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The structure of the Tamm state localized at the interface between anisotropic magnetophotonic crystal

(anisotropic MPC) and a photonic crystal (PC) made of isotropic dielectrics is studied. It is shown that if

the frequency of this state appears within the degenerate band gap then its structure qualitatively

differs from the structure of a well-known Tamm state localized at the interface between two one-

dimensional PC made of isotropic materials. Since inside the degenerate BG the real part of the Bloch

wavenumber differs from the Brillouin value, two Bloch waves with different signs in the real part of

the wavenumber and the same sign in the imaginary part have different input impedance values.

Moreover, contrary to the case of a PC made of isotropic materials the impedance of each Bloch wave is

a tensor. As a consequence to construct a surface state at least three evanescent Bloch waves are

required. The conditions that determine the Tamm state frequency also change.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

Within the last decades the electrodynamics of photonic
crystals has experienced rapid development. Magnetophotonic
structures merit special attention [1]. The introduction of
magnetic inclusions into photonic crystals enrich the electro-
dynamics by new physical phenomena and enlarge the possible
applications of photonic crystals.

Due to the existing analogy between PC and crystalline solids
many phenomena, well-known in solid state physics, are now
observed in photonic crystals (PC). In particular, the surface states
of electrons predicted by Tamm in 1934 have been intensively
investigated both at optical and microwave frequencies in PC
[2–12]. The optical Tamm state can form at the interface of two
different PCs or between PC and a medium with negative
permittivity or permeability. The frequency k0 ¼o=c at which
the Tamm state lies in the intersection of the band gaps (BGs) of
the first and second PCs and is determined by the equality of the
PCs input admittances of the evanescent Bloch waves composed
this Tamm state:

Y1ðk0Þ ¼ Y2ðk0Þ

where the input admittance Y(k0) (which is electrodynamics
analog of logarithmic derivative of psi-function) of a Bloch wave is
equal to the ratio of tangential components of electric and
magnetic fields Ht/Et. Thus, this equation is equivalent to the usual
Maxwell boundary conditions.
ll rights reserved.
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kin).
The Tamm state consists of two evanescent Bloch waves
decreasing away from the interface [2]. In this communication we
study the structure of the Tamm state, which appears in the
degenerate BG [11,12]. The degenerate BG may form in magne-
tophotonic crystals whose primitive cell consists of anisotropic
and magnetooptical layers [11–15].
2. Formation of the degenerate BG

Recently it has been shown that the combination of anisotropic
and magnetooptic materials may result in the formation of band
gaps of a new type [11–17]—the so called degenerate band gap.

To consider the formation of degenerate BG more carefully let
us consider a 1D PC made up of anisotropic and isotropic
magnetooptic layers [11] of thickness d. At zero magnetization,
the MO layers are isotropic and we can choose two independent
eigensolutions such that their polarizations coincide with the
polarizations of the ordinary and extraordinary waves in the
uniaxial crystal layers. In this case the boundary conditions
connect the waves of identical polarization and two independent
(complementary) Bloch waves have polarizations of ordinary and
extraordinary waves and different Bloch wavenumbers kðBlÞ

Or and
kðBlÞ

Ex , respectively. In accordance with the Bragg condition
(2kðBlÞ

Or;Exd¼ pn) at the boundaries of the Brillouin zones each of
the solutions has its own band gap (see Fig. 1) [11] (we will refer
to such gap as Brillouin band gap). Since the ordinary and
extraordinary waves are perfectly independent the possible
intersections of dispersion curves have no affect.
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Fig. 1. Reduced (right side of the figure) and extended (left side of the figure) band

patterns displaying degenerate band gaps. The solid curves correspond to the

magnetic-field case. The dotted curve presents the dispersion of the extraordinary

mode. The dashed curve presents the dispersion of the ordinary mode. A gray

region corresponds to frequencies of degenerate band gap. The PC’s primitive cell

consists of a layer of anisotropic material with permittivity exx=2.0, eyy=8.0 and of

a MO layer with permittivity ediag=3.0, eoff_diag= ig=0.5i, the thickness of each layer

equals to d.

Fig. 2. System under consideration. The unit cell of the first PC consists of a

uniaxial crystal (exx=2.7, eyy=5.0) and a magnetooptical layer (ediag=3.0,

eoff_diag= ia=0.02i and eoff_diag=0 at zero magnetization). The unit cell of the second

PC consists of two isotropic layers with permittivity e1=3.1, e2=3.4. The thickness

of each layer equals d.
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Magnetization of the PC in a direction perpendicular to the layer
interfaces changes the character of the eigensolutions in the
previously isotropic and now gyrotropic (magneto-optical) layers. In
the gyrotropic medium the eigensolutions are left- or right-circularly
polarized waves. Now, the boundary conditions connect waves of
different polarizations and, say, left-circular polarized wave excites in
the uniaxial crystal layers both ordinary and extraordinary waves and
vice a versa linearly polarized wave excites both circularly polarized
waves. Thus, waves of different polarization are mixed at the
boundaries. The Bloch waves loose their well-defined polarization
and become of waves of a hybrid type.

A possible intersection of dispersion curves of ordinary and
extraordinary Bloch waves in the reduced zone pattern corresponds
to the generalized Bragg condition kðBlÞ

Or dþkðBlÞ
Ex d¼ p in the expanded

zone pattern. Since the magnetooptical effects are very weak, at first
approximation, we can consider the hybrid Bloch waves as slightly
disturbed ordinary and extraordinary Bloch waves. Indeed, far from
the point of intersection one observes a small disturbance in the Bloch
wave numbers and the polarization of the main harmonic is nearly
linear. At the point of intersection we observe resonant reflection of
the Bloch waves because of the generalized Bragg condition
kðBlÞ

Or dþkðBlÞ
Ex d¼ p. Indeed, the scattering channel when we take into

account only cross-polarized reflections is resonant. Thus, at the point
of intersection a new BG forms (see Fig. 1).

It is worth noting that this BG forms simultaneously for both Bloch
waves, in other words formation of such band gap is degenerate with
respect to polarization and we will call such band gaps-degenerate
[15]. It should be pointed out that only at the edge of the degenerate
BG Bloch wavevectors are the same for different solutions. For
frequencies inside degenerate BG Bloch wavevectors in the reduced
zone pattern have the special form kðBlÞ

1;2ðk0Þ ¼ 7ðq1ðk0Þ

þ iq2ðk0ÞÞ and kðBlÞ
3;4ðk0Þ ¼ 7ðq1ðk0Þ�iq2ðk0ÞÞ [15].
3. Tamm state based on degenerate band gap

Now let us consider a Tamm state based on the degenerate
band gap in a system consisting of an anisotropic MPC (first PC in
Fig. 2) and a PC made up of isotropic components (second PC in
Fig. 2). The unit cell of the first PC consists of a uniaxial crystal and
a magnetooptical layer and yields a degenerate BG. The unit cell of
the second PC consists of two isotropic layers.

Let us consider the frequencies around the intersection of the
dispersion curves of ordinary and extraordinary waves of a
non-magnetized first PC. It is assumed that such frequencies
correspond to the band gap of the second PC. At zero magnetization
the transmittance is suppressed by the Bragg reflectance in the
second PC (dotted line at Fig. 3).

Application of a magnetic field results in the appearance of a
degenerate band gap in the first PC [11] and, respectively, leads to
the formation of Tamm states at the boundary of the two PCs.
Such state reveals itself as a transparency peak in the transmit-
tance spectra (see Fig. 3).

In the present case only one Tamm state appears as result of
magnetization, contrary to the case of a Tamm state at the
boundary between an isotropic magnetooptical PC and a PC made
up of isotropic components. [2] In the latter case the Tamm state
exists without magnetization and splits into two Tamm states
upon magnetization (corresponding to right- and left-circularly
polarized waves). The present Tamm state is not doubly
degenerate with respect to polarization like the Tamm state at
the boundary between two PCs made of isotropic layers. Such
peculiarities of the present Tamm state is caused by the hybrid
nature of the eigensolutions in a PC based on anisotropic and
magnetooptical materials.
4. Anisotropy of admittance

The Bloch waves in a 1D PC made up of anisotropic materials
with coincident directions of anisotropy axes are TE or TM
polarized, having different but scalar impedance like it happens in
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Fig. 3. Propagation coefficient of the system under consideration. The dotted line

corresponds to zero magnetization; the solid line corresponds to the magnetized case.
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a homogeneous medium. A non-zero angle between the axes or
the presence of gyrotropy results in hybridization of the Bloch
waves. These hybrid Bloch waves have neither linear nor circular
(elliptical) polarization. As a consequence the problem cannot be
reduced to two scalar problems with scalar (yet possibly
different) impedance values. In the scalar problem the boundary
conditions reduce to equality of impedance values on both sides
of an interface.

In the case of a primitive cell consisting of layers with
anisotropic and gyrotropic permittivities, the Bloch wave consists
of four waves differing in polarization and traveling directions in
each layer. Waves with different polarizations are characterized
by different scalar impedance values. The Bloch wave, as a
consequence, is characterized by an impedance value tensor. If
the second PC is made of isotropic material we can construct a
couple of Bloch waves having any type of polarization: linear,
circular or elliptical. In any case there are two Bloch functions
with complementary polarizations and the same impedance
value. The boundary conditions still reduce to equality of input
impedance values. It is obvious that to satisfy such a condition we
have to employ both hybrid Bloch waves in order to obtain a
symmetric tensor of impedance values.

Let us deduce the required equality following from the
boundary conditions and serving as dispersion equation of the
surface state. As was mentioned above, two complementary Bloch
waves in the anisotropic MPC have different Bloch wave numbers:
k1ðk0Þ ¼ q1ðk0Þþ iq2ðk0Þ, k2ðk0Þ ¼�q1ðk0Þþ iq2ðk0Þ and different
periodic factors:

~Ea ¼
faxðzÞ

fayðzÞ

 !
eik1z; ~Ha ¼

YayfayðzÞ

�YaxfaxðzÞ

 !
eik1z

where

YabðzÞ ¼ naþ
f 0ab

fabik0

is a tensor of the local impedance values, a=1,2—is a label of the
Bloch wave and b=x,y—is a label of the component. To satisfy
the boundary conditions we have to identify the fields in the
adjoining layers belonging to the different PC. Below, for
distinctness, we consider the case when the layer with anisotropic
permittivity adjoins the PC made of isotropic materials. The
hybrid Bloch waves in this layer may be presented as a sum of two
ordinary and two extraordinary waves traveling in opposite
directions:

~Ea ¼
Eax

Eay

 !
¼ Aa

1

0

� �
eikozþBa

1

0

� �
e�ikozþCa

0

1

� �
eikezþDa

0

1

� �
e�ikez

and

k0
~Ha ¼ k0

Hax

Hay

 !
¼ koAa

0

1

� �
eikoz�koBa

0

1

� �
e�ikoz

þkeCa
1

0

� �
eikez�keDa

1

0

� �
e�ikez

where a=1,2 is a label of the Bloch wave Ai, Bi, Ci, Di are the
phazors of plane waves, which are eigensolutions of the Maxwell
equations in the layer, ko and ke are the wave numbers of ordinary
and extraordinary waves. It is easy to see that in this representa-
tion the admittance tensor is diagonal with Yax ¼ Yo ¼Hx=Ey and
Yay ¼ Ye ¼�Hy=Ex. In the isotropic medium the corresponding
admittance values are identical: Yx ¼Hx=Ey ¼ k=k0 ¼�Hy=Ex

¼ Yy ¼ Yi. Hence we cannot simultaneously satisfy all boundary
conditions confining ourselves to a single Bloch wave in MPC. We
have to consider a linear combination of two complementary
Bloch waves in the anisotropic MPC:

~E ¼ a
f1xðzÞ

f1yðzÞ

 !
eik1zþb

f2xðzÞ

f2yðzÞ

 !
eik2z and

~H ¼ a
Y1yf1yðzÞ

�Y1xf1xðzÞ

 !
eik1zþb

Y2yf2yðzÞ

�Y2xf2xðzÞ

 !
eik2z

Taking into account that in the PC layer adjoining MPC the Bloch
wave has a form

~E ¼
Ex

Ey

 !
¼

cf ðzÞ

df ðzÞ

 !
eikz and ~H ¼

Hx

Hy

 !
¼

d nþ
f 0

fik0

� �
f

�c nþ
f 0

fik0

� �
f

0
BBB@

1
CCCAeikz

the boundary conditions can be written down as

a
f1x

f1y

 !
þb

f2x

f2y

 !
¼

cf

df

 !

a
Y1yf1y

�Y1xf1x

 !
eik1zþb

Y2yf2y

�Y2xf2x

 !
¼

dYf

�cYf

 !
8>>>>><
>>>>>:
This linear system (with respect to a; b; c;d) has a non-zero
solution if

ðY1y�YÞf1y ðY2y�YÞf2y

ðY1x�YÞf1x ðY2x�YÞf2x

�����
�����¼ 0

Thus, we obtain the equation that determines the frequency of the
Tamm state in the degenerate BG.
5. Conclusion

It has been shown that at the interface between a MPC, the
primitive cell of which is made up of a layer with anisotropic
permittivity and a layer with gyrotropic permittivity magneto-
photonic crystal, and a PC, the primitive cell of which is made up
of layers with isotropic permittivity, there may appear a surface
Tamm state. The frequency of this state lies in the degenerate BG
of the first PC and in Brillouin BG of the second one. Contrary to
the quantum case and the case when both BG are of the Brillouin
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type, this Tamm state consists of three evanescent Bloch waves.
The necessity of the third Bloch wave is a consequence of the
different bases in the PCs.
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