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We show that the usual Fresnel formulas for a free-propagating pulse are not applicable for a forced
terahertz electromagnetic pulse supported by an optical pulse at the end of a nonlinear crystal. The correct
linear reflection and transmission coefficients that we derive show that such pulses can experience a gain
or loss at the boundary. This energy change depends on linear dielectric constants only. We also predict a
regime where a complete disappearance of the forced pulse under oblique incidence occurs, an effect that
has no counterpart for free-propagating pulses.
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Almost 200 years ago, Fresnel presented formulas for
the transmission and reflection of electromagnetic pulses at
the interface between two media [1]. The Fresnel coeffi-
cients depend only on two material parameters—the re-
fractive indices of the media, which determine completely
the dynamics of free-propagating pulses.

However, linear Maxwell’s equations allow for another
important class of pulses—forced pulses. These pulses
propagate with velocities that are not determined by the
refractive index of the medium. A textbook example of a
forced solution is the field of a moving charge. Another
practical example, on which we focus in this Letter, is the
terahertz pulse created by a femtosecond optical pulse in
nonlinear crystal, such as LiNbO3. The optical pulse in-
duces nonlinear polarization that mimics the optical inten-
sity envelope. This polarization gives rise to the terahertz
electric and magnetic fields through linear Maxwell’s
equations. The velocity of this new pulse is not determined
by its field components but is fixed by the velocity of the
optical pulse, unlike the case for a free pulse. Because of
the presence of an external source, the optical pulse in our
example, these pulses are referred to as forced pulses.
Similar to free pulses, forced pulses experience reflection
and transmission at interfaces. However, one cannot di-
rectly apply the usual Fresnel formulas to the forced pulses
as their velocity fixed by their source does not appear in the
Fresnel formulas.

The purpose of this Letter is twofold: first, to extend the
concept of Fresnel reflection and transmission to forced
pulses; second, to apply the derived formulas to study the
generation of free-space terahertz radiation from forced
pulses at the end of nonlinear crystal.

With respect to the first purpose, we revisit the funda-
mental electromagnetic problem of pulse reflection and
transmission and derive corresponding coefficients for
the forced pulses. We find that these coefficients depend
only on the linear properties of the media and, thus, play
the same role as the usual Fresnel formulas for free pulses.

However, unlike free pulses, the energy of forced pulses is
not conserved upon reflection and transmission. This
change depends on refractive indices only, i.e., on linear
material properties. Thus, although nonlinearity is required
to create such pulses, it does not play any role in pulse
reflection and transmission.

With respect to the second purpose, there exist two
views on the mechanism of the optical-to-terahertz con-
version in the literature. According to the first one [2–4],
the conversion occurs in the bulk of a slab made of an
electro-optic material: the terahertz field is assumed to
have vanishing value at the entrance boundary of the
crystal and gradually grows with distance within the co-
herence length. The transmission of the formed terahertz
signal to vacuum at the exit boundary of the crystal is
described by the ordinary Fresnel transmission coefficient.
According to the other view, proposed in Ref. [5], two
terahertz pulses emitted from the slab are interpreted as
transition radiation from the slab boundaries produced by
the moving nonlinear polarization. In a recent paper [6] the
two viewpoints were opposed to each other in favor of the
second. In this Letter, we focus on the processes that occur
at the end of the crystal and exploit our results to discuss
the existing viewpoints. We clearly show that one cannot
use the usual Fresnel formulas and present the new Fresnel
formulas for the forced pulses. These new formulas, on the
other hand, allow one to avoid using the concept of tran-
sition radiation at the exit boundary.

We now describe our model. We consider a slab (0<
z< L) of nonlinear material characterized by the refractive
index in the terahertz range nt and optical group refractive
index ng (see Fig. 1). The slab is surrounded on both sides
by linear material with the refractive index in the terahertz
range n0. To obtain an analytical result for terahertz fields,
we neglect terahertz absorption and dispersion; i.e., nt and
n0 are real constants.

Assuming that a femtosecond laser pulse is incident
normally on the slab and its transverse size is much larger
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than the terahertz wavelength, we use the one-dimensional
model. We neglect the pulse depletion due to linear ab-
sorption (typically weak in such crystals as LiNbO3 and
GaAs below the band gap) and nonlinear processes, such as
two-photon absorption and second-harmonic generation.
The latter is a reasonable approximation at the not very
high pump intensities we are interested in here. We do not
account for the optical pulse reflection from the interface
z � L, which can be prevented, for example, by putting an
antireflective coating on the surface. Within the described
model, the nonlinear polarization induced in the slab via
optical rectification is

 P NL � pF�����z�; � � t� zng=c; (1)

where ��z� � 1 inside the slab (0< z< L) and ��z� � 0
elsewhere. The function F��� is the time-dependent enve-
lope of the optical intensity. We will use the Gaussian
function F��� � e��

2=�2
, where � is the pulse duration

[the standard full width at half maximum (FWHM) is
�FWHM � 2

�������
ln2
p

�]. The orientation of the amplitude vector
p is determined by the polarization of the optical beam and
orientation of the crystallographic axes of the sample. We
assume py � pz � 0 and px / dI0 with I0 the peak laser
intensity and d the nonlinear coefficient.

To find the terahertz radiation generated by the moving
polarization (1), we use Maxwell’s equations. After elim-
inating the magnetic field and applying the Fourier trans-
formation with respect to time (! is the Fourier variable
and ~ denotes quantities in the Fourier domain), the equa-
tion for the electric field transform ~Ex�!� becomes

 

@2 ~Ex
@z2

�
!2

c2 n
2�z� ~Ex � �

4�!2px
c2

~F�!���z�e�i!zng=c;

(2)

where n�z� is nt inside the slab and n0 outside; ~F�!� �
��=2

����
�
p
�e�!

2�2=4 is the Fourier transform of F���.
To proceed, we solve Eq. (2) in the homogeneous re-

gions (z < 0, 0< z< L, and z > L) and match the solu-
tions by the boundary conditions of continuity ~Ex and
~By � �ic=!�@ ~Ex=@z. Since in practice (for L> 100 �m)
the duration of the generated terahertz pulse is typically
smaller than the round-trip time of the pulse in the slab, it is

convenient to consider successively the processes at the
entrance and exit boundaries of the crystal. To do that, we
consider, at first, the crystal as semi-infinite (0< z<1)
and match the solutions of Eq. (2) at z � 0. This gives

 

~E x � ~F�!�
�
C1ei!zn0=c; z < 0;
C2e

�i!znt=c � Ae�i!zng=c; z > 0;
(3)

with A � 4�px=�n
2
t � n

2
g�, C1 � �A�nt � ng�=�nt � n0�,

and C2 � A�ng � n0�=�nt � n0�. Transforming Eq. (3)
into the time domain we obtain for z < 0:

 Ex�z; t� � �
nt � ng
nt � n0

AF
�
t�

zn0

c

�
; (4)

and for z > 0:

 Ex�z; t� � A
�ng � n0

nt � n0
F
�
t�

znt
c

�
� F

�
t�

zng
c

��
: (5)

Equation (4) predicts the formation of a backward prop-
agating terahertz pulse in the linear material (z < 0) after
the optical pulse enters the slab (Fig. 1, snapshot 1). In the
slab, Eq. (5) predicts the generation of two terahertz pulses
of the same shape, which mimics the envelope of optical
intensity, but with different amplitudes and opposite signs
(Fig. 1, snapshot 1). The forced wave response [the second
term in Eq. (5)] is near field, and the free wave response
(the first term) is free-space radiation. Although the pres-
ence of two pulses agrees with Ref. [2,4], the amplitudes in
(5) are different due to our use of rigorous continuity of the
field at z � 0 instead of setting it to zero. Expressions
similar to (4) and (5) were obtained in Ref. [7]; however,
the subsequent interaction of the generated pulses with the
exit boundary was treated incorrectly.

The pulses in the slab propagate with different velocities
defined by nt and n0. Near the entrance (z � 0), the pulses
overlap and partially compensate each other; in the course
of propagation they become separated and, therefore, the
total terahertz field increases. The position inside the crys-
tal at which the total terahertz field shows two separate
pulses as a function of time, as sketched on Fig. 1, snapshot
1, can be called a walk-off length ‘w � c�FWHM=jnt � ngj.

The free pulse can travel faster or slower than the forced
pulse, depending on specific values of nt and ng. We focus
on the superluminal case when nt > ng, a common situ-
ation in electro-optic crystals. In practice, this case can be
subdivided further: (i) strongly superluminal case, when
ng � nt like in LiNbO3, and (ii) weakly superluminal
case, when ng is only slightly less than nt (ng � nt) like
in GaAs (see parameters below). In the strongly super-
luminal case (ng � nt), the forced pulse, according to
Eq. (5), significantly exceeds the free pulse in amplitude
and, therefore, a finite total terahertz field appears just after
the optical pulse enters the crystal. The forced and free
pulses split up at a small distance, smaller than the laser
pulse length (‘w � c�FWHM=nt � c�FWHM=ng), due to the
large difference in their velocities, and propagate further
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FIG. 1 (color online). Generation of terahertz pulses (solid
lines) by an optical pulse (dashed lines) propagating through a
nonlinear slab. The snapshots 1 and 2 refer to the moments when
the optical pulse is inside the slab and after transmission,
respectively.
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separately. For example, in the case of LiNbO3 excited
with Ti:sapphire laser pulses (�800 nm wavelength) with
�FWHM � 150 fs, ng � 2:23, nt � 5:1, we have ‘w �
16 �m. Thus, for typical slabs with L> 100�m, the
forced and free pulses arrive at the exit boundary sepa-
rately and interact with it independently (Fig. 1, snapshot
2).

In the weakly superluminal case (ng � nt), the pulses
have almost equal amplitudes and practically cancel each
other near z � 0. The total terahertz field

 Ex � �4�pxzc
�1�nt � ng�

�1F0���; 0< z & ‘w;

(6)

grows linearly with z until the pulses become separated at
z � ‘w 	 c�FWHM=ng.

Equation (5) also allows us to calculate the time-
dependent terahertz energy in the slab

 Ws � A2 c�a

8�2��1=2

�n2
t � n2

g

2ng
� nt

�ng � n0

nt � n0

�
2
�

2�b
a



nt�ng � n0�

�nt � n0�
exp

�
�
t2c2

‘2
w

4 ln2

n2
t � n2

g

��
; (7)

where a � 1� erf�
���
2
p
t=��, � � �nt � ng�=

�����������������������
2�n2

t � n
2
g�

q
,

b � 1� erf�
���
2
p
�t=��. When tc	 ‘w, the first term in

(7) gives the energy WA of the forced pulse, the second
term gives the energy WB of the free pulse, and the third
(interference) term vanishes.

Now let us consider the incidence of the terahertz field
(5) on the boundary z � L. Using the same Fourier trans-
form approach, we obtain a backward propagating (re-
flected) terahertz field in the slab (z < L):

 E�r�x �z; t� � ARF
ng � n0

nt � n0
F
�
t�

Lnt
c
�
�z� L�nt

c

�

� ARNF
�
t�

Lng
c
�
�z� L�nt

c

�
; (8)

and a forward propagating (transmitted) terahertz field in
the linear material (z > L):

 E�t�x �z; t� � ATF
ng � n0

nt � n0
F
�
t�

Lnt
c
�
�z� L�n0

c

�

� ATNF
�
t�

Lng
c
�
�z� L�n0

c

�
: (9)

In Eqs. (8) and (9), we defined the usual Fresnel reflection
and transmission coefficients

 RF �
nt � n0

nt � n0
; TF �

2nt
nt � n0

: (10)

We also introduced two new coefficients RN and TN:

 RN �
ng � n0

nt � n0
; TN �

nt � ng
nt � n0

: (11)

Equations (8) and (9) show that the free pulses formed in
the slab and linear material after the incidence of the free
pulse are related to its amplitude by the usual Fresnel
formulas for RF and TF. However, the free pulses formed
in the slab and linear material after the incidence of the
forced pulse are related to its amplitude by the new Fresnel
formulas for RN and TN .

The generation of free pulses by a forced pulse can also
be viewed as transition radiation produced by a moving
polarization source that suddenly disappears as suggested
in [5,6]. This follows from the general concept of transition
radiation [8]. The use of the derived Fresnel formulas
presents a different view on this problem and, just like
the usual Fresnel formulas, helps to calculate the reflection
and transmission coefficients based on the results that
follow from Maxwell’s equations.

To probe the analogy between free and forced pulses
further, we focus now on the energy conversion coeffi-
cients. Integrating the Poynting vector Sz � �c=4��ExBy
for the reflected and transmitted terahertz pulses over an
infinite time interval, we obtain the energy reflection and
transmission coefficients for the forced pulse:

 

Wr

WA
� R2

N

2ntng
n2
t � n2

g
;

Wt

WA
� T2

N

2n0ng
n2
t � n2

g
; (12)

and the relative change of the total terahertz energy:

 

�W
WA
�
Wr�Wt�WA

WA

�
��nt�ng�2

�n2
t �n2

g��nt�n0�

�
n0�

2n2
g�ngnt�n2

t

nt�ng

�
: (13)

Depending on the relation between n0, nt, and ng, the
energy change �W can be either positive or negative.

The nonconservation of energy can be explained by
calculating the work WNL of the moving nonlinear source
on the incident and reflected terahertz pulses

 WNL � �
Z 1
�1

dt
Z L

�1
dzjNL

x �E
�i�
x � E

�r�
x �; (14)

where jNL
x � pxF

0���, and E�i�x and E�r�x are given by the

0 ng nt n0 

∆W / WA

Wr / WA Wt / WA 
A

max
t

W
W

(a) 

0 

1

nt n0

Wt / WB

Wr / WB 

(b) 

FIG. 2. (a) Energies of the transmitted (Wt=WA) and reflected
(Wr=WA) free pulses formed by the incidence of the forced pulse
and the total energy change �W=WA as functions of n0. The
curves are plotted for nt > ng. (b) Same as (a) but for the
incident free pulse. The energy change is zero.
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second terms in Eqs. (5) and (8), respectively. Evaluating
(14) yields WNL � �W.

Figure 2(a) shows these energies as functions of the
refractive index n0. The transmitted energy is maximal at
n0 � nt: Wmax

t =WA < 1 for ng < nt and Wmax
t =WA > 1 for

ng > nt. For LiNbO3, Wmax
t =WA � 0:38. The minimum of

reflection Wr � 0 occurs at n0 � ng. A negative �W
means partial energy absorption by the nonlinear polariza-
tion through work (14). The results for the forced pulses
[Fig. 2(a)] differ significantly from those for the free pulses
described by the usual Fresnel equations [Fig. 2(b)]. For
free pulses the maximum of transmission is unity and is
achieved when the reflection is zero.

Focusing on the experiments with LiNbO3 in vacuum
(n0 � 1), we obtain the ratio of the amplitudes of the free
and forced pulses in the crystal 0.53 [see Eq. (5)]. The
transmission and reflection coefficients [TF � 1:67, RF �
0:67, TN � 1:20, and RN � 0:20 obtained using Eqs. (10)
and (11)] depend quite significantly on whether the pulse is
free or forced. In vacuum, z > L, the ratio of the ampli-
tudes of the pulse produced by the forced pulse and the one
produced by the free pulse is 1:20=�1:67
 0:53� � 1:36.
Moreover, absorption in the crystal attenuates the free
pulse: its amplitude decreases approximately by a factor
of 2 in a 1 mm slab, according to Fig. 2 of Ref. [6]. This
changes the ratio to 1:36
 2 � 2:7, which is close to the
experimental value �2:5 of Ref. [6].

In the weakly superluminal case of GaAs excited with
fiber laser pulses (�1:5–2 �m wavelength) we have ng �
3:55, nt � 3:59, ‘w � 1:1 mm. For the slabs with L � ‘w,
typically used in experiments, there is no sufficient dis-
tance for the forced and free pulses to become separated,
and the total terahertz field arriving at the boundary z � L
has the form (6). Since ng � nt, we have RN � RF and
TN � TF. Thus, the reflection and transmission of the total
terahertz field at z � L obey the ordinary Fresnel law
without any change of energy.

The presence of terahertz dispersion that we neglected
does not change our conclusions. The dispersion affects
only the free pulse during its propagation in the slab and
only when nt � ng (GaAs), as was confirmed by our
numerical Fourier transform of Eq. (2) using frequency
dependent nt.

The concept of Fresnel reflection and transmission for
forced pulses that we discussed for normal incidence can
also be easily adopted for oblique incidence. Here we
predict an interesting feature of oblique incidence: a com-
plete disappearance of the forced pulse at the boundary. Let
us take a forced pulse incident under an angle � from
nonlinear medium (z < 0) to linear one (z > 0). Using
equality of the tangential components of the wave vectors
for the Fourier transforms of the incident, reflected, and
transmitted fields, we obtain the laws of reflection and
refraction (� and � are the angles at which the reflected
and transmitted free pulses propagate, respectively):

 ng sin� � nt sin� � n0 sin� (15)

that generalize the classical law of specular reflection and
Snell’s law established for free pulses [1]. If n0 < ng and
the forced pulse is incident at �> arcsin�n0=ng�, there
will be no propagating transmitted wave, an effect similar
to the total internal reflection for incident free pulses.
Surprisingly, there will be no reflected propagating pulse
either if at the same time nt < ng and �> arcsin�nt=ng�.
Thus, the incident forced pulse completely disappears after
hitting the boundary. Its energy is absorbed by the work of
the nonlinear polarization. The condition nt < ng occurs
in, for example, GaP excited by a Ti:sapphire laser [9].
This disappearance is independent from the pulse polar-
ization as it follows from kinematic relations (15). The
effect of disappearance can be verified in practice by
measuring the transmitted terahertz signal as a function
of the angle at which the optical pulse propagates inside the
crystal.

To conclude, we showed that the commonly used
Fresnel formulas for the free pulses are inapplicable for
calculating the transmission and reflection of the forced
terahertz pulses at the end of a nonlinear crystal, and we
introduced new Fresnel formulas for the forced pulses. The
obtained values for the generated terahertz pulses agree
with the measurements in LiNbO3 crystals [6]. To maxi-
mize the transmitted terahertz signal, the refractive index
of the surrounding medium should be equal to that inside
the nonlinear crystal at terahertz frequencies. We also
predicted that forced pulses can completely disappear at
the boundary under oblique incidence.
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