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It was recently predicted [Phys. Rev. Lett. 81, 938 (1998)] that atom-atom scattering under transverse
harmonic confinement is subject to a ‘‘confinement-induced resonance’’ where the effective one-
dimensional coupling strength diverges at a particular ratio of the confinement and scattering lengths.
As the initial prediction made use of the zero-range pseudopotential approximation, we now report
numerical results for finite-range interaction potentials that corroborate this resonance. In addition, we
now present a physical interpretation of this effect as a novel type of Feshbach resonance in which the
transverse modes of the confining potential assume the roles of ‘‘open’’ and ‘‘closed’’ scattering
channels.
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Feshbach-type resonance involving bound states of the plitude of the exact solution in 3D to that of Eq. (1),
There have been a number of recent experiments in
which ultracold atoms have been loaded into magnetic or
optical ‘‘atom waveguides’’ [1–8]. One goal of such ex-
periments is to reach the single-mode or quasi-1D re-
gime, where only the ground state of transverse motion
is significantly populated. This regime is important for
the design of ultrasensitive rotation and gravitational
gradient detectors based on guided-atom interferometers.
In addition, the 1D delta-interacting boson gas is of
significant theoretical interest as one of the few known
fully integrable quantum field theories; e.g., in a finite
system with infinitely strong delta-function interactions,
boson N-body states have been shown to correspond via a
one-to-one mapping with the highly correlated states of
the corresponding noninteracting Fermi gas [9–15]. The
homogeneous 1D Bose with arbitrary-strength delta-
function interactions is also a fully integrable system [16].

To connect experiments in tightly confining wave-
guides with theoretical 1D models, it is necessary to re-
late the effective 1D coupling constant, g1D, and the 3D
scattering length, a. This problem was first addressed
rigorously in [17], resulting in the prediction of a ‘‘con-
finement induced resonance’’ (CIR). At the CIR, the g1D
can be tuned from �1 to �1 by varying the trans-
verse width of the waveguide, a?, over a small range in
the vicinity of the resonance at a? � Ca, where C �
1:4603 . . . . Until now, however, there has been no con-
vincing physical explanation for the effect, thus rais-
ing questions concerning its appearance in systems with
finite-range interactions.

The primary goal of this Letter is to present numerical
results for atom-atom scattering in a harmonic waveguide
via finite-range interaction potentials, to confirm the ex-
istence of the CIR. In addition, we provide a much-
needed physical interpretation of the effect as a
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energetically closed transverse modes (‘‘channels’’).
Analogous numerical scattering studies in spherically
symmetric traps have been reported [18,19], while scat-
tering under harmonic confinement in one dimension is
discussed in [20,21].

We begin by considering a collision between two
atoms, each initially in the ground state of transverse
motion. In a harmonic potential, the center-of-mass mo-
tion and relative motions are separable, with the wave
function of the relative coordinate satisfying an effective
single-particle model with a stationary scatterer at the
origin. If the longitudinal kinetic energy in the center-of-
mass frame is less than the transverse level spacing, then
the atoms remain asymptotically frozen in the ground
state. Low-energy scattering in this regime can then be
modeled in the pseudopotential approximation [22] by
the 1D Hamiltonian

H1D � �
�h2

2�
@2

@z2
� g1D��z�; (1)

where z is the longitudinal atomic separation and � is the
reduced mass. In the pseudopotential approximation, g1D
is typically obtained as in [15] by assuming that the wave
function of the relative coordinate r � zẑz� 
�̂� factorizes
as ��r� � �0�
� �z�, where �0�
� � �a?

����
�

p
��1e�


2=2a2
?

is the transverse ground state. Here a? �
�����������������
�h=�!?

p
is the

transverse oscillator length for the relative atomic mo-
tion, !? being the transverse trap frequency. The effec-
tive 1D potential is then defined via g1D��z� �R
2�
d
j�0�
�j

2 2� �h2a
� �3�r�, which gives

g1D 

2 �h2a

�a2?
: (2)

By matching the low-energy (ka? � 1) scattering am-
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FIG. 1. The 1D coupling constant, g1D, in units of �h2=��a?�,
as a function of a=a? for the 6–12 potential (stars) and the
spherical well potential (triangles), as compared to the pseudo-
potential theory (solid line). The inset shows g1D in units of
�h2=��jaj� versus a?=a, to illustrate the behavior in the tight-
confinement regime (a?=a! 0).
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however, it was determined [17] that

g1D �
2 �h2a

�a2?

1

�1� Ca=a?�
; (3)

where C � ���1=2� � 1:4603 . . . The appearance of a
resonance term in the denominator implies that the
hard-core Tonks-Girardeau regime can be accessed via
the CIR condition a? 
 Ca. The naive formulation (2),
on the other hand, implies that accessing this regime
would require the more extreme condition a� na2?,
where n is the linear density.

Before addressing the physical interpretation of this
resonance, we first describe our numerical calculations of
1D scattering amplitudes for finite-range interactions.
The relation between g1D and the 1D scattering amplitude
may be found by assuming that the scattering eigenstates
��z� of Hamiltonian (1) take the form given in [17]:

��z� � eikz � fee
ikjzj; E � �h2k2=2�: (4)

Substituting this form into Schrödinger’s equation with
(1) then gives

g1D � lim
k!0

�h2kfeR�k�
�feI�k�

; (5)

where feR and feI are the real and imaginary parts of fe.
To extract analogous values for g1D from numerical scat-
tering calculations, we obtain eigenfunctions of the
Hamiltonian ĤH � ĤHz � ĤH? � V̂V, where

ĤH z � �
�h2

2�
@2

@z2
;

ĤH? � �
�h2
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(6)

In the present work, we restrict ourselves to the case of
zero azimuthal angular momentum m � 0, as there is
negligible s-wave scattering for m � 0. For the interac-
tion potential, we study two cases: V�r��C12=r12�
C6=r6r2 � z2 � 
2 and the spherical square well, V�r� �
� �VVS�b� r�, S�r� being the unit step function.

With application to the case of Cs atoms in a 1D optical
well [8] in mind, we consider atoms with the mass of
133Cs, and with the C6 coefficients as determined recently
[23] to be C6�Cs� � 6890 a:u: For Cs atoms in the
�F;M� � �3; 3� state, the scattering length is determined
only as an upper bound, a <�140 nm, as compared with
a? � 29:5 nm reported in [8]. In order to study the gen-
eral situation, we allow C12 to vary, and focus on the
regime of 1 to 3 J � 0 bound states, rather than the 47
bound states in the actual Cs2 3��

u state, and we neglect
other terms in the dispersion potential. The 6–12 poten-
tial may be characterized by Re, the minimum of the
potential well, where Re � �2C12=C6�

1=6. For C6 �
C6�Cs� and for a series of values of C12 we obtain the
free-space s-wave scattering length, a, by Numerov in-
tegration of the Schrödinger equation. When a resonance
state passes through threshold a exhibits a simple pole,
163201-2
thus the 6–12 potential provides the full range of 3D
scattering lengths. For the case of a spherical well poten-
tial, the scattering length for a well of depth �VV and range
b is given by a � b� tan�b(�=(, where (2 � 2� �VV= �h2.

To solve the scattering problem for such central poten-
tials plus a transverse harmonic potential, we employ a
numerical mesh in 
 and z, and find eigenfunctions in a
cylindrical box of finite length. The box is sufficiently
long in z that the asymptotic form of the wave function as
jzj ! 1 is readily determined. The eigenfunctions are of
odd or even parity, with the odd-parity functions exhib-
iting negligible scattering effects. For even functions of
energy E � �h!? � �h2k2=2�, the asymptotic form is

��
; z� ���!jzj!1
N ��1� feR� cos�kz� � feI sin�kjzj���0�
�:

(7)

Values for feR, feI, and N are thus extracted from a fit to
Eq. (7), determined over a range of z values for which
V�r� is negligible, and from conservation of probability
current. From feR and feI, g1D is then obtained from
Eq. (5) via extrapolation of finite k data to k � 0. The
numerical mesh was provided by the discrete variable
representation (DVR). In order to increase the density of
points near z � 0, the z coordinate was scaled by z �
U�y�, where U�y� � a cosh�z=b�, analogous to scaling
used in [24]. A uniform mesh in y was then used [25]
along with a Laguerre DVR in 
 [26].

Numerical results for g1D with model potentials are
shown in Fig. 1, along with the analytic result (3). The
numerical calculations clearly exhibit a singularity in g1D
at a=a? 
 1=C. For a less than this value, the calculated
g1D values agree well with the analytic expression. There
do appear to be systematic deviations between the exact
numerical results and the pseudopotential theory that are
greater for the 6–12 potential than for the spherical well
for a=a? > 1=C. As we will see, this effect can be
explained via a Feshbach-resonance interpretation.
163201-2
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These numerical results validate the pseudopotential
analytic result [17], demonstrating that the CIR is indeed
a physical phenomena rather than an artifact of the
pseudopotential approximation. It is therefore important
to establish the physical origin of the CIR. In what fol-
lows, we show that the CIR is in fact a zero-energy Fesh-
bach resonance, occurring when the energy of a bound
state of the asymptotically closed channels (i.e., the ex-
cited transverse modes) coincides with the continuum
threshold of the open channel (lowest transverse mode).

This explanation is best verified by artificially severing
the coupling between the ground transverse mode and the
manifold of excited modes. If a bound state of the de-
coupled excited manifold exists, then a zero-energy
Feshbach resonance will occur when this bound-state
energy coincides with the continuum threshold of the
ground transverse mode. To determine the relevant
bound-state energies, we consider the total Hamiltonian
ĤH � ĤHz � ĤH? � V̂Vpseudo, where the Vpseudo is the standard
Huang-Fermi pseudopotential. Because our interpretation
of the CIR relies heavily on the behavior of two-atom
bound states, it might be useful to recall that the Huang-
Fermi pseudopotential, V̂Vpseudo, supports a single bound
state in free space at E � �h2=��a2� for the case a > 0. To
determine the location of the CIR, we need to ask what
happens to the energy of this bound state if a single
transverse mode is projected out of the Hilbert space.
We therefore proceed by formally splitting the
Hamiltonian onto ‘‘ground,’’ ‘‘excited,’’ and ‘‘ground-
excited coupling’’ parts according to

ĤH � ĤHg � ĤHe � ĤHg�e

� P̂PgĤHP̂Pg � P̂PeĤHP̂Pe � �P̂PeĤHP̂Pg � H:c:�; (8)

where P̂Pg � j0ih0j, P̂Pe �
P

1
n�1 jnihnj, are the correspond-

ing projection operators, jni being the eigenstate of the
transverse two-dimensional harmonic oscillator with ra-
dial quantum number n and zero axial angular momen-
tum. The corresponding eigenvalues of the transverse
Hamiltonian are given by ĤH?jni � �h!?�2n� 1�jni.

The ground Hamiltonian has a 1D coordinate repre-
sentation of the form of Eq. (1), corresponding to the
motion of a one-dimensional particle in the presence of
a � barrier with the ‘‘bare’’ coupling constant given by
Eq. (2). The spectrum of ĤHg is continuous for energies
above the threshold energy EC;g � �h!?. Likewise, the
spectrum of the excited Hamiltonian is clearly continu-
ous for energies EC; e � 3 �h!? but, as we will see below,
ĤHe supports one bound state of an energy EB;e < EC;e for
all values of the 3D scattering length, a.

According to the Feshbach scheme, one would predict
a resonance in the renormalized g1D for a set of parame-
ters, such that the energy of the bound state of ĤHe co-
incides with the continuum threshold of ĤHg. Thus, the
CIR condition can be expressed as EB;e � EC;g. As we
will see below, this scheme indeed predicts a position of
the CIR exactly.
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The energy EB; e of the bound state of ĤHe can be found
using the following two step procedure. First, we identify
the bound-state energy of the full Hamiltonian ĤH as a
pole of the scattering amplitude on the physical Riemann
sheet. Second, we make use of the peculiar property of
the two-dimensional harmonic oscillator that the excited
Hamiltonian ĤHe and the full Hamiltonian ĤH can be
transformed to each other via a simple unitary trans-
formation. This leads to a simple relation between their
bound-state energies.

The even-wave one-dimensional scattering amplitude
fe at an energy E (Ec; g � E< Ec; e), as defined in (4), has
been derived in [17]. We have now obtained a closed-form
analytic expression for the previously derived result, so
that the scattering amplitude can be expressed as

fe�k� � �
2i

ka?�
a?
a � ��1=2; � �ka?=2�2��

; (9)

where

��s; /� � lim
N!1

�XN
n�0

1

�n� /�s
�

�N � /��s�1

�s� 1

�
;

Re�s� > 0; Im�s� � 0; zs � jzjseis�Arg�z��2��;

0< Arg�z� � 2� (10)

is the Hurwitz zeta function [27], and the wave vector k is
given by E � EC;g � �h2k2=2�. The bound-state energies
of the full Hamiltonian ĤH will be given by the poles, �kk,
on the positive imaginary axis of the analytic continu-
ation of fe�k�: EB � � �h2 Im2� �kk�=2�. One can see that,
in order to avoid crossing the branch cuts of the zeta
function, the continuation should be performed inside
the 0 � Arg�k� � �=2 quadrant of the complex plane.
In the end, we find a single pole corresponding to the
following implicit equation for the bound-state energy:
��1=2; � EB=�2 �h!?� � 1=2� � �a?=a.

Now the full Hamiltonian ĤH and the excited
Hamiltonian ĤHe are connected via a simple transforma-
tion: ĤHe � ÂAyĤH ÂA , where ÂAy �

P
1
n�0 jn� 1ihnj. Note

that both ĤHe and ĤH include interactions; thus the above
property is highly nontrivial and stems from the fact that
the m � 0 eigenfunctions of the two-dimensional har-
monic oscillator all have the same value at the origin. The
3D � interaction thus has the same matrix elements
between all the harmonic oscillator states; hence, the
interaction matrix is unaffected by the shift operator.

From the above, we conclude that the bound-state en-
ergy EB;e of the excited Hamiltonian is related to the
bound-state energy EB of the full Hamiltonian via EB;e �
EB � 2 �h!?, and thus satisfies the equation ��1=2;�EB;e=
�2 �h!?� � 3=2� � �a?=a. The CIR condition can now be
explicitly formulated as ��1=2;�EC;g=�2 �h!?� � 3=2� �
�a?=a. Using EC;g � �h!?, we finally arrive at the exact
CIR condition a?=a � ��1=2; 1� � ��1=2; 0� � �C. A
similar effect is associated with resonance behavior in
harmonically confined 2D scattering for a < 0 [20]. This
163201-3
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FIG. 2 (color online). Numerical bound-state energies and
schematic of the Feshbach resonance scheme. The solid lines
correspond to the analytic pseudopotential results.
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resonance would most likely be observed via changes in
the macroscopic properties of the ground state of a many-
atom system, e.g., the density distribution, as described in
detail in [12].

This Feshbach scheme is illustrated in Fig. 2, where we
plot the bound-state energies EB;e (dark solid line) and EB
(thin solid line) as a function of the ratio a?=a. The
continuum thresholds EC;e and EC;g are also indicated,
illustrating that the CIR occurs when the bound state of
the manifold of closed channels, EB;e, crosses the contin-
uum threshold of the open channel, EC;g. In addition, we
have plotted the bound-state energies of the full Hamil-
tonian as determined numerically for the 6–12 and
spherical well potentials, showing good agreement with
the pseudopotential result. As the bound-state energy
deepens, we start to see quantitative disagreement be-
tween the bound-state energies of the finite-range poten-
tials and the pseudopotential. This disagreement is
consistent with the discrepancy in the position of the
CIR shown in Fig. 1, showing that it is the bound-state
energy, and not the scattering length which determines
the location of the CIR.

Last, we note that, while in free space a weakly bound
state exists only for a > 0, we see that in the waveguide
such a state exists for all a. These bound states may be of
significant interest, allowing the formation of dimers via
a modulation of the waveguide potential at the frequency
�EC;g � EB�= �h. This may lead to an atom-waveguide
based scheme for forming ultracold molecules, as well
as the possibility to use molecular spectroscopy as a
sensitive probe of the atomic field inside the waveguide.
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