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Abstract

Stable propagation of single ultrashort (subpicosecond or femtosecond) optical pulses and pulse trains is obtained in

numerical solutions of a higher-order nonlinear Schroedinger equation with bandwidth limited amplification and

nonlinear gain. It is shown that stable single pulse propagation can be achieved for a broad class of pulses with different

initial shapes, and that pulse trains can propagate stably without interaction under certain conditions. � 2002 Elsevier

Science B.V. All rights reserved.
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Soliton propagation in a single mode optical
fiber was first suggested by Hasegawa and Tappert
[1] for high-bit-rate optical communication.
Propagation of a picosecond optical pulse gov-
erned by the nonlinear Schroedinger (NLS) equa-
tion can be realized by balancing the anomalous
group velocity dispersion (GVD) and the Kerr
nonlinearity or self-phase modulation (SPM) [2].
In order to increase the bit rate of a single channel,
the transmission of ultrashort (subpicosecond or
femtosecond) optical pulses is necessary. For ul-
trashort soliton pulses (USP), the NLS equation

has to be converted into a higher-order nonlinear
Schroedinger (HNLS) equation [3] in which effects
such as third-order dispersion (TOD), self-steep-
ening and self-frequency shift are considered. In
the absence of the self-frequency shift term, a
number of solitons, both bright and dark, or sol-
itary wave solutions have been found in recent
years in the balance between GVD, SPM, TOD,
and self-steepening effects [4–13]. However, in the
presence of self-frequency effect, the exact solitary
wave or soliton solution has not, to our knowl-
edge, been found yet. So stable USP transmission
is still an open topic in this case. In addition, in
actual fiber transmission system, loss is inevitable
and the pulse is often deteriorated by loss, so an
amplifier has to be employed to compensate the
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loss. When the gain bandwidth of the amplifier is
comparable to the spectral width of the ultrashort
optical pulse, the effects of frequency- and inten-
sity-dependent gains must be considered. These
effects may lead to eventual instability of soliton
pulse. However, Kodama et al. [14] suggested that
the introduction of nonlinear gain, or the com-
bined operation of gain and saturable absorption
is quite effective for stabilizing the soliton propa-
gation. When all these effects are considered, the
HNLS equation must be replaced by the modified
HNLS (MHNLS) equation.

The mathematical model for MHNLS equation
describing all of the effects mentioned above is as
follows:
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where 1 is the propagation distance, s is the
retarded time, W is the complex envelope of the
electric field. b2 and b3 represent the net GVD and
the TOD, respectively, c is Kerr nonlinear
parameter, a1 ¼ 2c=x0 is the coefficient of the
cubic derivative term and is responsible for self-
steepening of the pulse edge and x0 is the carrier
frequency, a2 ¼ cTR (TR is the slope of Raman
gain) that results from the time-retarded induced
Raman process and is responsible for the soliton
self-frequency shift, a0 is the linear gain ða0 > 0Þ
or loss ða0 < 0Þ coefficient at the carrier frequency
x0, b2 describes the effect of spectral limitation
due to bandwidth limited amplification and/or
spectral filtering which is inverse proportional to
gain bandwidth, bn accounts for nonlinear gain/
absorption processes, a5 represents a higher-order
correction to the nonlinear amplification/absorp-
tion namely the saturation to the nonlinear gain
or loss.

In the absence of linear frequency- and inten-
sity-dependent gain/or absorption ða0 ¼ b2 ¼ bn ¼
a5 ¼ 0Þ, Eq. (1) reduces to the standard HNLS
equation mentioned in [15], which has been ex-
tensively investigated in recent years. But to our
knowledge, until now no one has considered the
system described by Eq. (1) although it is worthy

of investigation in actual ultrashort pulse trans-
mission line.

In this paper, we investigate the propagation of
the optical pulse by employing numerical split-step
Fourier method to solve Eq. (1). It is found that a
stable hyperbolic secant pulse can exist under the
balance of all these effects: GVD, SPM, TOD,
self-steepening, self-frequency shift, linear loss,
band-limited filter, nonlinear gain and gain satu-
ration. In addition, the interaction of adjacent
pulses is discussed. The results show that appro-
priate phase-difference may be helpful for sup-
pressing the interaction between pulses to some
extent. For multi-pulse propagation there is a
threshold for the separation between two adjacent
pulses, when the separation is larger than the
threshold, two or more pulses can stably transmit
without clear interaction in a given distance, but
when the separation is smaller than the threshold,
the pulse train will attract each other and converge
into one pulse along its transmission instead of
transmitting separately. Finally, we present nu-
merically 1-bit (8-pulses) propagation without
clear interaction up to a distance of 1500 m.

For the reason of simplicity, we normalize Eq.
(1) by scaling with: U ¼ W=

ffiffiffiffiffi
P0

p
; t ¼ s=T0; z ¼

1=LD, respectively, where P0 is proportional to
peak power, T0 is proportional to pulse width and
LD is so-called GVD length given by LD ¼ ðT 2

0 =
jb2jÞ. Then Eq. (1) can be rewritten by
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where C3 ¼ b3=6jb2jT0, cs ¼ �ð2=x0T0Þcn, cm ¼
�TR=T0, d0 ¼ LDa0, d2 ¼ ðLD=T 2

0 Þb2, dn ¼ LDP0bn,
and d5 ¼ P 2

0LDa5. Here we have set P0 ¼ 1=ðcLDÞ,
without loss of generality. For a pulse of T0 ¼ 100
fs, if we choose the typical parameter values for
conventional single mode fiber as follows [15,
16] b2 ¼ �20 ps2=km; b3 ¼ �0:1 ps3=km; c ¼ 20
W�1 km�1 and TR ¼ 5 fs, then we can determine
c3 � �0:008; cs � �0:025; cm ¼ �0:05; LD ¼ 0:5
m and P0 ¼ 100 W. In addition, the corresponding
parameters of modified terms can be given by [17]:
d0 ¼ �0:05; d2 ¼ 0:3; dn ¼ 0:5; d5 ¼ �0:34:
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Let us now consider the stable pulse transmis-
sion of Eq. (2). The evolution of single light pulse
up to a distance of z ¼ 500 (1 ¼ 250 m) is shown in
Fig. 1(a), where the initial pulse is selected as
sechðtÞ. From the figure we can see that a solitary
pulse can propagate stably in the system. In fact,
at the beginning of the evolution process, the given
initial pulse experiences a self-adjusting process
and having walked a short distance, a stable light
pulse transmission is approached eventually. The
self-adjusting process can be seen clearly in Fig.
1(b) which shows the temporal width versus the
propagation distance of the pulse of Fig. 1(a)
within the distance of z ¼ 100.

It is noteworthy that although the effects of
higher terms are considered, the shape of the pulse
remains unchanged. We haven’t found the asym-
metrical broadening in the time domain caused by
TOD and the asymmetrical spectral broadening of
the pulse made by self-steepening and even the red-
shift of the spectrum caused by the self-frequency
shift [18]. So there may exist a balance of the co-
operation of all these effects: GVD, SPM, TOD,
self-steepening, self-frequency shift, linear loss,
band-limited filter, nonlinear gain and gain satu-
ration, which lead to a stable pulse propagation. In
order to prove this inference, we investigate the
evolution of the optical pulse along the fiber for
MHNLS Eq. (2) without the modified terms
ðdi ¼ 0Þ: In this case, the TOD value aforemen-
tioned will cause dispersion waves on the tail of the
pulse in a very short distance (in our case z ¼ 10).
The result is the same as that indicated in many

papers (for example, see [15]). However, when the
modified terms are added, as indicated in Figs. 1(a)
and (b), these phenomena cannot be observed any
more. In fact, when the modified terms are added,
even the TOD value is increased to 10 times the
value mentioned above, the pulse can still propa-
gate stably without any asymmetrical broadening
in the time domain and any dispersion wave on its
tail. Similarly, if the modified terms are omitted,
the phenomenon of self-frequency shift is clearly
observed in a short distance. But when the modi-
fied terms are considered, as the contour of the
spectrum of Fig. 1(a) shown in Fig. 2, the so-called
self-frequency-shift cannot be observed even in
such a long distance. In fact, there is barely any
change in the spectrum after the stable pulse is
formed. By the way, although the Raman gain
slope TR is generally selected as 3 or 5 fs [15,19,20],
we find that even if it increases to 30 fs, the
self-frequency shift phenomenon can still be sup-
pressed completely. Therefore, from these investi-
gations we can infer that there may exist a balance
among all the effects to keep the stable pulse
propagation.

By observing the pulse’s half maximum spectral
width and temporal width versus transmission
distance for the case of Fig. 1(a), we find that at
the beginning of the process both of them are os-
cillating with comparatively large amplitudes, then
they quickly stabilize to fixed values as shown in
Fig. 1(b). By fitting the transmission data we find
that the stable pulse is Sech-shaped. Moreover we
calculate the product of pulse temporal width

Fig. 1. (a) The stable evolution of a solitary pulse in MHNLSE up to a distance of 500. (b) Pulse width versus distance of (a).
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(PW) and spectrum width (FW), which is around
0.34. This is a little larger than that of the exact
light solitary wave (Sech-shaped), which equals to
0.32 approximately. This shows that the stable
pulse might be expressed as a stable solitary solu-
tion with a little chirp. However the chirp is so
small that it can’t be seen from the real and the
imaginary parts of the stable pulse. What made it
important is that the stable solitary wave can be
excited not only by Sech-shaped initial pulse but
also by Gaussian-shaped. Detailed numerical
studies reveal that when the Gaussian-shaped
pulse is used as an initial pulse, there is threshold
for the initial amplitude to form the stable pulse.
For example, for the initial Gaussian-shaped input
pulse Wðt; 0Þ ¼ A0 expð�t2Þ, A0 must be larger than
or equal to 1.08, otherwise, the initial pulse will
decay to zero instead of forming a stable soliton
pulse. In addition, the stable pulses obtained by
different initial pulses are the same in shape. It
should be noted that, although we only show the
stable pulse transmission to a distance of z ¼ 500
(1 ¼ 250 m) in Fig. 1(a), in fact, by investigating
the evolution of the pulse in a much longer dis-
tance of z ¼ 10000 (1 ¼ 5000 m) we find that the
pulse can still propagate without any distortion. It
implies that the undistorted stable pulse might
propagate in an optical communication system for
a practical distance.

It should be pointed out that the parameter
values of the modified terms must be confined to

some extent in order to realize stable propagation
of the pulse. We have studied the evolution be-
havior of the pulse as one of these parameters
changes but with the others keeping the foremen-
tioned values. The numerical results show that the
undistorted stable pulse can be formed in certain
regions. Such as when only d0 is varied, the range
is �0:08 6 d0 6 0 with others the same as that gi-
ven before. Similarly, when only d2; dn or d5 is
varied, respectively, the range is correspondingly
0:16 d2 6 0:6, 0:56 dn 6 1:5, or �0:56 d5 6 � 0:1,
respectively. Out of the ranges, the pulse either
decays to zero or breaks up. However, this doesn’t
imply that the regions for a stable pulse trans-
mission are obtained completely. What would
happen if several of these parameters were varied?
It is still an open question.

Since the single solitary pulse can transmit sta-
bly in such a system, then what about the pulse
train? Can they propagate without interaction or if
the interaction exists, what will they be? We study
them numerically by giving two parallel pulses as
initial pulses that are expressed as:

Wðt; 0Þ ¼ sech ðt � T Þ expðih1Þ
þ sech ðt þ T Þ expðih2Þ:

The different results of dual-pulse transmission
with different phase-differences but same separa-
tion for the initial input pulses are shown in Fig. 3
and Fig. 4, where T ¼ 3:5 and h ¼ h2 � h1 ¼ 0 and
p, respectively. Fig. 3 shows that in the absence of
phase-difference ðh ¼ 0Þ the two input pulses at-
tract each other and merge into one pulse quickly.
But in the case of h ¼ p, see Fig. 4, the two input
pulses can propagate a longer distance before they
merge into one. So for multi-pulses propagation, a
p phase-difference may be helpful for suppressing
the interaction between pulses to some extent.
However, in both the two cases, the pulse-pair
attract each other and eventually merge into a
single pulse. This indicates from another aspect
that there exists stable single solitary pulse for the
system and that the initial condition of forming the
solitary pulse is more broad. But as it is shown,
when the two initial pulses are too close, they
cannot propagate separately in the given distance
without interaction. In contrast, the propagation

Fig. 2. Contour plot of the spectrum for the soliton-like pulse

of Fig. 1(a).
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of two pulses in the case of T ¼ 5:0 is shown in
Fig. 5, where the phase-difference h ¼ 0. From it
we can see clearly that there are no interaction
between them. It means that, if the separation is
large enough for the given propagation distance, it
is possible to achieve stable pulse-pair transmis-
sion without interaction over a long distance even
for zero phase-difference.

From the results obtained above, stable pulse-
pair transmission can be achieved only if the sep-
aration between input pulses is large enough. But
the broad-band information transmission requires
a high repetition rate of soliton pulse, i.e., the
separation should be short enough. So it is useful

to find the optimized value that not only can insure
no clear interactions among pulses but also can
insure highest repetition rate for optical pulse
propagation. By detailed numerical calculations,
we find that for the distance of z ¼ 500 (1 ¼ 250
m), if there is no phase-difference between adjacent
pulses, the separation threshold between input
pulses should be Tth ¼ 4:4, and if there is phase-
difference p, the threshold should be Tth ¼ 4:2
which means that when T < Tth, the two pulses
always attract each other and merge into one in
the distance, and when T > Tth, the interaction
cannot be seen in the given transmission distance.
By the way, we found that the phase-difference p is
more effective for weakening the interaction only
when the initial separation is comparatively smal-
ler. In addition, to confirm the stable transmission
of multi-pulses, we investigated the propagation of
three and four pulses and found that the results are
similar to those results for pulse-pair.

Finally, the pulse train propagation of 1-bit (8-
pulses) is shown in Fig. 6. Unlike the value of
TOD selected in Fig. 5, here we choose it as
c3 ¼ �0:055 and find that the velocity shift seems
to be sensitive to the value of TOD. In addition,
the phase-difference is given as h ¼ 0. And the
initial separation is selected as T ¼ 5:0, which
corresponds to the conventional case, namely the
space between pulses is 10 times of the pulse width.
From the figure we can see that the pulse train can
transmit a distance up to z ¼ 500 (1 ¼ 250 m)

Fig. 4. Evolution contour of pulse-pair with phase-difference p
up to a distance of 500 for T ¼ 3:5.

Fig. 5. Evolution contour of pulse-pair without phase-differ-

ence up to a distance of 500.

Fig. 3. Evolution contour of pulse-pair without phase-differ-

ence up to a distance of 500 for T ¼ 3:5.
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without clear interaction. Moreover, we cannot
find the interaction of these pulses even for a
longer distance up to z ¼ 3000, which corresponds
to 1500 m. It is expectable that the stable pulse
train may transmit in an optical communication
system for a practical distance.

In conclusion, we have studied the pulse trans-
mission for a modified HNLS equation with
bandwidth limited amplification and nonlinear
gain by numerical simulation. It is found that a
stable optical pulse with hyperbolic secant shape
can exist under the cooperation of GVD, SPM,
TOD, self-steepening, self-frequency shift, linear
loss, band-limited filter, nonlinear gain and gain
saturation. In addition, the interaction of adjacent
pulses is also discussed. The results show that ap-
propriate phase-difference may be helpful to sup-
press the interaction between pulses to some
extent. For multi-pulse propagation there is a
threshold for the separation between two adjacent
pulses, when the separation is smaller than the
threshold, the pulse train will attract each other
and converge into one pulse along its transmission
instead of transmitting separately. Finally, we
present numerically 1-bit (8-pulses) propagation
without clear interaction up to a distance of 1500
m. It may be significant for high-bit-rate optical
communication in a practical distance.
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