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Magneto-optical properties of nanocrystals: Zeeman splitting
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We discuss different aspects of the Zeeman splitting in optical properties of II-VI spherical quantum dots in
presence of a external magnetic fieldB. A systematic study of the energy eigenvalues, wave functions, and their
dominant symmetries within the 838 k•p Kane-Weiler formalism, allowing the inclusion of the conduction-
valence-band coupling, nonparabolicity, and mixing of the electronic and spin states, is presented. The analysis
of symmetries inherent in thek•p Hamiltonian leads to sets of basis functions that can be separated into two
independent Hilbert subspaces. The linear and quadratic Zeeman splitting in the quantum dot have been studied
in the strong confinement regime. A detailed discussion of the symmetries associated with the electronic levels
and the magneto-optical selection rules for interband transitions are derived. We also calculated the optical
oscillator strengths and their corresponding magnetoabsorption coefficient for Faraday and Voigt configura-
tions. It shows that the effective Lande´ g factor, obtained theoretically, and diamagnetic shift can be tested
experimentally by complementary optical spectra measured in Faraday and Voigt geometries.
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I. INTRODUCTION

Much theoretical and experimental effort has lately be
dedicated to understand as well as explore the physical p
erties of the semiconductor nanostructures in presence o
ternal magnetic fields,B. The ability to manipulate and con
trol spin states as well as to modulate theg factor is, at the
present moment, of fundamental importance in the study
electronic systems with potential applications in spintro
computation, quantum communication, and quantum com
tation. Semiconductor quantum dots of diverse geomet
have been targeted as serious candidates for the imple
tation of these new devices. Many aspects of the effect
the magnetic fields on the optic properties in semicondu
quantum dots still remain under discussion, especially
effects of the quantum confinement on magnitudes suc
the Lande´ g factor or the oscillator strengths for transition
with or without spin inversion. In this direction, the spheric
quantum dots~SQD’s! grown in a host matrix, especially in
the strong confinement regime, provide an ideal environm
for the study of the confinement effects. The starting po
for a serious study of any optical or spintronic properties
the rigorous determination of the energy eigenvalues
wave functions. The strong spatial localization generated
the confinement potential and mainly the effects of the b
ken symmetries induced by the external magnetic field
two aspects that should be studied when considering a
istic model of quantum dots.

Several works have been devoted to studying the eff
of the magnetic field on the electronic conduction ba
within the simple parabolic model. Also, quantum dots w
cylindrical geometry in presence of magnetic fieldsB have
been analyzed.1 The magnetic-field effects in quantum do
have been studied experimentally2–5 and theoretically.6–8 In-
teresting results were obtained in the determination of s
eral optical properties such as exciton fine structure, Zee
effect, and Landau-level formation. Several types of theo
0163-1829/2003/67~16!/165306~10!/$20.00 67 1653
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ical approaches have been generally used to solve the e
value problem in a quantum dot in presence of an app
magnetic field. Techniques that are based on ex
diagonalization6 demand many computational resources a
procedures of fast convergence such as the boundary ele
method9 and can become formidably complex if couplin
effects between bands are included. Thek•p method allows
to describe, in a precise manner, the most important facts
define the electronic structure of a quantum dot in prese
of an external magnetic field. This method has been ge
ally applied to two-dimensional III-V quantum dots wit
parabolic confinement. For this kind of geometry, the pro
lem has an exact parabolic solution, thus a well-defined b
set of functions can be used to diagonalize thek•p Hamil-
tonian. Kotlyaret al.,8 for example, have calculated the ho
states in the valence band using a six-band Hamiltonian,
Darnhofer and Ro¨ssler10 have used an eight-band formalis
to include the coupling between valence and conduct
bands and the effects of the spin-orbit coupling. The diago
parabolic problem is that SQD’s do not possess a separ
solution, since the magnetic effective confining potent
cannot be expressed as a sum of potentials with indepen
variables. This is so because the diamagnetic term, pro
tional to the square of the magnetic field, mixes the spa
variables. Thus, it is not a trivial task to define a basis set
allows the diagonalization of thek•p Hamiltonian for an
arbitrary magnitude of magnetic field. The range of the m
netic and spatial potentials defined by the cyclotron len
l B5A\c/eB and the dot radiusR, respectively, allows us to
distinguish two opposite regimes for the study of the el
tronic structure:~i! l B.R is a regime where the magnet
field plays the role of a weak perturbation to the system. T
dominant contribution comes from the spatial confineme
with the magnetic field breaking the Kramer’s degenera
~ii ! l B,R is a regime of intense magnetic fields where t
cylindrical component of the magnetic confinement poten
becomes the most significative and dominant effect that le
to the formation of Landau levels. As we discuss below, u
©2003 The American Physical Society06-1
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der the conditionl B.R, the eigenfunctions atB50 repre-
sent an appropriate set of wave functions to diagonalize
k•p Hamiltonian including the magnetic-field effect. Th
condition l B.R is particularly interesting, since the Zeema
splitting and spin-flip transitions are revealed. Also, calcu
tion and experimental determination of theg factor have
been performed under this particular magnetic-field regi
For materials and the dot geometry considered in the pre
work, the formation of Landau levels only occurs
magnetic-field intensities near to or greater than 60 T. T
statement was verified by means of the calculation of e
tron energies within the strong perturbation theory.11,12 Re-
cently, Planelleset al.13 presented a calculation of the ele
tronic structure of SQD’s in presence of magnetic fie
based on the four-bandk•p but neglected spin splitting ef
fects. In fact, the use of this method allows to describe
mixture of lh andhh states. Nevertheless, due to the limit
band model used by these authors they were not abl
discussion important effects such as the spin-flip and s
splitting mixing of spin states, nonparabolicity, and the
fects of the involved symmetries due to the interaction
tween conduction, valence, and split-off bands. In order
achieve a better quantitative description of the magneto
file for electrons and holes, spatial quantum confinement,
electronicg factor, and magneto-optical properties of nano
rystals, in this work we explore all the inherent power of t
838 k•p Kane-Weiler Hamiltonian to rigorously determin
the electronic structure in a single CdTe SQD in presenc
an external magnetic field. On this basis, we are be abl
discuss and determine many relevant properties of the e
tronic states and magneto-optical properties valid in the
gime l B.R. The actual Hamiltonian model takes into a
count the coupling between conduction and valence ba
the contribution of the remote bands, the nonparabolicity
fects, and the mixing at the valence bands. In Sec. II of
paper we extend the 838 k•p Hamiltonian to a nanocrysta
with spherical symmetry in an external magnetic field a
cording to its inherent symmetry, and for the case ofl B
.R, we provide an appropriate basis set and the Hilb
subspaces to describe the SQD electronic structure. A
magneto-optical selection rules for Faraday and Voigt geo
etries are derived. Section III is devoted to discussing
size dependence and magnetic-field effect on electro
states and on optical spectra. Finally, we sum our result
Sec. IV.

II. THEORY

Following the effective-mass approximation, we descr
a carrier in the presence of an external magnetic fi
B5(0, 0, B) and a confinement potentialV from the
solutions of the Schro¨dinger equationHk•pc5Ec for the
eight-component spinorc. The magnetic-field effects can b
included after replacingp with p1(e/c)A. Here p repre-
sents the momentum operator andA5 1

2 Br sinu(2sinfêx

1cosfêy) is the vector potential for the uniform magnet
field written in the symmetric gauge. We have chosen to
the complete 838 k•p Kane-Weiler model,14–17 which
16530
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takes into account the known interactions between state
the G6 , G8, andG7 bands exactly, and to consider the co
tributions of the remote bands. Thek•p Hamiltonian is re-
ported in Ref. 17 and its matrix elements taking into acco
the magnetic-field effects are defined explicitly in the Appe
dix A. Under the conditionl B.R some characteristics of ou
approach should be specifically pointed out.~i! The inherent
symmetry existing in thek•p Hamiltonian allows the sepa
ration of the Hilbert space into two orthogonal subspac
We expand the eight-component spinor wave functions
each Hilbert subspace, in terms of the exact solutions of
diagonal operators for each carrier type atB50. In general,
each component of the spinor has the formf n,L

M (r ,V)
5An,L j L(mn

Lr /R)YL
M(V),18 with a special sequence of parit

dictated from the inherent symmetry ofHk•p . Here thez
component of the orbital angular momentumL (Lz
5\M , M50, 61, . . . ) remains a good quantum numbe
while is not possible to find states with well-defined spin a
orbital quantum numbers, since these states are mixed by
effects of the magnetic field and the interband couplings.~ii !
The wave functionsc I(II) for subspaces I and II, fulfilling the
boundary conditionc I(II) (R)50,19 can be written as a linea
combination of the envelopesf n,L

M (r ,V) and the eight Bloch
functions at theG point, as

uc I(II)
M &5(

n
(

L>uM u

` 1
f n,2L(2L11)

M ue1&

f n,2L11(2L)
M21 uhh1&

f n,2L11(2L)
M u lh1&

f n,2L11(2L)
M uso1&

f n,2L(2L11)
M11 ue2&

f n,2L11(2L)
M12 uhh2&

f n,2L11(2L)
M11 u lh2&

f n,2L11(2L)
M11 uso2&

2 . ~1!

It is important to note that the spinorsuc I(II )
M & do not

present a defined parity (6), as assumed in Ref. 20 bu
instead, the special mixture as indicated above. Within
838 k•p Hamiltonian the states with different symmetrie
are coupled even atB50. Nevertheless, by neglecting on
the warping term, proportional tom5(g22g3)/2, the space
of solutions of the Kane-Weiler Hamiltonian in spherical c
ordinates can be separated into the two independent
spaces with the specified values for the angular quan
numberL in each Bloch state. AtBÞ0 the only good quan-
tum number (M1Jz) @Jz being the z component of the
Bloch angular momentumJ ~Ref. 17!# along the field is pre-
served. Moreover, the applied fieldB does not modify the
boundary conditions over the radial part of the functi
f n,L

M (r ,V) and the above spinors~1! constitute a complete
basis set of orthonormal functions for the effective 838 k
•p Hamiltonian in each subspace, a very useful tool for
case in whichl B>R. ~iii ! In our matrix diagonalization
scheme we have ordered the envelope functionsf n,L

M (r ,V)
for each carrier set (e6, hh6, lh6, andso6, following the
notation of Ref. 17! for increasing values of the energyEi ,
6-2
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i 51 . . .N0. Therefore, we can replace the sum(n,L , in the
expansion~1!, by (Ei

with the magnetic indexM fixed. This

procedure permits us to select only the most important c
tributions for the formation of a given state and obtaining
significant gain in computational efficiency, since we mu
diagonalize matrices much smaller than the ones norm
used in standard procedures. Hence, the results we pre
can been achieved using matrices of size of 8N038N0, with
N0<30. The results are fully converged to good numeri
accuracy.~iv! Although the confinement potential is sphe
cal, thek•p Hamiltonian is essentially of cylindrical symme
try, since we allow the Luttinger parametersg2Þg3 every-
where but the terms proportional to the warping termm are
equal to zero. The presence of these cylindrical compon
in the Hamiltonian modifies the effective spherical confin
ment potential that acts on the carriers. The theory con
ered here takes into account the complex interplay betw
these superimposed symmetries plus the conduction-
valence-band coupling in order to describe the Zeeman s
ting of electronic states.

The optical transition probability is proportional to th
matrix element of the crystal-radiation field interactio

^ce, j uê•P̂uch, j 8&, j , j 85I, II, where ê is the light polarization
vector andP̂ is the momentum operator. Using Eq.~1! the
above matrix element can be written as

^ce, j
Meuê•P̂uc

h, j 8

Mh &5 (
a,a8

^ f e,a
Meu f

h,a8

Mh &^uauê•P̂uua8&

1^uauua8&^ f e,a
Meuê•P̂u f

h,a8

Mh &. ~2!

Here the states of the conduction~valence! band are labeled
f e,a

Me ( f h,a
Mh ), with a enumerating the corresponding quantu

numbersn, L and the periodic Bloch functions at theG
point of the Brillouin zone,uua&5uJ, Jz&, in the sequence
followed in the Eq.~1! ~see the Appendix!.

For interband transitions, only the first term in Eq.~2!
contributes to the overlap integral, which can be separa
into integrations over the fast oscillating Bloch part that d
termine the interband selection rules, and integrations o
the envelope part that determine the intensities of the tra
tions proportional to the oscillator strengths. The integratio
of the Bloch function part result in the size-independent
pole matrix elements that will be namedPa,a85^uauê
•P̂uua8&. The complete set of selection rules are obtain
from the nonvanishing products of the matrix eleme
I e,hdLe ,Lh

Pa,a8 , where I e,h5^ f e,au f h,a8& are the envelope
overlap integrals.

The allowed transitions between the two separated Hilb
subspaces, as described by the spinors~1!, are determined
from the angular dependence of the wave functions. By t
ing the magnetic fieldB as the properz quantization axis for
the Bloch functionsuua& we can determinate the selectio
rules for two independent configurations: Faraday, when
wave vector of the incident lightk̂iBi ẑ, and the Voigt if
16530
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k̂'Bi ẑ. In Faraday geometry and incident light with le
circular polarizationê25(êx2 i êy)/A2, the dipole matrixP
gives us

P25
iP

A3 3
0 2A3 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1 A2 0 0 0 0

0 0 0 0 2A3 0 0 0

21 0 0 0 0 0 0 0

2A2 0 0 0 0 0 0 0

4 ,

~3!

where iP5 i ^SuPxuX& is proportional to the Kane coupling
parameter,P0. The corresponding matrix interaction fo
right circular polarizationê15(êx1 i êy)/A2 is obtained from
the Hermitian adjointP152@P2#†. In the case of Voigt
geometry, the optical processes with linear polarizationê
5êz are represented through the following matrix intera
tion:

Pz5
iP

A3 3
0 0 A2 21 0 0 0 0

0 0 0 0 0 0 0 0

A2 0 0 0 0 0 0 0

21 0 0 0 0 0 0 0

0 0 0 0 0 0 A2 21

0 0 0 0 0 0 0 0

0 0 0 0 A2 0 0 0

0 0 0 0 21 0 0 0

4 .

~4!

On the grounds of Eqs.~3! and ~4!, the corresponding
selection rules for each optical transition in any polarizat
can be precisely obtained. It can be seen, according to
structure of both of the obtained Hilbert subspaces descr
by the wave functionsc I(II)

M and the dipole matrix element
~3! and~4!, that the interband optical transitions between t
same Hilbert subspace I~II ! are forbidden in both studied
geometries. Thus, for circularê6 ~Faradays6 geometry!
and linearêz ~Voigt pz geometry! polarizations, only the op-
tical transitions between initialMi(Hi) and final M f(H f)
levels belonging to different Hilbert subspacesH5I, II are
allowed. Selection rules do not allow interband transiti
from the same Hilbert subspaces (I→I or II→II), because of
the different symmetries of the electron and hole angu
momenta. Moreover, for the magnetic quantum numbers
haveDM561 andDM50 for the Faraday and Voigt con
figurations, respectively.

In the framework of the confined potential model he
used, the matrix element~2! is reduced to~for left circular
polarization!
6-3
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^ce,I
Meuê2

•P̂uch,II
Mh&5 iPFNe ,Me

Nh ,Mh~ I,II !dMe ,Mh61 , ~5!

where

FNe ,Me

Nh ,Mh~ I,II !

5 (
n,L>uMu

H2An,b
e6

An,b
hh6

6
1

A3
An,b

e7 FAn,b
lh6

1
1

A2
An,b

so6G J , ~6!

with b52L11/271/2. In the same way the I→ II transition
is obtained by interchanging 2L11/271/2 by 2L11/2
61/2. If we consider right circular polarization we sole
have to substitute the signs (6) in Eqs.~5! and ~6! by (7)
and vice versa.

In order to discuss the magneto-optical absorption spec
the interband oscillator strengthuFu2 between single electron
(Ne ,Me) and hole (Nh ,Mh) states has to be evaluated
detail. The absorption coefficient can be cast as

a~ ê2,v!5a0 (
Ne ,Nh ,M

G

p

3H uFNe ,M
Nh ,M61

~ I,II !u2

~ENe ,M~ I!2ENh ,M61~ II !2\v!21G2

1
uFNe ,M

Nh ,M71
~ II,I !u2

~ENe ,M~II !2ENh ,M71~ I !2\v!21G2J . ~7!

In the above equation we neglected the effects of nonho
geneous broadening, which arise from the dot size fluc
tion in a sample, and a constant broadeningG is assumed for
all kinds of transitions;a0 is a constant andv is the incident
light frequency. A similar expression can be obtained wh
we consider Voigt geometry, that is

a~ êz ,v!5a0 (
Ne ,Nh ,M

G

p

3H uVNe ,M
Nh ,M

~ I,II !u2

~ENe ,M~ I!2ENh ,M~ II !2\v!21G2

1
uVNe ,M

Nh ,M
~ II,I !u2

~ENe ,M~ II !2ENh ,M~ I!2\v!21G2J , ~8!

where

VNe ,M
Nh ,M

~ I,II !52 (
n,L>uM u

$A2An,b
e6

An,b
lh6

2An,b
e6

An,b
so6

%, ~9!

and for the II→I we must interchange the index (6) by
(7) in the above equations.

III. RESULTS

The parameters for CdTe~Ref. 20! used in this calculation
are the energy band gapEg51.6069 eV and the spin-orbi
16530
a,

o-
a-

n

energy D050.953 eV. The Luttinger parameters areg1
L

55.37,g2
L51.67, andg3

L51.98; the nonparabolicity param
eter for the conduction band is (112F)51.24; and the
second-order magnetic parameters areNw50, k51.267,
and q521.099 ~see the Appendix for a brief discussio
about the meaning of the second-order parameters!. The
electron effective mass isme50.091m0 and the Kane param
eter isEp517.9 eV. For all calculated optical spectra in th
work, we have used a unique value for the homogene
electronic broadening,G51.0 meV, of the optical transi-
tions.

In Figs. 1 and 2 we show the dependence of the ene
levels with the magnetic field for two SQD’s with radii 30 Å
and 50 Å, respectively. In Figs. 1~a! and 2~a! are displayed
the electron energies and in Figs. 1~b! and 2~b! are hole
energies. For a given value of magnetic field, the levels
labeled by the quantum numberM and by the energy order
ing numberN. Additionally, we identify the levels by mean

FIG. 1. Electron and hole energy spectra of a 30-Å CdTe SQ
plotted as a function of magnetic fieldB. Solid ~dashed! lines rep-
resent states arising from Hilbert subspace I~II !. The levels have
been identified considering the quantum numberM and the energy
order indexN ~see text for details!. ~a! Conduction band 1:21e1↓,
2: 0e1↑, 3: 0e1↓, 4: 21e1↑, 5: 11e1↑, 6: 0e2↑, 7: 22e1↓, and 8:

21e2↓; ~b! valence band 1:11hh1↑, 2: 0lh1↑, 3: 21lh1↓, 4:

22hh1↓, 5: 11hh2↑, 6: 0lh1↓, 7: 21lh1↑, and 8: 22hh2↓. Several
optical transitions are indicated for Faraday (s6) and Voigt (pz)

geometries withê6 and êz polarizations, respectively.
6-4
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of the spin number@s5↑ ~up!, s5↓ ~down!# and the carrier
character. This notation is used in considering the large
solute value of the weight coefficientsAn,L at B50 for each
kind of carrier. Thus, an electron level is represented
MeN↑(↓)(H) and a heavy hole state asMhhN↑(↓)(H), with H
representing the Hilbert subspace to which the carrier s
belongs. The same notation is used for light (lh) or split-off
(so) states and is appropriate if one looks to the form
which each state function@Eq. ~1!# is written. Some impor-
tant characteristics should be pointed out in the analysi
these results:~i! The linear splitting dependence onB is due
to the linear Zeeman effect@terms proportional to\MB in
matrix elements~A2!# and the existence of an ‘‘effective’’g
factor for electron and hole levels through the parametersNw
and k @see the diagonal elements of the 838 Hamiltonian
~A1!#. For example, in Fig. 1, the splitting of the states
beled 1, 2 in the conduction bands 1, 4 and 2, 3 for the he
and light valence bands, respectively, are due to the
orientation along the fieldB, i.e., the electron and holeg
factors. The levels 4 (M521) and 5 (M51) in Fig. 1~a!
represent the linear Zeeman behavior at low field (B,2 T)
in the SQD. The same can be argued for the other state
Figs. 1 and 2 by checking the effectiveg factor or the linear

FIG. 2. The same as Fig. 1 for a 50-Å CdTe SQD.~a! Conduc-
tion band 1:21e1↓, 2: 0e1↑, 3: 0e2↑, 4: 11e1↑, 5: 21e2↓, 6: 22e1↓,
7: 0e1↓, and 8: 21e1↑; ~b! valence band 1:11hh1↑, 2: 0lh1↑, 3:

21lh1↓, 4: 22hh1↓, 5: 11hh2↑, 6: 0lh1↓, 7: 21lh1↑, 8: 22hh2↓,
and 9: 22hh4↓.
16530
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Zeeman splitting effect for each carrier in the SQD. T
splitting of the lowest levels is nearly proportional toB in the
entire range of magnetic fields in the regime studied in t
work. ~ii ! For both dot sizes considered, the effects of t
diamagnetic contribution, proportional toB2, can be clearly
observed in the six excited electron levels labeled 3–8
Figs. 1 and 2. This contribution causes deviation in the
ergy levels from the linear dependence onB, which is ex-
pected when the diamagnetic term is not included. In ot
II-VI nanocrystals, such as CdS SQD’s, the diamagnetic
fects are only observed starting from fieldB'20 T,6 differ-
ent from CdTe SQD’s where this effect is already apprecia
for fieldsB'2 T. Therefore, our results demonstrate that
exclusion in the Hamiltonian of the terms proportional toB2

@see Eqs.~A4!, ~A8!, and~A9! in the Appendix# is applicable
only in the case of very weak fields (B'1 T for the excited
states!. ~iii ! We should pay attention to the spin splitting
B50.1 T, produced by the effects of the asymmetry of
version of thek•p Hamiltonian, and the spherical confine
ment effective potential. This effect can be observed, for
stance, in Fig. 1~a! for levels 3-8.~iv! Another interesting
characteristic that can be observed is the change in the o
of the energy levels. In Fig. 1~a!, for R530 Å the first two
excited states are identified as0e1↓(II) and 21e1↑(II), re-
spectively; when the radius increases toR550 Å @see Fig.
2~a!#, the first two excited states are now levels0e2↑(II) and
11e1↑(II), respectively.

This exchange in the sequence of the energy levels ca
explained by the change of identities between the states
to an admixture of wave functions when the radiusR is in-
creased. AtR530 Å, the main weight contribution corre
sponds to the state0e↓(II), while at R550 Å the state
0e↑(II) is the dominant one.

Since we have been able to describe the electronic st
ture, our next step is to calculate the interband transit
probability within the dipolar approximation by considerin
the different light polarizations and, according to Eqs.~6!
and ~9!, we will determine the dependence of the magne
optical oscillator strengths on the magnetic field. Followi
the adopted notation, an interband transition from the ini
hole state, characterized by quantum numbersNi , Mi , and
si to the final electron state defined byNf , M f , and sf is
represented asM f

eNf ,sf(H f)←Mi
hh( lh,so)Ni ,si(Hi). Note

that the indexN is an energy ordering index. In this calcula
tion, we have neglected the effects of temperature by ass
ing that the electron and hole distribution functions a
Fc(Ec)'1 andFv(Ev)'0, respectively.

In Fig. 3 we present several calculated oscillator streng
as a function of the magnetic field, in a CdTe SQD, for t
s6 and pz geometries. Figure 3~a! is for a R530 Å SQD
while Fig. 3~b! corresponds toR550 Å. The allowed tran-
sitions included in this figures are indicated by the rows
Figs. 1 and 2. We only include the transitions that pres
significant variations with the magnetic field and omit tho
transitions that are almost field independent. The domin
transitions~not shown in Fig. 3! for R530 Å andR550 Å
are 21e1↓(I)←22hh1↓(II) ~Faraday for ê1 polarization!,

0e1↑(I)←11hh1↑(II) ~Faraday for ê2 polarization!, and
6-5
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0e1↑(I)←0lh1↑(II) ~Voigt for êz polarization!.
Note from Fig. 3 that the oscillator strength present cro

ings at some specific values of the magnetic field~from 0.5 T
to 7 T!. The crossing is a direct consequence of the adm
ture of the electronics states according to the 83 8 k•p
Hamiltonian and their wave functions~1!. To be more spe-
cific, these crossings are directly related to the optical se
tion rules and the anticrossing effect observed in Figs. 1
2. Nearby level states in the conduction band with the sa
symmetry present an anticrossing at certain values of
magnetic field. The repulsion between levels with the sa
symmetry for a given polarization may change the so-ca
‘‘forbidden’’ electron-hole transitions~parabolic approxima-
tion! into allowed ones and, at certain values of magne
field, crossing in the oscillator strength is achieved. Hen
the ‘‘allowed’’ transition at B50 diminishes its optical
strength as the magnetic field increases. The variation of
spectral components in the oscillator strength, as a func
of B, determines the behavior of the overall optical prop
ties. For example, certain transitions can be favored by
ing an appropriate intensity of the magnetic field. Also, as
the B50 case, the interband transitions are only allow
between states that come from different Hilbert subspa
The dependence of the oscillator strength on the dot size
magnetic field enhances the capability of controlling t
magneto-optic properties in SQD’s. In order to study the
fects of the magnetic field on the optical absorption,

FIG. 3. Calculated magneto-optical oscillator strength as a fu
tion of the magnetic field, for~a! R530 Å and~b! R550 Å. Far-
aday geometry,uFNe ,M

Nh ,M61u2 with the left ~right! polarization, is

shown by solid lines~dashed lines!, while Voigt uVNe ,M
Nh ,Mu2 geom-

etries by dotted lines. The corresponding transitions are indic
by rows in Figs. 1 and 2.
16530
-

-

c-
d
e
e
e
d

c
e,

he
n
-
n-
n
d
s.
nd

f-
e

show, in Fig. 4, the calculated absorption coefficient in
Faraday configuration for both analyzed polarizations. Fig
5 is devoted to the independent Voigt configuration with lig
polarizationêz . The numbers of the peaks are related to
energy fan plot shown in Fig. 1 and to the oscillator streng
allowed by the magneto-optical selection rules derived
Sec. II. At this point, we comment on the magnetoabsorpt
spectra and electron-hole magnetoenergy dispersion. Fi
4~a! shows the spin splitting of electron and heavy-ho
ground states that can be directly measured using
complementarys6 geometry. In this case the energy sep
ration is proportional to the electron–heavy-holeg factor. By
comparison we present in Fig. 5~a! the absorption coefficien
for the same window of the laser energy and magnetic fi
but in apz configuration. It can be seen that the spectra
not show any further structure aside from the main abso

c-

d

FIG. 4. Different spectra regime of the magnetoabsorption

efficient in Faraday geometry (Bizi k̂) for a 50-Å CdTe SQD, for

ê6 polarizations.
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tion peaks due to an electron–light-hole transition w
DM50. Figures 4~b! and 5~b! illustrate the behavior of the
absorption coefficient in an interval of the energy where
oscillator strength is weak. These transitions correspon
s2: 0e1↑(I)←11hh3↑(II) and 21e1↓(I)←0lh2↑(II); s1:
21e1↓(I)←22hh3↓(II) and 0e1↑(I)←21lh2↓(II); and pz:
0e1↑(I)←0lh2↑(II) and 21e1↓(I)←21lh2↓(II). Figures 4~c!
and 5~c! were calculated for those intensities of magne
field and laser energy where the oscillator strength for t
different transitions presents a crossing point following
results of Fig. 3. The peaks shown in these figures are rel
to the electron-hole transitions indicated in Fig. 2 as a fu
tion of the applied magnetic field.

A fundamental characteristic of these absorption profi
contrary to the caseB50, is the linear and quadratic Zee
man splitting observed for those two independent polar
tions. According to the magneto-optical selection rules
scribed in Sec. II, the incident light ins1 ands2 geometries

FIG. 5. The same as Fig. 4 for the Voigt geometry (Biz'k̂)

with light polarizationêz .
16530
e
to

o
e
ed
-

s,

-
-

excites independent electronic states. In the free magn
field case, the shape of the absorption profile fors1 is ex-
actly identical to thes2 configuration. This fact is a conse
quence of the spatial symmetry of the problem whi
guarantees that, in the absence of magnetic field, the en
levels are degenerate with respect to quantum numberM.
The magnetic field breaks the degeneracy and the linear
quadratic Zeeman magnetoabsorption take place, as ca
clearly seen in Fig. 2 for the electron-hole transitions un
consideration. Notice that the intensity of the peaks in Fi
4~c! and 5~c! change strongly when the magnetic field
varied, and small changes in the value of the magnetic fi
can favor certain transitions, such as in the electron-h
transition 4~2! for the s2 (s1) geometry or the electron
hole transition 5 for thepz configuration~see Fig. 3!. In the
latter case, changes as large as one order of magnitude i
peak intensity can be observed. On another hand, the bro
M degeneracy by the field induces a shift in the peaks tow
higher or lower energies, as can be expected. This effec
obviously independent of the light polarization and only d
pends on the transition energy behavior. As can be extra
from a quick analysis of Figs. 2 and 3, the transitions 1,
and 5 should present a redshift in the spectrum when
magnetic field increases, together with the linear and q
dratic Zeeman effects. We can observe that several tra
tions deviate from the typical quadratic Zeeman behav
indicating a more complex law of the electronic fan plot wi
respect to the fieldB. The wide variety of transitions excite
by light with different magneto-optical configurations ope
a large possibility of creating elaborate experimental set
that allow to measure parameters such as the electronic
electron-hole pairg factors and Luttinger parameters, and
studying their dependencies on dot size, for a given mate

IV. CONCLUSION

We performed a theoretical study of the influence of
external magnetic field and quantum size effects in spher
nanocrystals, within the framework of the 838 k•p multi-
band effective-mass approximation, with the explicit incl
sion of couplings between the conduction and valence ba
nonparabolicity, and band mixing. We have shown that
magnetic energy levels can be studied into two independ
Hilbert subspaces. The linear and quadratic Zeeman eff
and the spin splitting of the electronic carriers are obtain
for relatively low magnetic fields in the case of a CdTe SQ
The concurrence of the multiband model, the spherical c
finement, and the field have indicated nonlinear and nonq
dratic behavior of the Zeeman splitting in the electronic ma
netic fan plot~see Figs. 1 and 2!. The linear Zeeman splitting
is clearly obtained for a relatively ‘‘low field,’’ depending o
the particular state and carrier under consideration. The
terband magneto-optical transitions are only allowed
tween different Hilbert subspaces in Faraday and Voigt c
figurations.

We have predicted that particular optical configuratio
can be useful for extracting information from the optic
spectra such as magnetoabsorption or magnetoluminesc
measurements. We derived the magneto-optical selec
6-7
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rules for two independent configurations~Faraday and Voigt!
allowing the possibility of a direct evaluation, from the e
perimental point of view, of important nanocrystal para
eters such as the electron-holeg factor, diamagnetic coeffi-
cient, effective masses, and Luttinger parameters. In Fara
geometry the shift of the electron-hole energy optical tran
tions, DEM ,N5EM ,N(s1)2EM ,N(s2)5ge2hmBB (mB is
the Bohr magneton!, due two independentê6 polarizations,
directly give us the value of theg factor. By using Voigt
geometry one can follow the magnetic-field evolution of
desired electron-hole transition,EM ,N(pz), and, therefore,
measure the linear or quadratic Zeeman effects for an ap
priate chosen magnetic field. In the latter case the diam
netic shift of the SQD is revealed. Finally, the calculati
performed here can be applied to other II-VI or III-V nan
crystal compounds where experimental values of
magnetic-field evolution of the electron-hole states toget
with the theoretical predictions could provide available to
for determining nanostructure parameters.
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APPENDIX: MATRIX ELEMENTS OF THE 8 Ã8 k"p
KANE-WEILER HAMILTONIAN IN PRESENCE

OF AN EXTERNAL MAGNETIC FIELD

In presence of an external magnetic field in thez direc-
tion, the diagonal elements of the 838 k•p Kane-Weiler
Hamiltonian are defined as

D̂el
65Eg1S F1

1

2D P̂26
1

l B
2 S Nw1

1

2D ,

D̂hh
6 5D̂17

3

2

1

l B
2 S k1

9

4
qD ,

D̂ lh
65D̂27

1

2

1

l B
2 S k1

1

4
qD ,

D̂65S g16g2

2 D P̂27
3

2
g2P̂z

2 ,

D̂so
6 52D01

g1

2
P̂27

1

l B
2 S k1

1

2D . ~A1!

The off-diagonal terms are given as

K̂65 iA1

6
P0P̂68 ,

Ĝ65A3g3P̂68 P̂z ,
16530
-

ay
i-

ro-
g-

e
r

s

K̂z5 iA1

3
P0P̂z , ~A2!

Ŵ5A3~ ḡ P̂82
2 2m P̂8†

2 !,

R̂65R̂7
1

l B
2 ~k11!,

R̂5
A2

2
g2~P̂8223P̂z

2!, ~A3!

where the operatorsP̂68 and P̂2 in spherical coordinates ar
given by

P̂68 5 P̂66
eB

2c\
r sinu exp~6 if!, ~A4!

P̂25“

21
1

2l B
2
L̂z1

1

8l B
4

r 2 sin2u. ~A5!

Here“2 is the Laplacian operator,P̂65(]/]x6 i ]/]y), L̂z

52 i ]/]f, P̂z5]/]z, andD0 is the spin-orbit splitting. The
additional parameters are defined as

ḡ5
1

2
~g21g3!,

m5
1

2
~g22g3!.

The second-order parametersF, g1 , g2, and g3 associated
with the electron and hole effective mass, respectively, c
sider the contributions of the remote bands. The param
Nw (k) takes into account the contributions of the remo
bands to the conduction~valence! g factor and theq param-
eter related to the spin-orbit splitting. All the second-ord
Kane-Luttinger-Weiler parameters (F1 1

2 ), (Nw1 1
2 ), g i ,

(k1 1
2 ), and q are measured in units of\2/m0. Also, P0

5 i (\/m0)^su p̂xux& is the usual first-order Kane paramet
~in units meV-Å! or Ep5(2m0 /\2)P0

2 ~meV!, which sets the
strength of the conduction valence-band coupling for a g
material. We have chosen the sequencee1, hh1, lh1, so1

e2, hh2, lh2, andso2 to represent the conduction, heav
light, and split-off carriers. The signs (6) represent thez
component of the total angular momentumJ for each
carrier.17 Using the wave functionf n,L

M (r ,V) introduced in
Sec. II, the off-diagonal matrix elements~A2! are given by

^ f n8,L8
M8 uP̂18 u f n,L

M &5
1

R
dM8,M11@dL8,L11bL,M

2dL8,L21cL,M#T2 ,

^ f n8,L8
M8 uP̂28 u f n,L

M &5
1

R
dM8,M21@2dL8,L11cL11,M21

1dL8,L21bL21,M21#T1 ,
6-8
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^ f n8,L8
M8 uP̂z8u f n,L

M &5
2

R
mn

Ldn8,ndM8,M@2aL11,MdL8,L11

2aL,MdL8,L21#I L8,L
n8,n , ~A6!

^ f n8,L8
M8 uP̂2

28u f n,L
M &5dM8,M22$dL8,L12cL12,M22cL11,M21B1

1dL8,L22bL22,M22bL21,M21B2

1dL8,L@cL11,M21bL,M22

1bL21,M21cL,M22#B0%, ~A7!

^ f n8,L8
M8 uP̂z

28u f n,L
M &5

2

R2
mn

LdM8,MI L8,L
n8,n

3@aL11,MaL12,MdL8,L12~2L13!

2aL21,MaL,MdL8,L22~2L21!#,

~A8!

^ f n8,L8
M8 uP̂18 P̂z8u f n,L

M &5dM8,M11@aL11,MbL11,MdL8,L12C1

1cL21,MaL,MdL8,L22C21dL8,LC0

3~2aL11,McL11,M1aL,MbL21,M !#,

~A9!

^ f n8,L8
M8 uP̂28 P̂z8u f n,L

M &5dM8,M21@aL11,McL12,M21dL8,L12D1

1bL22,M21aL,MdL8,L22D21dL8,LC0

3~2aL11,MbL,M212aL,McL,M21!#,

~A10!

where

T65F 2mn
LI L8,L

n8,n
6S R

l B
D 2 T̃L8,L

n8,n
~3!

j L11~mn
L! j L811~mn8

L8!
G ,

B65H 2mn
LF6I L8,L

n8,n 2~L61!11

R2

1
1

l B
2

T̃L8,L11
n8,n

~3!

j L11~mn
L! j L811~mn8

L8!
G

1
1

2 S R

l B
2 D 2 T̃L8,L

n8,n
~4!

j L11~mn
L! j L811~mn8

L8!
J , ~A11!
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