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We compute the electron diffusion thermopower at compressible quantum Hall states corresponding to even-
denominator fractions in the framework of the composite-fermion approach. It is shown that the deviation from
the linear low-temperature behavior of the thermopower is dominated by the logarithmic temperature correc-
tions to the conductivity and not to the thermoelectric coefficient, although such terms are present in both
quantities. The enhanced magnitude of this effect compared to the zero-field case may allow its observation
with the existing experimental techniques.@S0163-1829~96!52644-5#

The thermoelectric effect in metals and semiconductors
gives valuable information about the underlying electron-
transport processes. A field of a high current activity is the
thermoelectric effect in quasi-two-dimensional~2D! hetero-
structure inversion layers. These systems are characterized
by a nearly 2D metallic conduction with very low Fermi
energiesEF;100 K compared to ordinary metals, which re-
sults in a large electron diffusion thermopower. This quantity
is experimentally accessible at low enough temperatures in
contrast to most of the other parameters related to the ther-
modynamic properties of 2D electronic systems, such as the
electronic specific heat, which are hardly measurable because
of the dominant lattice contribution.

In the presence of an electric fieldEW and a temperature
gradient¹W T the electric current can be written in terms of
the conductivitys i j and the thermoelectric coefficientsh i j
tensors,

Ji5s i j Ej1h i j¹ jT. ~1!

The normally measurable quantity is the thermopower tensor
Si j52s ik

21hk j , which relatesEW and¹W T providedJW50.
In the presence of a quantizing magnetic field the

GaAs/AlxGa12xAs heterostructures demonstrate the variety
of phenomena known as the quantum Hall effect. The corre-
sponding behavior of the electron diffusion thermopower
Si j as a function of the filling factorn52pne /B is quite
complicated. Atn5N1 1

2 the theory of noninteracting elec-
trons predicts universal peaks of the diagonal thermopower
~Seebeck coefficient! Sxx5 ln2/e(N11/2) given by the en-
tropy per particle for the half-filledN11st Landau level1

~here and hereafter we assume the carrier chargee to be of
either sign!. The thermopower of the integer quantum Hall
states (n5N) vanishes atT50, as the entropy of any num-
ber of completely filled Landau levels is zero, and demon-
strates the thermally activated behavior for smallT.

In the presence of impurities the thermopower tensor de-
velops off-diagonal components increasing in magnitude
with the strength of disorder for partially occupied Landau
levels, which are now broadened into bands. TheSxx
maxima at half-integer filling factors, on the contrary, are
predicted to reduce by a factor dependent only on the ratio
betweenT and the Landau band width.2 It implies, in par-

ticular, that theSxx maxima increase approximately linearly
with the magnetic fieldB asn decreases.

The experimental data obtained atn.4 agree reasonably
well with the above theoretical predictions. However, at
small n, where the system is believed to be in the fractional
quantum Hall~FQHE! regime dominated by the electron in-
teractions, both longitudinal and transverse components of
the thermopower behave qualitatively differently.

In the insulating phases in the vicinity ofn51/3 and 2/7
the diagonal thermopower diverges atT→0 suggesting the
spectrum gap.3 One might also expect that the zero-entropy
argument can be applied to incompressible quantum Hall
states at odd-denominator fractions which demonstrate a
vanishing diagonal thermopower. At present there are no
firm analytical results available for the FQHE states.

In the present paper we analyze the behavior ofSxx(T) at
primary even-denominator fractions (n;1/F, where
F52,4, etc.! which correspond to compressible states with
no gap. The theoretical framework for our calculations is
provided by the theory developed by Halperin, Lee, and
Read4 which explains the metal-like features observed at
these fractions5 as the formation of the Fermi surface of a
new sort of fermionic quasiparticles named composite fermi-
ons ~CF’s!.

At T.0.1 K the measured thermopower is dominated by
phonon drag.6–8 The phonon drag contribution toSxx scales
with temperature approximately asT3.560.5 and acquires
equal values atn with the same even denominator, such as
1/2 and 3/2 or 1/4 and 3/4, which agrees reasonably well
with the recent theoretical estimate based on the picture of
the 2D CF coupled to phonons in the substrate.8

At low enoughT the phonon drag term dies off and one
expects the diffusion contribution to take over. To date, the
low-temperature measurements which revealed the approxi-
mately linear behavior ofSxx(T) were only reported on 2D
hole systems.6,7

The features exhibited bySxx at filling fractions
n5(2N11)/(4N1262) in the range from 1/3 to 2/3 are
strikingly similar to those at high half-integern values.7 This
observation lends support to the CF picture where on the
level of the mean-field description those fractions correspond
to half-filled effective Landau levels of CF (n*5N1 1

2) in
the residual fieldB*5B22pFne at F52.4
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The data at the primary fractionsn51/2 and 3/2 were
interpreted in Ref. 6 by means of the standard Mott formula
for noninteracting fermions at zero field,

hxx52
p2T

3e S ds~E!

dE D U
E5EF

~2!

where the energy-dependent Drude conductivity
s(E)5(2pe2/h) N(E)D(E) is a product of the density of
statesN(E) and the diffusion coefficientD(E) determined
by the transport timet tr(E);Ep, which results in the clas-
sical Drude thermopower,

Sxx
~0!5

p2T

3e S dlns~E!

dE D U
E5EF

5
p2~p11!T

3eEF
. ~3!

In the zero-field case formula~3! was conventionally applied
to ordinary electrons which undergo scattering from remote
as well as background impurities and from the surface
roughness.9 Assuming the applicability of the Matthiessen’s
rule it was shown in Ref. 9 that all together these three
mechanisms lead to a fairly complicated dependence of the
exponentp on electron densityne . At very low densities the
scattering by remote ionized donors dominates and yields
p53/2. The results obtained in Ref. 9 predict that at higher
ne;131011 cm22 the overall effect of the three mechanisms
can be approximated byp'1 while at ne'731011 cm22

the exponentp was found to change sign.
In the framework of the CF theory the only mechanism

considered so far was the effect of ionized donors placed on
a distancej;102 nm apart from the 2D electron gas.4 Under
the mapping of electrons atn;1/F to the CF the Coulomb
impurities become sources of the spatially random
static magnetic field ~RMF! correlated as
^Bq*B2q* &54p2F2nie

22jq, whereni stands for the impurity
concentration.

The RMF scattering appears to be essentially more
efficient than the ordinary potential one and leads to a
lower value of the exponentp. Namely, the result of the
lowest Born approximationt tr

B(E)5jA2Em3/2/pF2ni ~Ref.
4! suggests that at low enoughne the exponentp might
be close to 1/2. A more systematic treatment of the RMF
problem beyond the lowest Born approximation10 gives
t tr(E)5(2jAm/A2E)exp(pF2ni /Em)K1(pF2ni /Em), from
which one readily obtains an even smaller valuep'0.13.

In the above discussion of the CF thermopower we ne-
glected the effects of the CF gauge interactions which de-
velop beyond the mean-field approximation.4 The available
experimental data seem to suggest that the effect of these
interactions onSxx(T) is relatively small in spite of the ab-
sence of any small parameter in the present CF theory.
Namely, the low-temperature value of the ratio
Sxx(3/2)/Sxx(1/2) was found in Ref. 6 to be close to
EF(1/2)/EF(3/2)5A3 in a good agreement with the mean-
field picture of free CF with the effective massm*;n21/2

forming the metal-like state characterized by the Fermi mo-
mentumkF5@4pne(12@n#/n)#1/2 on the@n#11st partially
occupied Landau level~however, the validity of this inter-
pretation forn.1 was recently questioned in Ref. 11!.

Given the complexity of the problem and the previous
reports of non-Fermi-liquid–type features revealed by the
resistivity measurements atn51/2 and 3/2~Ref. 12! the is-
sue of interaction corrections to the classical Drude ther-
mopower~3! deserves further theoretical analysis.

We note at this point that even in the zero-field case the
effects of the electron-electron interactions on the 2D ther-
mopower remain only poorly understood. Therefore as a pre-
lude to our discussion we summarize the results obtained in
this field so far.

Following the theoretical predictions of the logarithmic
temperature corrections to the 2D electrical conductivity due
to both the effects of weak localization and Coulomb inter-
actions~see, for example, Ref. 13 and references therein! a
similar effect on the thermopower was discussed in Ref. 14.
It was argued in Ref. 14 that not only the conductivitysxx
but also the thermoelectric coefficienthxx receive lnT cor-
rections. This prediction was refuted in a number of subse-
quent publications where it was shown that neither weak
localization effects15 nor interference between Coulomb in-
teractions and impurity scattering16 produce such corrections
to the Peltier coefficientP related toh by the Onsager rela-
tion P5h/T. It was pointed out in Refs. 15 and 16 that the
calculation of P i j5Im(1/v)*0

`dteitv^@Qi(t),Jj (0)#& as a

correlation function of the heatQW 5(pW /m)e and the electric
currentJW5e(pW /m) operators requires an application of the
finite- temperature formalism or an accurate analytic con-
tinuation from imaginary frequencies which had not been
done in Ref. 14. As a result, the zero-field diagonal ther-
mopower was predicted to receive lnT corrections solely
from sxx . To the best of our knowledge an experimental
confirmation of such terms remains an open question.

Recently strong although sample-dependent lnT terms in
the resistivity atn51/2 and 3/2 were reported.17 As we al-
ready mentioned, in the CF picture the impurity scattering is
translated to the RMF problem, which belongs to the unitary
ensemble characterized by broken time-reversal symmetry.
Therefore the localization effects in the RMF are strongly
suppressed which rules out lnT localization corrections.4,18

On the other hand, it was shown in Ref. 19 that the interfer-
ence between CF gauge interactions and impurity scattering
indeed leads to lnT terms which are enhanced by the nonuni-
versal factor as compared to the well-known exchange cor-
rection Dsxx5(e2/ph) (lnTttr) due to the Coulomb
interaction13 which is known to be independent of the mag-
netic field.20

In order to estimate quantum corrections to the classical
CF thermopower~3! and to facilitate a forthcoming calcula-
tion of Dh i j

CF we remind a reader of the basic notions of the
CF theory, which was recently used to computeDs i j

CF.19

First we recall that the free CF Green function in the
presence of disorderGR(A)(E,pW )51/E2p2/2m6 i /2t is de-
termined by the~formally divergent! RMF scattering rate
1/t. It also shows up in the particle-hole diffusion amplitude,
which develops a pole~heree5E2EF):

G~e,v,q!5
1

2pN~E!t2
1

iv2D~E!q2
, ~4!

provided thate(e1v),0.18 The gauge invariant physical
observables are, however, independent oft.
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It was pointed out in Ref. 19 that in the CF theory the
diffusive regime ~4! extends up to momentum transfers
q;B1/2 while the energy transfers remain small (v,1/t tr).
The diffusive behavior at largeq can be readily seen in the
original electron representation where it is due to electron
hopping between adjacent Larmor orbits being;B21/2 dis-
tance apart.

In Ref. 19 we showed that the main negative temperature
correction to the CF magnetoconductivity tensors i j

CF comes
from the transverse vector gauge coupling mediated by the
propagator~hereE is the energy of the CF emitting the fre-
quencyv gauge boson!:

D'~v,q!5
1

2 iN~E!D~E!v1xqq
2 , ~5!

where xq5@1/12p2N(E)#(1/61 1/F2)1@1/(2pF)2#Vq is
the CF diamagnetic susceptibility determined by the form of
the pairwise electronic potentialVq .

In contrast to the zero-field case20 this correction com-
puted in the first order inD'(v,q) depends on the effective
magnetic fieldB* according to the relations

Dsxx
CF~B* !5~12~Vc* t tr!

2!Dsxx
CF,

Dsxy
CF~B* !52~Vc* t tr!Dsxx

CF. ~6!

Keeping the explicit dependence onEF one can write
Dsxx

CF in the short-range case (Vq'V052pe2/k, wherek is
a screening constant! as

Dsxx
CF5

2e2

ph
~ lnTt tr!ln@N~EF!D~EF!# ~7!

whereas in the case of the unscreened Coulomb potential
(Vq52pe2/q) the double-logarithmic terms occur:

Dsxx
CF5

2e2

ph
~ lnTt tr!@ ln@N~EF!D~EF!#1 1

4 lnTt tr#, ~8!

which reduce the correction~8! with respect to~7! by a fac-
tor of 2 in the range of temperatures
EF@1/(EFt tr)

3#,T,1/t tr
@at lowerT the divergency in Eq.~8! is cut off#. Because of
the extra logarithm ofN(EF)D(EF) which equalskFl /4p at
B*50 the corrections~7! and~8! are stronger in samples of
higher density and/or mobility.

It was also argued in Ref. 19 that the higher-order correc-
tions do not alter the above lnT behavior ofDs i j

CF, which
exhibits the diffusive character of the low-energy CF dynam-
ics.

The physical magnetoresistivity tensor is related to the CF
magnetoconductivity tensor as follows:4

r i j5s i j
215~sCF! i j

211
2h

e2 S 0 21

1 0 D , ~9!

while the physical tensor of thermoelectric coefficientsh i j is
expected to be simply equal toh i j

CF.
On the basis of relation~9! we concluded in Ref. 19 that

in contrast to the case of the Coulomb interacting 2D elec-
tron gas the CF Hall conductivity acquires nonzero lnT cor-

rections which lead to the minima of the diagonal resistivity
rxx as a function ofn in the vicinity of the primary even-
denominator fractions. The temperature dependence ofrxx at
these minima exhibits the lnT behavior whereas the associ-
ated Hall resistivityrxy shows no such term.

Formula ~9! also allows one to understand the well-
pronounced symmetric V-shaped maxima ofSxx(B* ) ob-
served atn51/2 and 3/2.6,7 Namely, by using Eq.~9! and the
classical Drude-likehxy(B* )5@Vc* t tr/11(Vc* t tr)

2#hxx(0)
with hxx(0) given by Eq. ~2! one obtains
Sxx(B* )2Sxx(0)52@2p2(p11)/3# @EFTt tr

2/n* # in the vi-
cinity (Vc* t tr,1) of the primary fractions.

Now we return to the question of gauge interaction cor-
rections toh i j

CF proceeding along the lines of the formalism
developed in Ref. 16 for the zero-field case of Coulomb in-
teracting electrons. A similar procedure yields the leading
correction due to the transverse gauge interactions (f e is the
Fermi distribution function!:

Dhxx52
et2

2 E dvde
e

T

] f e

]e
~2 f e1v21!N2~E!D2~E!

3ImE dqW

~2p!2
D'~v,q!G~e,v,q!, ~10!

which comes from small energy (vt,1) transfer processes.
It can be readily seen that expression~10! vanishes unless

one expands the result of theqW integration in odd powers of
e/EF . This is an example of the general rule that the diffu-
sion thermopower must vanish in the limit of a zero Fermi
surface curvature when the particle-hole symmetry gets re-
stored.

In the conventional case of Coulomb interacting
electrons16 the integral overqW is independent ofe and the
expression similar to Eq.~10! vanishes, so that the only con-
tribution to the electron thermopower

DSxx5Sxx
~0!S 2

Dsxx

sxx
1

Dhxx

hxx
D , ~11!

whereSxx
(0) is given by Eq.~3!, comes fromDsxx and be-

haves atT,1/t tr as

DSxx~B50!'2
p~p11!T

3eEF
2t tr

~ lnTt tr! ~12!

The zero-field electron diffusion thermopower correction
~12! is further decreased by the Hartree term16 whose mag-
nitude depends on the screening lengthk21 of the Coulomb
potential.

In the case of CF governed by transverse gauge interac-
tions the integrand in Eq.~10! has an extrae dependence due
to the factor ln@N(E)D(E)# @which is the same as in Eqs.~7!

and ~8!# arising from the integral overqW . As a result, we
obtain @p is the same as in~3!#

Dhxx
CF52

eT~p11!

12EF
lnTt tr . ~13!

It is worthwhile to note that corrections~7!, ~8!, and ~13!
satisfy the Mott formula~2!. Another known example of an
approximate validity of the Mott formula for the case of
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interacting fermions is provided by the electron-phonon in-
teraction in the diffusive regimeql,1.21

Repeating the calculations at finiteB* we also obtain that
the corrections to the components of the tensorDh i j

CF(B* )
obey the relations analogous to Eq.~6!.

Despite the fact thath i j
CF receives a nonzero contribution

~13!, the overall correction to the Drude thermopower~11! is
dominated byDs i j

CF given by Eqs.~7! and~8!. In the case of
the screened electron Coulomb potential which appears to be
better consistent19 with the lnT behavior of the conductivity
at n51/2 and 3/2 reported in Ref. 17 the correction to the
Drude thermopower is

DSxx52
2p~p11!T

3eEF
2t tr

~ lnTt tr!lnkFl . ~14!

Correction~14! developing atT,1/t tr is enhanced as com-
pared to Eq.~12! due to the extra factor ln(kFl)

2 and the
absence of the corresponding Hartree term because of the
singular behavior ofD'(0,q) at q→0.19

Although the available experimental data6,7 are not suffi-
cient to extract the nonlinearTlnT contribution, the enhanced
magnitude of the effect may, in principle, provide its obser-
vation atT;102100 mK with improved techniques.

Before concluding the discussion of the nonlinear terms in
Sxx(T) we note that in the conventional zero-field case the
subject of an even greater controversy is a role of large mo-
menta transfer (ql.1) processes in the thermopower renor-
malization.

Such effects were previously discussed in both cases of
the 3D electron-phonon22 and electron-electron23 interac-
tions. It was argued in Refs. 22 and 23 that the main contri-
bution tohxx comes from processes involving virtual bosons

~phonons or plasmons!. In the problem at hand this kind of
correction is associated with the real part of the transverse
gauge propagator as opposed to the kinetic terms, which de-
scribe the effects of real gauge bosons and contain
ImD'(v,q).

Naively, these terms would lead to a contribution
D8Sxx;(TF2kF /e

3mEF)lnEF /T for the unscreened Cou-
lomb CF problem @D8Sxx;(1/e) (F2T/EF)

2/3 for the
screened case#, which one could conceivably relate to the
singular CF effective mass renormalization4! via
EF;1/m* (T).

Although such terms are indeed expected in a general
time reversal symmetric 2D gauge theory24 they do not ap-
pear in the CF problem in accordance with the fact that the
CF dynamics remains diffusive up toq;kF .

19 A more
elaborated analysis, which is required to settle this subtle
issue, demonstrates that time-reversal symmetry breaking in-
herent in the CF theory4 is crucially important. The details
will be presented elsewhere.

To summarize, we discuss the disorder and interaction
effects on the diffusion thermopower of composite fermions
in the vicinity of the primary even-denominator fractions.
We show that in contrast to the zero-field case of Coulomb
interacting electrons the thermoelectric coefficient of com-
posite fermions acquires the lnT interference correction re-
sulting from small momentum transfer processes. However,
the mainTlnT correction to the diagonal thermopower arises
mostly from the composite-fermion conductivity. The en-
hanced magnitude of this term compared to the zero-field
case makes it in principle possible to observe such a term
experimentally, which would provide a new significant test
for the composite-fermion theory.
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