lines in Fig. 7 represent Eqs. (29 a, b), 
respectively, and demonstrate the very good agree- 
ment of the analytical results with the numerical re- 
sults. 

For  finite V and for L (Li<L<L2) we can use 
the expression FI(V, L),.~constant*L ~, see Fig. 3, to 
express the mobility as # = constant �9 2~). Togeth- 
er with the analytical results, given in (16), (17a), we 
summarize: For interface-roughness scattering the 
QW width dependence of the mobility is expressed 
as 

f L  6 V 0 for C ~ oo 
#~ V -2 for C ~ O  (30) 

The increase in the mobility with decreasing QW 
width is due to the delocalization of the wave function 
in z-direction if the confinement goes to zero. This 
is visible in Fig. 3: For  small confinement we find 
FI (V, L)oc L ~ with 6>3.  

For  reasons of physical interpretation one expects 
the interface-roughness parameter A to be a multiple 
of a monolayer which is 2.83 ~. Because of the scaling 
law # = c o n s t . 1 / A  2 we have used A = I  ~ in Fig. 7. 
We have also assumed in Fig. 7 that both interfaces 
contribute to the interface-roughness scattering with 
the same interface-roughness parameters. In this case 
the random potential, given in (12), (13), must be mul- 
tiplied by two and the analytical results for the mo- 
bility, given in (29), must be divided by two. 
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The random potential for alloy-disorder scattering 
is given in (18), (19). Following [28] we get the analyti- 
cal result 

 m  iO"cm 
#=1 .69 .10  s Vs \ N ] 

�9 * FAD,, (V, L) 

�9 {[-1-G(2kv)]Fc, l (q:2kF,  V,L)+2-kqf-} 2 (31) 

and the V and L dependence is hidden in FAD, I(V~ 
L) and in F~, 1 (q, V, L). We summarize the QW width 
dependence of the mobility for alloy-disorder scatter- 
ing in the barrier (see (20), (21)): 

(L  6 V 5/2 for C ~ oo  

#~ for C ~ 0  (32) 

For strong confinement we find the same dependence 
on QW width as for interface-roughness scattering 
with infinite barriers (see (30))�9 The V 5/2 dependence 
was also found for heterostructures [10]. The strong 
L dependence for alloy-disorder scattering has also 
been found in [-29], however, analytical results have 
not been given there. The increase in # with decreas- 
ing L for weak confinement is due to the increased 
barrier penetration and thus to the decreased sensitiv- 
ity to spatial fluctuations which occur on the fixed 
scale of the unit cell. 

This argument is also important for the under- 
standing of the mobility in the case where the alloy- 
disorder scattering occurs in the QW. For alloy scat- 
tering in the QW we get with (24, 25) 

f L  1 V ~ for C ~ oo (33) 
#~ for C ~ 0  

The divergency of the alloy-disorder limited mobility 
for L ~  0 has been noticed in [-11]; however, the ana- 
lytical form has not been derived and the screening 
of the alloy-disorder scattering has not been taken 
into account in [-11]. The #ocL dependence reflects 
the decreasing confinement of the wave function if 
the QW width increases [-11]. 

In Fig. 8 we show the mobility for interface-rough- 
ness scattering and for alloy-disorder scattering ver- 
sus QW width. It can clearly be seen that interface- 
roughness scattering gives a lower mobility than al- 
loy-disorder scattering and thus is the dominant scat- 
tering mechanism for thin QW's. 
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We mention that our results on the mobility are 
derived within Born's approximation. Multiple scat- 
tering effects which could lead to a metal-insulator 
transition [4] have been neglected. 

C. Binding energies for hydrogenic impurities 

The calculation of the binding energy of hydrogenic 
impurities in QW's via variational wave functions has 
attracted much attention during the last years. Un- 
screened [12-14, 16, 17] and screened [15, 30] impuri- 
ties have been considered. A different approach has 
been developed in [19]. The density of states calcula- 
tions in the SPA provide the binding energy EB (mea- 
sured from the bottom of the subband edge) for N~ --. 0 
as the solution of the equation [19] 

1 r~176 ~i,  t (q, V, L, zi) 1 
n~ Jo dqq e(q, V,L) EB+q2/2m * = 1. (34) 

For QW's with infinite barriers reasonable agreement 
with variational calculations on unscreened impuri- 
ties [17] and screened impurities E15] has been ob- 
tained [20]. 

The binding energy versus QW width is shown 
in Fig. 9 for unscreened (e(q, V, L)= 1) impurities lo- 
cated in the center of the QW (Fig. 9 a) and on the 
edge of the QW (Fig. 9b) for two different values of 
the confinement. With decreasing L we find that EB 
first increases and then, after reaching a maximum, 
decreases. The decrease in EB with decreasing L is 
a characteristic feature of finite barriers: For infinite 
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Fig. 10. Binding energy En of unscreened hydrogenic impurities ac- 
cording to (6), (7), (34) versus impurity position z~ as the solid line. 
The squares and dots are theoretical results of Liu and Quinn [16] 

barriers E B goes to 4R for L-~0, the binding energy 
of the ideally two-dimensional system, whereas for 
finite barriers EB goes to 1R for L ~ 0 ,  the binding 
energy of the three-dimensional hydrogen atom [1, 
17]. Our calculations are in full qualitative agreement 
and in good quantitative agreement (up to 10%) with 
the variational calculations of Greene and Bajaj E13] 
and Liu and Quinn E16] for z~= 0 (in the center) and 
of Mailhiot et al. [12] for zi = L/2 (on the edge), which 
are also shown in Fig. 9. The maximum value of EB 
versus L depends on Vand decreases with decreasing 
confinement, in agreement with the variational re- 
sults. 

In Fig. 10 the binding energies for unscreened im- 
purities versus the location of the impurities are 
shown. Variational results of Liu and Quinn [16], 
which are also shown in Fig. 10, are in reasonable 
agreement with our calculation. 

From theory [15, 30] and from experiment [31, 
32] it is well known that the binding energy of hydro- 
genic impurities is strongly reduced by screening. The 
binding energy versus electron density for screened 
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impurities is shown in Fig. 11. We used Eq. (26) for 
e(q, V, L), which has the right property: ~(q>0, V, L) 
= 1 for N -* 0. The transition from screened impurities 
to unscreened impurities with N--* 0 is clearly seen in 
Fig. 11, where the binding energy increases with de- 
creasing N. Variational results of Guillemot [30] for 
finite confinement are in reasonable agreement with 
our calculations on impurities located in the center 
(Fig. 11 a) and on the edge (Fig. 11 b) of the QW. We 
mention that we have accounted for the Pauli principle 
in the calculation shown in Fig. 11 as well as in Fig. 12; 
and e F = 3.6 meV �9 (N/1011 cm- 2). 

E B versus the position of the screened impurity 
for N = 5 * 1011 cm-  2 is shown in Fig. 12. Our calcula- 
tion is in good qualitative agreement with the varia- 
tional calculation of Guillemot [30], which is also 
shown in Fig. 12. For impurities located in the barrier 
E B is strongly reduced in comparison to impurities 
located in the center of the QW. 
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We want to stress that the good agreement of 
the calculated binding energies according to (34) with 
the variational results, which we have demonstrated 
in Figs. 9-12, indicates that our approach can also 
be used for confinements other than square-weU con- 
finements for a reasonable estimate of the binding 
energy and the various dependences on impurity posi- 
tion, screening and confining parameters�9 

For unscreened impurities Eqs. (6, 34) can be re- 
written as 

+0o e~/2 =-4 dz l~ l (V ,L ,z ) le{c i [e l /Z lz_z~l /a . ]  
- - o o  

�9 sin [e~/2 I z -  z i l /a*]-  si [d/2 I z -z i l /a*]  

�9 cos [ 4 /2  I z -  z,I/a*]} (35) 

and eB is the binding energy in effective Rydberg: 
~B = EB/R. si(x) and ci(x) are the sine-integral and co- 
sine-integral, respectively. Equation (35) should be 
useful in cases where an analytical expression for 
Fei, 1 (q, V, L, zi) is not available and the wave function 
has been calculated numerically�9 

Resonant Raman scattering experiments on QW's 
have been interpreted as the observation of transi- 
tions from the ground impurity level of the first 
(ground) subband to the ground impurity level of the 
second and third subband [33]. These impurity states 
from higher subbands ("resonant impurity-states") 
overlap in energy with the continuum of the lowest 
subband and have been predicted in [34]. The good 
agreement of our calculated binding energy for the 
ground impurity level of the first subband with the 
variational calculations motivated us to study the 
binding energies of the higher subbands. In our calcu- 
lation of the binding energies for impurities in higher 
subbands we neglect the interaction with the contin- 
uum of the lower subbands. It has been shown in 
[34, 35] that this is a very good approximation�9 

We used (34) and replaced Vei, l(q, V, L, zi) by 
V~i,,(q, V, L, zi). Unscreened impurities are assumed�9 
E B is the binding energy measured form the n-th sub- 
band edge. Results for E B versus QW width for impur- 
ities located in the center of the well and for subbands 
n = 1, 2, 3, 4 are shown in Fig. 13. The binding energies 
decrease with increasing n. However, the binding en- 
ergies for the third subband and L >  a* are higher 
than for the second subband. This is due to the fact 
that the wave function (see (3 b)), for n--2 is zero for 
z = 0, and the electron-impurity interaction potential 
is weaker than in case of n--1 and n = 3. A similar 
argument explains the higher binding energy of the 
fourth subband for L >  1.7a* in comparison to the 
second subband. With decreasing QW width the sub- 
band energies increase and subbands (n > 2) become 
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We have given analytical expressions for the electron- 
impurity interaction potential, the electron-electron 
interaction potential, the interface-roughness scatter- 
ing potential, and the alloy-disorder scattering poten- 
tial for QW's with finite square-well confinement. 
With these expressions we discussed the influence of 
finite barriers on screening properties and on trans- 
port properties for impurity scattering, interface- 
roughness scattering, and alloy-disorder scattering. 
The comparison of our calculated binding energies 
of hydrogenic impurities (unscreened and screened) 
with the results of variational calculations indicates 
that our method could also be used to calculate the 
binding energy in geometries other than the square- 
well confinement. 

The strongest effects of the finite confinement in 
comparison to the infinite confinement are found for 
the interface-roughness scattering, the alloy-disorder 
scattering (in the barrier), and the binding energy of 
shallow impurities in thin QW's. The penetration of 
the wave function into the barrier reduces the inter- 
face-roughness scattering and drastically enhances the 
alloy-disorder scattering. Interface-roughness scatter- 
ing is found to be more important than alloy-disorder 
scattering. A non-monotonic behavior of the binding 
energy versus QW width is found, in agreement with 
the variational calculations [12-14, 16]. The binding 
energies of shallow impurities in higher subbands are 
also calculated. 
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