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Exact numerical results are obtained within the extended Hubbard Hamiltonian for nanorings consisting of
Ag quantum dots(QD’s) with C6v symmetry which interact with a circularly polarized light. The results show
that the high-harmonic generation(HHG) spectra obtained from such artificial “molecules” are more pro-
nounced than the HHG spectra obtained from a real molecule such as benzene. Our studies show that the HHG
spectra obtained from the QD nanorings consist of two plateaus while only one plateau appears for benzene.
The role of electron correlations in the generation of the high-order harmonics is studied, and it is shown that
it can increase the intensity of the high-order harmonics. Mainly affected are the harmonics which are located
in the second plateau. Selection rules for the produced high harmonics and a new “synergetic” selection rule
for the symmetry of the states contributing to the HHG spectrum, a combined effect of spatial and charge
conjugation symmetries, are discussed.
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I. INTRODUCTION

The phenomenon of high harmonic generation(HHG) in
atomic gases has been extensively studied both experimen-
tally and theoretically in the past twenty years(see, e.g., Ref.
1, and references therein) and in molecular gases since the
mid-1990’s.2–5 A common characteristic of HHG-based ra-
diation sources is their multichromaticity. The fact that the
HHG spectra obtained for atomic gases consists only of odd-
order high harmonics up to a certain cutoff has been ex-
plained by combining thesphericalsymmetry of atoms and
the monochromaticity of the linearly polarized laser field
(see, e.g., Ref. 6). However, this explanation is based on
perturbation theory, and thus breaks down and does not hold
for the high intensity lasers which are applied in order to
generate the high-order harmonics. A nonperturbative proof
has been given under the assumption that the photoinduced
dynamics is controlled by asingle resonance quasienergy
Floquet state taking into consideration in the analysis of the
dynamical symmetry the symmetry of the system which in-
teracts with the electromagnetic laser field.7,8 The dynamical
symmetry analysis indicated that the difference between
atomic and molecular HHG is probably most striking in the
case of interaction with a circular polarized laser field. For
symmetry reasons, atoms interacting with a circular polar-
ized field do not generate harmonics of the incident radiation
frequency. However, the interaction of aligned molecules
(and also thin crystal8 and nanotubes)9 possessingN th-order
rotational symmetry with a circular polarized field brings
about HHG with unusual selection rules: the emitted high-
order harmonic frequencies are V=v ,slN±1dv ,
l =1,2, . . . ,where v is the fundamental frequency. TheslN
+1dth harmonics are polarized circularly as the incident field,
while theslN−1dth harmonics are polarized circularly in the
opposite way.

Recent theoretical studies carried out by Žďánská and her
co-workers10 for model benzene molecule at the laser wave-

length of 800 nm have shown that the emitted harmonics
possess the frequenciess6±1dv ,s12±1dv , . . ., also when the
laser polarization deviates from the “ideal” circular one by
about 5%. Another important result is that the nonlinear re-
sponse of the model benzene molecule is found to originate
mainly from the field-induced transitions between the bound
states, in accordance with the earlier analytical theory.11 The
fact that when a circularly laser field is applied, the HHG
spectra is obtained from bound-to-bound state transitions(of
the field-free molecule) andnot from bound-continuum tran-
sitions implies that the high-order harmonics arenot gener-
ated due to the semiclassical mechanism. In this mechanism,
the electron is released to the continuum with nearly zero
velocity, either via tunneling or multiphoton process, accel-
erated by the field, and eventually revisits the ionic core and
recombines while emitting high energy photons(harmonics).
In our case, where a molecule or a QD ring withCN,v sym-
metry interacts with circularly polarized light, the high-order
harmonics are generated by electronic excitations. The one-
electron effective potential calculations carried out for
benzene,8 the 2D one-electron calculations for benzene
where ionization was considered,10 and the treatment of the
problem on the density functional theory level,12 all show
that the generation of high-order harmonics when circularly
polarized laser is applied proceeds via bound-to-bound state
transitions.

The main purpose of this paper is to study the HHG spec-
tra for nanorings withC6v symmetry consisting of Ag QD’s
which interact with a circularly polarized light. In the ab-
sence of the electron-nuclei attraction potential terms, the
mechanism for generating high-order harmonics is expected
to be very different from that in atoms and molecules. Indi-
vidual QD’s behave as artificial atoms;13 being confined
within a few nanometers, electrons occupy quantized levels
analogous to atomic orbitals in ordinary atoms. Most elec-
trons are localized on individual QD’s. However, a small
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number of(“valence”) electrons are bound weakly enough to
become delocalized over the whole “artificial” molecule if
the overlap of their wave functions for adjacent QD’s is large
enough. The salient feature of such artificial atoms and mol-
ecules is that, unlike the natural counterparts, their electronic
properties can betunedcontinuously by varying the dot di-
ameter 2R and/or interdot spacingD.

In view of their tunable properties, assemblies of QD’s
represent ideal controllable systems for studying many as-
pects unexplored so far for strongly correlated electrons. The
numerical results presented here indicate that, already with
achievements of present nanotechnologies,14 (i) “artificial”
molecules(circular arrays of nanorings of QD’s) appear to be
more promising for higher harmonic generation than ordi-
nary molecules and(ii ) electron correlation effects play an
important role in such nanorings.

The remaining part of this paper is organized as follows.
In Sec. II we introduce the model of nanorings and describe
the method of solution. Results on HHG spectra both for QD
nanorings and for the benzene molecule are presented in Sec.
III. Effects of electron correlations on the HHG spectra are
discussed in Sec. IV in connection to scaling properties of
the investigated model. Some discussions and conclusions
make the object of the final Sec. V.

II. MODEL AND METHOD

In the present paper, we consider nanorings consisting of
N=6 QD’s. To describe the delocalized(“valence” or “p” )
electrons in a nanoring we shall use an extended Hubbard(in
chemists’ nomenclature, Pariser-Parr-Pople) model Hamil-
tonianH

H = − b0o
l=1

N

o
s=↑,↓

sal,s
† al+1,s + al+1,s

† al,sd + o
l=1

N

sUNl,↑Nl,↓

+ VNlNl+1d, s1d

where,asa†d denote creation(annihilation) operators for va-
lence electrons,Nl,s;al,s

† al,s, Nl ;Nl,↑+Nl,↓. Each QD is
modeled by a single “atomic” orbital. Individual QD’s are
characterized by the on-site Coulomb repulsion energyU
(related to self-elastance, or Coulomb blockade) and the en-
ergy of valence electronse, set zero in Eq.(1). QD’s are
coupled by electron tunneling(resonance integralb0) and
Coulomb interactionV (related to the mutual elastance). Ba-
sically, U ande depend onR, whereasb0 andV depend on
D.

There are several reasons for choosing six-site nanorings
described by the model Hamiltonian of Eq.(1). An important
aim of the present study is to compare harmonic generation
spectra of “artificial” molecules and ordinary cyclic mol-
ecules. Obviously, such a comparison is most relevant when
both kinds of systems can be described by similar models.
We have chosen presumably the most common example of
the latter class, the benzene moleculesN=6d; it belongs to
the class of cyclic polyenes, just the kind of molecules for
which the Pariser-Parr-Pople model was initially proposed
(see, e.g., Ref. 15). In principle, model calculations based on

Eq. (1) can be performed for a ring containingNel
=1, . . . ,2N−1 delocalizedspd electrons. However, since the
benzene molecule contains sixp electrons and six CH units,
a nanoring at half-fillingsNel=N=6d appears most interest-
ing. In fact, previous theoretical studies16–19 have also con-
sidered the model Hamiltonian of Eq.(1) in the half-filling
case and were able to successfully reproduce a variety of
experimental data in assembled QD’s of silver.14 In the
present paper, we shall also focus our attention to the same
type of QD’s.

Let us briefly describe the method to determine the pa-
rameters for Ag QD’s with 2R=2.6 nm.16,19 The interdot
separationd;D / s2Rd (measured between QD centers) has
been continuously varied in the range 1.10&d&1.85, allow-
ing a wide tuning of various physical properties.14 This
is mainly due to the exponential behavior found for
b0f~exps−5.5ddg,17 analogous to polyenes.20 For d=1.2, a
valueb0=0.5 eV has been extracted by fitting experimental
data.16 For Ag QD’s with 2R=2.6 nm examined here, Cou-
lomb blockade experiments, using scanning tunneling mi-
croscopy(STM), led to U=0.34 eV, in agreement with the
estimateU=e2/ s«Rd deduced by assuming a spheric Ag core
in a medium of dielectric constant«.2−3.14,21

Intuitively, one expects an intersite Coulomb repulsionV
weaker than the on-site repulsionU. To estimateV andU we
have used the same method developed by two of us,19 com-
puting the mutual- and self-elastances, respectively deduced
numerically by using formulas of classical electrostatics22 for
two identical spheres. Let us note also note that in Eq.(1) we
have assumed an ideal situation, where the model parameters
are site independent.23 This can be considered a reasonable
first-order approximation in view of the narrow size distribu-
tions s,5%d in the arrays of Ag QD’s assembled by Heath’s
group.14

To determine the model parameters for benzene, one can
fix b0 to its “spectroscopic” valuesb0=2.5 eVd and adjustU
andV to fit eight quantities, namely the experimental excita-
tion energies3B1u,

3E1u,
1B2u,

3B2u,
1B1u,

3B2g,
1E1u, and

1E2g (D6h notation).24 By choosing U=4.5 eV and V
=1.3 eV one can reproduce remarkably wellall the afore-
mentioned energies;25 the highest error does not exceed
0.5 eV. Noteworthy, this accuracy is comparable to that of
ab initio quantum chemical computations superseding nowa-
days the semiempirical Pariser-Parr-Pople model.

Below, we shall present results on the harmonic genera-
tion spectrum of a six-site nanoring placed in a strong laser
field Hfield assumed to be circularly polarized. So, the dynam-
ics of the system is governed by the total time-dependent
HamiltonianHTstd

HTstd = H + Hfieldstd = H − P ·Estd, s2d

whereP is the electric dipole operator

P = − ueuro
l

NlFx̂ cos
2pl

N
+ ŷ sin

2pl

N
G . s3d

Here,e denotes the elementary charge andr stands for the
ring radius(r=D for N=6). For a circularly polarized laser
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radiation, the electric field readsEstd=E0sx̂ cosvt
+ ŷ sin vtd.

In our current study we ignore losses due to ionization of
the array of quantum dots. In atoms, for instance, it is known
that ionization starts to be relevant from intensities of
1014 W/cm2 on.26 The relevant intensities for quantum dots
are not known, but we assume that even at the highest inten-
sities we use here(close to 1013 W/cm2) the losses due to
ionization are not crucial.

To compute the exact harmonic generation spectra, the
knowledge of the eigenstatesC j of H, Eq. (1), is necessary
to calculate the matrix elements of the dipole operatorP.
However, the time propagation is very time consuming when
using all eigenstatesC j (see the discussion at the end of this
section). Significant gain can be obtained by exploiting the
spatial symmetry[point groupD6h (Ref. 24)] and the fact
that both the total spin and total spin projection are good
quantum numbers. In this paper we shall assume that the
initial state of the the ring is its ground stateCG, which is a
singlet of symmetryA1g. Because the dipole operatorP does
not change the total spin, only eigenstates which are singlets
are needed for propagation. This results in a reduction of the
dimension of the Hilbert space from 924 to 175.27 The spatial
symmetry of these 175 singlet states is as follows: 22A1g
states, 10A2g states, 16B1u states, 13B2u states, 60E2g
states, and 54E1u states. One can easily show that the dipole
operator P possessesE1u symmetry, and therefore only
eigenstatesC j and Ck whose product transforms according
to an E1u irreducible representation yields nonvanishing di-
pole matrix elements. In view of the multiplication table of
the groupD6h, couplings via dipole transition are possible
only between two eigenstates according to the following:

A1g 3 E1u = E1u,

A2g 3 E1u = E1u,

B1u 3 E2g = E1u,

B2u 3 E2g = E1u,

E2g 3 E1u = B1u + B2u + E1u. s4d

Consequently, the coupling scheme

A1g ↔ E1u ↔ A2g

l
B1u ↔ E2g ↔ B2g

s5d

holds for the transitions within our system coupled by the
dipole operator.

One should note that Eqs.(4) and(5) indicate dipole tran-
sitions allowed by thespatial symmetryD6h alone. Fortu-
nately, a further reduction of the total number of eigenstates
which contribute to the HHG spectra is possible. This is due
to a special property of the model Hamiltonian of Eq.(1) in
the half-filling case considered in the present paper, namely,
the charge conjugation(also termed particle-hole) symmetry;
see, e.g., Refs. 28, and references cited therein. The eigen-

states ofH are either even or odd with respect to the charge
conjugation transformation28

al,s → al,s
† and al,s

† → al,s. s6d

We shall denote this by an extra superscript “+” or “−,”
respectively. With the aid of this index for charge conjuga-
tion one can further specify the eigenstates; there are 18A1g

+ ,
4 A1g

− , 2 A2g
+ , 8 A2g

− , 3 B1u
+ , 13 B1u

− , 9 B2g
+ , 4 B2g

− , 22 E1u
+ ,

32 E1u
− , 36 E2g

+ , and 24E2g
− eigenstates. As one can easily

demonstrate if one makes use of Eq.(3) for P given above,
the dipole operator is oddsP→−Pd with respect to the
charge conjugation, Eq.(6). Consequently, dipole transitions
are allowed only between eigenstates ofoppositeparities. In
view of these considerations, the coupling scheme(5) can be
further detailed and breaks down into two independent
schemes

s18dA1g
+ ↔ s32dE1u

− ↔ s2dA2g
+

l
s13dB1u

− ↔ s36dE2g
+ ↔ s4dB2g

−

s7d

and

s4dA1g
− ↔ s22dE1u

+ ↔ s8dA2g
−

l
s3dB1u

+ ↔ s24dE2g
− ↔ s9dB2g

+ .

s8d

Above, the entries in parentheses specify the numbers of
eigenstates with a certain symmetry. A straightforward analy-
sis based on Eqs.(7) and (8) reveals that there exist two
blocks containing 105 and 70 eigenstates, respectively which
do not interact to each other via dipole transitions. By noting
furthermore that the ground state is anA1g

+ state, one can
conclude that, out of a total number of 924 eigenstates, only
105 eigenstates[namely, those entering Eq.(7)] contribute to
the harmonic generation spectrum of a six-QD nanoring in
the ground state. These 105 eigenstates are coupled among
themselves according to Eq.(7). A further interesting point
revealed by our numerical calculations is that the states of
either block whose couplings are allowed by symmetrydo
couple indeed; so, there areno other transitions forbidden,
e.g., dynamically.

To perform time propagation, we have employed the
st ,t8d method. A comprehensive description of this method
can be found in the reviews of Refs. 29. Here, we restrict
ourselves to present a few relevant details. By using the
st ,t8d method, one can get the solution of the time-dependent
Schrödinger equationuCstdl avoiding the complication aris-
ing from the fact that the Hamiltonian is time dependent and
one has to consider time-ordering operators.30 The st ,t8d
method enables us to express the time evolution operator as

Ûst← t8d=expf−iHTst8dtg, where HTst8d=−i ] /]t8+HTst8d.
The time-dependent wave function is given byCstd=fÛst
← t8dCst=0dgt8=t, whereCs0d is the ground eigenstate of the
field-free HamiltonianH as defined in Eq.(1). Cstd can be
expanded as a linear combination of the quasienergy Floquet
statesFestd
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uCstdl = o
e

ae exps− ietduFestdl, s9d

where Festd=Fest+Td are the time-periodicsT;2p /vd
eigenfunctions of the Floquet HamiltonianHTstduFestdl
=euFestdl. The expansion coefficientsae are determined by
specifying the initial state, taken here to be the ground state
of the field-free system

uCGl = uCst = 0dl = o
e

aeuFest = 0dl. s10d

The HHG spectrum is associated with thenth components of
the time Fourier transform of the two quantities

]2

] t2
kCstduP±uCstdl

~
]2

] t2KCstdUo
l

Nl expS±
2pl

N
iDUCstdL .

Here, P± ; Px± iPy, the cartesian components of the dipole
operatorP being expressed by Eq.(3), and the subscript
+s−d refers to harmonics of ordersn=6m+1 sn=6m−1d
which are circularly polarized as(opposite to) the circularly
polarized incident radiation. Their intensitiesI±

snd can be ex-
pressed as

I±
snd ~ n4Uo

e
E

0

T

dtuaeu2exps− invtdkFestduP±uFestdlU2

.

s11d

One should note that, according to Eq.(11), there is no in-
terference between the contributions of the different Floquet
statesFestd.

A virtue of the st ,t8d method is that it allows us to use a
small number of Floquet channelsNc (typically, Nc=7), even
when the field intensity is very large. For rings with six sites
and six electrons, the dimension of the Hilbert space isD
=924, and the corresponding 924 eigenstates can and have
been computed without difficulty by means of exact numeri-
cal diagonalization. Nevertheless, by using all these 924
eigenstates, the time propagation is very time consuming.
For example, even when a small number of Floquet channels
is taken into account in the numerical calculations, the con-

struction of the time evolution operatorÛfmt← sm−1dtg,
wheret is a small time step, requires about

sDNcd3 . H3 3 1011 for D = 924,Nc = 7,

4 3 108 for D = 105,Nc = 7
s12d

numerical operations. However, in order to construct
Ust←0d one should calculate the productPm=1

M Ufmt
← sm−1dtg, whereM =T/t andT=2p /v. This analysis ex-
plains why the computation time for propagation is very
large even when an efficient method as thest ,t8d method has
been used, and why a reduction in the number of eigenstates
used in the numerical calculations is most desirable.

III. RESULTS FOR HHG SPECTRA

Our computed results on the HHG production are col-
lected in the spectra depicted in Figs. 1 and 2. The full circles
shown represent the results obtained from the full calcula-
tions. In these calculations the contributions of all the Flo-
quet states have been included. For the sake of comparison,
we have also computed the HHG spectra assuming that the
photoinduced dynamics is controlled by a single quasienergy
Floquet eigenstateFQEstd. This stateFQEstd has been chosen
as the Floquet stateFemax

std of quasienergyEQE=emax which

FIG. 1. High harmonic genera-
tion spectra for nanorings consist-
ing of six Ag quantum dots(intra-
dot separationd=1.3) interacting
with a circularly polarized light.
Full circles are exact results, open
squares correspond to a single
Floquet state approximation(see
the main text).
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has the largest overlap with the field-free ground stateCG,
uaemax

u;maxeuaeu=maxeukFest=0d uCGlu [see Eq.(10)]. With
a single state, the wave functionCstd takes on the appear-
ance Cstd=exps−iEQEtdFQEstd. The corresponding single-
state HHG spectra are shown as open squares in
Figs. 1 and 2.

Although the individual intensities of the high harmonics
are not quantitatively reproduced by this single-state ap-
proximation, the latter does reproduce the overall appearance
of the exactly computed spectra, for instance, the plateaus.
This is very interesting, since in high intensity fields the
initial field-free state populates many Floquet states.31

In Figs. 1 and 2, the HHG spectra are presented for the
circular QD array(interdot distanced=1.3) and for benzene
model Hamiltonian, respectively, when the laser frequency is
held fixed (photon energy"v=0.4 eV) and the maximum
field amplitudee0 is varied. The laser intensity is given by
I0 sW/cm2d=233.531016e0

2 (a.u.), where the factor 2 is
due to the use of circularly polarized light. For example,
when e0=0.015 a.u. and the field intensity is equal to 7.9
31012 W/cm2, an extended plateau in the HHG spectra is
obtained for the QD nanorings, whereas, practically, no high-
order harmonics are obtained from benzene at the same laser
intensity. As one can see for the QD nanorings, high-order
harmonics are obtained for fields which are much weaker
than the fields which have to be used for benzene.

In both cases(i.e., QD’s and benzene molecule) the HHG
spectra satisfy the selection rules mentioned in Sec. I:
the emitted high-order harmonics are6±1,12±1,
18±1, . . . ,6m±1, . . .. Another interesting result is that the
HHG spectra obtained from QD arrays(see Fig. 1) consist of
two plateaus(actually even more, but only two are quantita-

tive significant). Such phenomena have been also reported
for atoms when the relative phase between two color lasers
has been varied.32 These phenomena can be explained clas-
sically. The interpretation to our case is that the extended
plateau(i.e., two or more plateaus) results from the different
possible trajectories of the electrons which reach one of the
sites(QD’s or CH units in the simple model of benzene) with
a maximal velocity. If, for example, the high-order harmon-
ics results from the revisit of the electrons at their original
site, only one plateau might be obtained. The study of a
classical mechanism of this kind is, however, beyond the
scope of the present work.

IV. SCALING AND ELECTRON CORRELATION EFFECTS
ON HHG

In the caseU=V=0, Eq. (1) describes a periodic system
of free electrons characterized by wave functions of plane
wave type. Then, one can easily see from Eqs.(1) and (2)
that the time-dependent Schrödinger equation of Hamil-
tonian HTstd leads to a harmonic generation spectrum inde-
pendent on the interdot distanced if the field strength and the
laser frequency are scaled according to the following trans-
formation:

e0sdd = e0,refjsdd/hsdd, vsdd = vrefjsdd, s13d

wheredref, e0,ref, andvref are reference parameters, and the
scaling parametersj andh are defined by

jsdd = b0sdd/b0sdrefd, hsdd = d/dref. s14d

This invariance of the spectrum is exact; it can be proven
mathematically for the free electron systemsU=V=0d. Be-

FIG. 2. High harmonic generation spectra for a benzene molecule modeled by Hamiltonian(1). The symbols have the same meaning as
in Fig. 1.
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cause the plane waves also satisfy the Hartree-Fock
equations,33 one can relate the aforementioned invariance to
the lack of electron correlations. One can check straightfor-
wardly that this invariance does not hold anymore for the
correlated electron system described by the Hamiltonian of
Eq. (1) with U ,VÞ0. We have exploited this scaling to evi-
dence electron correlation effects. Namely, we have per-
formed exact calculations for variousd values with the pa-
rameters scaled according to Eqs.(13) and (14), and
inspected thed dependence of the intensity of the various
harmonicsI snd; the magnitude of the deviation from a hori-
zontal straight line is a direct measure of electron correla-
tions.

In the calculations reported here we have chosen a refer-
ence valuedref=1.1, i.e., corresponding to QD’s sufficiently
close to each other, for which the electronic bandwidth 4b0
is sufficiently larger thanU andV, and electron correlations
are weak(see, e.g., Ref. 19). The reference laser frequency
vref has been chosen to be resonant with the highest intensity
dipole transition from the ground state. Finally, the reference
field value was set toe0,ref=Rdref mevref

2 , whereme denotes
the free electron mass. Note thatd0=e0,ref/ smev

2d is the
quiver length of the driven electron. By takingd0/2=D we
assume that the external field enforces the electrons to get
from one QD to its next neighbor.

In Fig. 3 we present results demonstrating that correlation

effects are important for harmonics belonging both to the
first and the second plateaus of the HHG spectra. Note that
(17, 19) and (53, 55) are pairs of harmonics located in the
first plateau(see Fig. 1), while (143, 145) and(179, 181) are
pairs of harmonics from the second plateau. As one can see,
the electron correlation effects are largest ford=1.5 in the
first case and ford=1.3 in the second case. For clarity, in
Fig. 4 we also show the complete HHG spectrum with and
neglecting electron correlations at an interdot separationd
=1.5.

V. DISCUSSION AND CONCLUSION

The generation of high harmonics by quantum dot nanoar-
rays is a completely new field, and the numerical results
reported here represent the first steps in this direction. We
hope, of course, that our study will stimulate also experimen-
tal work in this field. Much remains to be done from the
theoretical side in this area, including even a better under-
standing of certain features of the HHG spectra reported(but
not discussed) in this paper. The generation of very high
harmonics from quantum dot nanorings of the type consid-
ered here might be intriguing at a first sight: this effect seems
to be counterintuitive, because photons of high-order har-
monics have energies much larger than bound state energies,
and the continuum is excluded from model(1) of nanoring.

FIG. 3. The impact of correlation effects on high-order harmonics belonging to the first plateau[the pairs of(17, 19) and (53, 55)
harmonics] and to the second plateau[the pairs of(143, 145) and (179, 181) harmonics] of the HHG spectra as a function of the interdot
separationd. Neglecting electron correlations, the intensityI snd does not depend ond and is represented by a horizontal line. For each
harmonic, the deviation of the points(full calculations, i.e., including electron correlations) from the corresponding horizontal line(results
without correlations) is a measure of the strength of electron correlations. In each panel, a given harmonic has its own horizontal line(solid
or dashed) and point style(filled or opened circles, respectively), both specified in inset.
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To qualitatively understand the HHG, we refer to the mecha-
nism discussed in effectively bound systems, first proposed
for a two-level model34 and generalized later forN-level
models with dynamical symmetry.11 According to the find-
ings of these references, it is not the electron excitation en-
ergy[in our case, at most 4b0 within a single-particle picture,
see Eq.(1)] which is transformed into the high-order har-
monic energies; rather, the energy of interaction between the
nanoring and the laser field[,rueuE0, see Eqs.(2) and(3)] is
converted into the energiessn"vd of the emittednth-order
harmonics. Based on these considerations, a cutoffnc

nc <
2re0

"v
s15d

can be obtained for the order of the highest harmonic of the
spectrum.11 Equation(15) yields the valuesnc=17, 35, and
53 for the parameters of of the upper, middle, and lower
panels of Fig. 1, respectively.35 Roughly, these values repre-
sent,1/3 of those obtained by inspecting the three panels of
Fig. 1. Nevertheless, this agreement is fairly good if one
takes into account that the prediction of Eq.(15) is based on
the treatment ofoneelectrons overN sites,11 which ignores
both blocking effects due to Pauli’s principle[that should be
considered even within a Hartree-Fock approach of model
(1) of six electrons over six sites] and correlation effects,
whose importance has been emphasized(see Sec. IV). Note-
worthy is especially the stronge0 dependence ofnc displayed
by the panels of Fig. 1[in very good accord tonc~e0 of Eq.
(15)] which rules out any interpretation of the harmonic gen-
eration via transition between energy levels of the nanoring.

We believe that the message from the results reported in
this work is clear. It comprises two aspects. First, from a
pragmatic perspective, nanoarrays of QD’s appear more
promising for high harmonic generation than ordinary mol-
ecules, as evidenced by the comparison between HHG spec-

tra of QD nanorings and the benzene molecule(see Sec. III).
Unlike ordinary molecules, in view of tunability, nanoarrays
of the kind we studied here, similar to those already
fabricated,14 can be designed to enhanceselectivelycertain
desired harmonics(see Fig. 3). Secondly, from the standpoint
of basic research, it is noteworthy that electron correlations
can significantly enhance the generation of high-order har-
monics in both plateaus. Most encouraging from both points
of view, the correlation-driven enhancement appears more
pronounced in the second plateau, i.e., at higher frequencies.

Previously, HHG selection rules have been demonstrated
analytically for systems consisting of a single electron(or
noninteracting electrons) in an external potential with an
Nth-fold rotation axis of symmetry interacting with circularly
polarized laser radiation.8,9 The present numerical results
show that these selection rules are more general; they also
hold for thecorrelatedelectron systems investigated in this
work. This indication is of sufficient importance to motivate
further attempts to proof selection rules analytically for more
realistic cases of(strongly) correlated electron systems.

In addition, there is an interesting technical feature we
have encountered in this study. To the best of our knowledge,
we are not aware of a similar behavior reported previously.
The part played by spatial symmetry and spin conservation
in drastically reducing computational efforts in molecular
physics is too well established to deserve further discussion.
What we found is related to a supplementary decrease of the
set of needed eigenstates due to the charge conjugation sym-
metry, but this issue does not simply reduce to this invari-
ance alone. For a better understanding of the special role of
the charge conjugation for the presently investigated prob-
lem, let us discuss linear response versus nonlinear response.
The coefficient of linear optical absorption in the(field-free)
ground stateCG can be expressed by Kubo formula as(m
denotes a Cartesian coordinatex or y)36

FIG. 4. The impact of electron
correlations on the high harmonic
generation spectra for interdot
separationd=1.5. Full circles are
results of full calculations(i.e., in-
cluding electron correlations),
crosses are obtained without
correlations.

HIGH-HARMONIC GENERATION BY QUANTUM-DOT NANORINGS PHYSICAL REVIEW B69, 245311(2004)

245311-7



amsvd ~ o
j

ukCGuPmuC jlu2dsEj − EG − vd.

The usual, well-known, selection rules for dipole transitions
apply to the setC j of eigenstates contributing to the linear
optical absorption. In particular, since the ground stateCG is
of A1g symmetry, only statesC j with E1u symmetry[see Eq.
(5)] contribute toam,nsvd. In the case of the extended Hub-
bard Hamiltonian employed here, an additional symmetry
exists, the charge conjugation invariance(e.g., Refs. 28, and
references cited therein). This further reduces the number of
contributing statesC j: since the ground state possesses even
parity with respect to charge conjugation and the dipole op-
eratorP is odd (see Sec. II), only odd states contribute to
am,nsvd. Thus, all the eigenstatesC j which contribute to the
linear absorption haveE1u

− symmetry [see Eq.(7)]. Let us
now turn to nonlinear response. As revealed by the analysis
of Sec. II, a set of 175 singlet eigenstates can contribute to
the HHG spectrum by accounting for spatial symmetry
alone. As found for linear response, this set can be also sub-
stantially diminished by considering the charge conjugation
invariance. However, the effect turns out to be more subtle in
the case of nonlinear response. The set of 175 eigenstates can
be further split into two disjoint blocks of(105 and 70)
eigenstates[see Eqs.(7) and (8)] which do not interact via
dipole among themselves. What differs from the case of lin-
ear response is the fact that each of these two blocks contains
both even and odd parity eigenstates with respect to charge
conjugation. It is worth emphasizing that the selection rules
expressed by Eqs.(7) and(8) represent a synergetic effect of
the two aforementioned symmetries, i.e., spatial symmetry
and charge conjugation.

To avoid confusions let us stress that in this paper we
have discussed two types of selection rules:(i) selection
rules indicating that the6±1,12±1, . . .,harmonics are the
only ones appearing in the nonlinear spectrum and(ii ) selec-
tion rules (called synergetic here) for the symmetry of the
eigenstates contributing to the HHG spectrum. Both are im-
portant, although they play different roles. The former are
very important to understand the HHG spectrum. The latter
cannot be employed to predict which harmonics appear(or
do not appear) in the HHG spectrum, but they can be incor-
porated in the numerical implementation to reduce drasti-
cally the computational effort[see Eq.(12)]. While useful in
all situations, such selection rules are especially desirable for
easing numerical studies on nonlinear response, which are
well known to be time consuming in general. This aspect
becomes particularly relevant when attempting to investigate
larger systems.

In conclusion, we have presented in this paper a number
of results demonstrating that nanorings of Ag QD’s possess
interesting HHG spectra. We hope that these results, al-
though preliminary, will encourage more theoretical and ex-
perimental studies of high harmonic generation from QD ar-
rays.
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