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The modification of acoustic phonons in semiconductor nanostructures embedded in a host crystal is inves-
tigated including corrections due to strain within continuum elasticity theory. Effective elastic constants are
calculated employing ab initio density functional theory. For a spherical InAs quantum dot embedded in GaAs
as barrier material, the electron-phonon coupling is calculated. Its strength is shown to be suppressed compared
to the assumption of bulk phonons.
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I. INTRODUCTION

Semiconductor nanostructures have attracted increasing
interest over the last couple of years. Especially quantum
dots �QD� are proposed as possible candidates in applica-
tions such as single photon sources and quantum information
devices. Improved growth techniques nowadays enable the
fabrication of small QDs with a narrow size distribution.
Single, isolated QDs embedded in a semiconductor matrix or
in solution are of high interest for basic research. Since their
electronic properties are inevitably connected to the underly-
ing lattice and its vibrations �phonons� they offer the possi-
bility to study these fundamental interactions. While the
theory for electron-phonon interaction in bulk systems is
well established, the inhomogeneous nature of nanostruc-
tures leads to strong modifications of the electronic proper-
ties as well as the phonon spectrum.1,2 The existence of
boundaries between the constituting materials and/or to the
vacuum introduces a coupling of the longitudinal and trans-
verse phonon modes even for isotropic media. Additionally,
new types of confined interface and surfaces modes can oc-
cur.

The electron-acoustic phonon interaction is of high inter-
est since it is the source of so-called pure dephasing of op-
tical excitations in QDs, as detailed in recent articles.3,4 The
interaction is usually treated by deformation potential cou-
pling, and acoustic phonons are described as bulk phonons.
Only recently some progress has been made to include
phonons in inhomogeneous media in the treatment of
electron-phonon interaction in slab and half space
geometries.3

The present article provides insights into the role of the
phonon modification due to the nanostructure, including
strain. We restrict ourselves to the simplest case—a spherical
QD—in order to describe the qualitative effect on the
electron-acoustic phonon coupling. The details of the model
and the corresponding theory are developed in Sec. II. Cal-
culations of strain dependent acoustic phonons on the basis
of ab initio density functional theory �DFT� calculations are
given in Sec. II B which serve as input for the calculation of
the electron-phonon coupling function. Results are given in
Sec. III.

II. MODEL AND THEORY

Epitaxial growth methods enable the fabrication of semi-
conductor heterostructures with sizes of a few nanometers

only. The different materials are connected pseudomorphi-
cally, i.e., without structural defects. Defects would lead to
partial relaxation of intrinsic strain which results from differ-
ent lattice constants of the constituents. The strain itself
causes the change of physical properties compared to relaxed
bulk materials. This includes the electronic �band structure�
as well as the lattice properties �phonons�.

The system we study in this article is a spherical shape
inclusion �quantum dot� in an infinite matrix �barrier�. This
artificial system should serve as test model for the relevance
of nonbulk phonon modes in the electron-phonon coupling.
For the material parameters we choose the prototype
InAs/GaAs system. The first part is devoted to the descrip-
tion of the acoustic phonons within continuum elasticity
theory followed by the description of the electron-acoustic
phonon coupling.

A. Acoustic phonons within continuum elasticity

In continuum elasticity theory, acoustic phonons follow
from the wave equation of the displacement field u�r� �Ref.
5�

− �2��r�uj�r� = �
k

�

�xk
� jk�r� , �1�

here written in Cartesian coordinates j ,k=x ,y ,z. Both the
mass density ��r� and the stress tensor �J�r� are in general
spatially dependent. In linear elasticity theory the stress ten-
sor �J is proportional to the strain tensor �J defined by the
spatial derivatives of the displacement fields, both quantities

being related by the fourth order tensor of elastic constants CJ

�Hooke’s law�. For isotropic systems there are only two in-
dependent elastic constants C11 and C44, which are related to
the well-known Lamé coefficients C12=C11−2C44=� and
C44=�. The stress tensor elements are then given by

� jk = � jk�C11 − 2C44��
l

�ul

�xl
+ C44� �uj

�xk
+

�uk

�xj
� . �2�

The restriction to isotropic media allows to treat the phonons
in large part analytically.

For our spherical model system it is convenient to trans-
form to spherical coordinates. For the specific electron-
phonon coupling considered below, the only relevant phonon
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mode has angular momentum zero �breathing mode� u�r�
=eru�r�, which fulfills the equation

0 = ��r��2u�r� − 4
dC44�r�

dr

u�r�
r

+
d

dr
�C11�r��du�r�

dr
+

2u�r�
r

�� �3�

with elastic constants and mass density having an arbitrary
radial dependence. This one-dimensional second-order dif-
ferential equation contains the boundary conditions for a
stepwise constant medium as well, which are

u and C11�du

dr
+

2u

r
� − 4C44

u

r
continuous. �4�

The general normalization condition of the displacement
within a large volume 	 reads6

�
	

d3r��r�u
�r� · u
��r� = �
,
�
�

2�


, �5�

where 
 is the discrete mode index. This normalization is
converted into a matching condition at large distances with
an outgoing wave containing a phase shift, as standard in
scattering theory. Details are discussed in the Appendix. As a
consequence, 
 is replaced by a �continuous� energy variable
��
→E.

The elastic constants in Eq. �3� are not to be taken as the
usual tabulated bulk values for the dot and the barrier mate-
rial: The phonon calculation has to start from the reference
state where the crystal is locally under finite strain. Therefore
the spatial dependency is not only due to the change in ma-
terial but also due to the spatially varying strain.

B. Effective elastic constants from DFT

The usual treatment of continuum elasticity assumes fixed
elastic constants. In our case, however, the system contains
spatial regions where the material is strained. This leads to
an effective change of the local elastic constants. The nu-
merical values can be taken for homogeneously strained bulk
systems assuming that the elastic constants depend only on

the local strain, i.e., CJ�r�=CJ��J�r��. The calculation of elastic
constants for periodic systems is possible directly by em-
ploying ab initio density functional theory �DFT�. Within
perturbation theory a single calculation is sufficient to get the
full fourth order tensor of elastic constants for a specific
deformation of the unit cell. The DFT calculations are car-
ried out with the ABINIT computer code.7–9 The local density
approximation �LDA� is applied for the exchange-correlation
energy. Soft norm-conserving pseudopotentials are taken
from the code of the Fritz-Haber Institute, Berlin.10 Wave
functions are expanded into plane waves with converged
Monkhorst-Pack meshes of k=8�8�8 per unit cell and a
cutoff energy of Ecut=36 Ha	979 eV.

Intuitively, one would expect that a homogeneous mate-
rial under compression would become harder due to the pres-
ence of anharmonic terms in the expansion of the free energy
density around the equilibrium position �reference state�,

�0 =
1

2�
I,J

CIJ�I�J +
1

3! �
I,J,K

CIJK�I�J�K + ¯ . �6�

Here, capital indices refer to Voigt’s notation5 �I=1¯6� of
the strain tensor �J with components �I and the elastic con-

stants. The CIJ are the components of the CJ fourth order
tensor and describe linear elasticity completely. CIJK give
anharmonic contributions still in the homogeneous system.
The equilibrium density is written as �0. We restrict our-
selves to hydrostatic compressions in the following. An ex-
tension to general deformations is straightforward but nu-
merically a far more complex task. Allowing only small
distortions of the lattice �an expansion up to second order is
sufficient�, only the bulk modulus B=1/3�C11+2C12� would
be a constant quantity. Including terms up to third order an
analytical derivation gives a linear dependence on the
strength of the hydrostatic lattice distortion.11

The dependence of the calculated elastic constants on the
�variable� lattice constant, which corresponds to hydrostatic
deformation, is displayed in Fig. 1. In the range from −7 to
+7 % lattice constant variation we find a nearly linear reduc-
tion of C11 and C12 with increasing the lattice constant,
which is expected from a third order expansion,11 showing
that even for small distortions the assumption of constant
elasticity does not hold. The deviation from the linear behav-
ior, especially for C44, is a clear indication that even higher
orders than the third one influence significantly the effective
elastic constants. Numerical deviations from the experimen-
tal values are mainly due to the known underestimation of
the lattice constant in LDA for III-V semiconductors �see
Table I�. Given a local static lattice distortion, it is now pos-
sible to implement these elastic constants in the phonon cal-
culation, which depend on the spatial position due to change
in material and strain as well.

C. Electron-acoustic phonon coupling

The electron-acoustic phonon interaction has two main
contributions: Deformation potential coupling and piezoelec-
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FIG. 1. �Color online� Effective elastic constants for GaAs
�black� and InAs �red� in dependence on the lattice constant a for
hydrostatic deformations calculated by DFT employing perturbation
theory. The �experimental� equilibrium lattice constants are marked
by full vertical lines, while the lattice constant of the relaxed InAs
QD is given by the dashed line.
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tric coupling. The second contribution will not be considered
here, although some of the following discussions apply also
to this part.

For conduction electrons at the �-point in III-V semicon-
ductors the deformation potential couples only to a volume
deformation �div u�. The interaction Hamiltonian is6

Hdef�r� = �



DC�r�
b

† div u
�r� + H.c.� �7�

with the �material-dependent� deformation potential constant
for the conduction band DC and the phonon creation operator
b


†. In a QD with confinement functions �n�r� of the electron,
the relevant electron-phonon matrix elements are then

M

nm =� d3r�n

*�r��m�r�DC�r�div u
�r� . �8�

The spherical symmetry of the QD leads to well-defined an-
gular quantum numbers of the confinement levels, which se-
lect an appropriate symmetry of the lattice displacement. For
electronic s-s transitions, only the azimuthal quantum num-
ber l=0 is needed �breathing mode�. For the polaronic modi-
fication of a single electronic transition within the indepen-
dent Boson model,12 the diagonal element in Eq. �8� is of
central importance. Concentrating on the lowest �s-type�
confinement state n=1, we need to calculate the following
coupling function:13

f�E� = �



��E − ��
��M

11�2. �9�

For instance, the so-called broad band around the zero-
phonon line at E=0 has a shape close to f�E� /E3 at elevated
temperatures �strictly speaking, the hole confinement state
participating in the transition has to be included as well�.

III. RESULTS AND DISCUSSION

In the following we present results for a spherical QD
consisting of pure InAs embedded in infinitely extended
GaAs. First, the strain distribution has to be determined
which then serves as input for the effective spatial dependent
elastic constants to be used in Eq. �3�. Under hydrostatic
compression the coordinates change according to xj�= �1
−��xj. The deformation � can be determined from the static
solution ��=0� of Eq. �3�. Applying the boundary conditions
from Eq. �4� accordingly leads to

� = �0
C44,GaAs

C44,InAs − C44,GaAs +
3

4
C11,InAs

�10�

with the lattice mismatch �0. For the present InAs/GaAs
model system, it is �0= �a0,InAs−a0,GaAs� /a0,InAs=6.8% using
the experimental values given in Table I. The relaxed lattice
constant a of the dot material �InAs�, which is compressed
hydrostatically, is therefore aInAs=a0,InAs�1−�� �last row of
Table I, and indicated in Fig. 1 as dashed line.� Outside the
dot, the material is compressed in radial direction but dilated
laterally resulting in a zero net volume change. Since we
consider only hydrostatic compression the elastic properties
are taken unchanged for the barrier material.

Having all the input for Eq. �3� it can be solved numeri-
cally. In the common approximation of using bulk phonons
�here of the barrier material—index B�, the solution gives
simply uE

�B��r�= j1�kBr� with jl�x� being the spherical Bessel
function of the first kind �see also the Appendix �. The wave
number is related to the energy via E=�vlBkB �vl=C11/� is
the longitudinal sound velocity�.

For the full problem, the displacement inside the dot �in-
dex D� starts as uE�r�=A�E�j1�kDr� for r→0. After solving
Eq. �3� numerically, the prefactor A�E� has to be determined
by matching with the outgoing wave solution

uE�r → � � = − cos�kBr − �E�/�kBr� �11�

according to the asymptotics of the spherical Besssel func-
tion. If the material parameters change steplike in radial di-
rection at the dot-barrier interface an analytic solution is pos-
sible, which is discussed in the Appendix. Our numerical
solution agrees exactly in this case with the analytic treat-
ment, but more general problems of continuously changing
elastic properties can be calculated. Although the integration
in the matrix element extends into the barrier material, it is
mainly the variation of A�E� which modifies the coupling
function. In order to implement the change in wave number
�sound velocity� as well, we found it convenient to define a
phonon amplitude as

P�E� = A�E�
vlB

vlD
. �12�

By definition, for bulk barrier phonons, P�E�	1 which is
the normalization used in Fig. 2.

Whereas for a free standing sphere as well as for a rigidly
clamped sphere, only discrete phonon energies are allowed,
the QD embedded in an infinite elastic medium allows for a
continuous manifold of phonon energies. However, the oscil-
lating behavior of the phonon amplitude shown in Fig. 2
resembles the eigenmodes of an isolated sphere. A specific
feature is the reduction of the phonon amplitude at small
energies: Including the strain, its overall strength is reduced
even further. Doubling the size of the embedded dot from
R=5 nm to R=10 nm leads to halve the energetic spacing
between maxima, while the overall amplitude remains the
same. This can be understood by noting that within the ap-
plied approximation, neither the static strain field nor the
material density depends on the size of the QD.

TABLE I. Parameters used in the calculation for the unstrained
material �Ref. 14�. Given are also the theoretical lattice constants a0

�DFT�. Last row: Resulting values for the embedded strained InAs
quantum dot �s-InAs�.

me


m0�
DC


eV�
CBO


meV�
�


g/cm3�
a0 �exp.�


Å�
a0 �DFT�


Å�

GaAs 0.067 −7.17 0 5.33 5.65 5.51

InAs 0.026 −5.08 −894 5.66 6.06 6.05

s-InAs 0.026 −5.08 −208 6.50 5.79
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The last step is to insert the phonon modes uE�r� into the
electron-phonon matrix element Eq. �8�. The calculation of
the electron confinement wave function is done within the
effective mass approximation including mass discontinuities

�−
�2

2
�

1

me�r�
� − V�r���n�r� = �n�n�r� . �13�

Inserting the ground state electron �1�r� �radially symmetric�
and phonon functions uE�r� into Eq. �8� gives for the
electron-phonon coupling Eq. �9� the result

f�E� =
4E

��BvlB
3 ��

0

�

dr�1
2�r�DC�r�

d

dr
r2uE�r��2

. �14�

If the phonon modes are approximated by bulk ones of the
barrier, the resulting coupling function is

f �B��E� =
4E3DCB

2

�3�BvlB
5 ��

0

�

drr2�1
2�r�j0�kBr��2

. �15�

Divided by E3 it follows the �squared� Fourier transform of
the electron charge density, which decays on a scale of E
��vlB /R �R is the QD radius�.

All input variables are taken from existing literature14 and
given in Table I. The compressive strain in the InAs dot
reduces the conduction band offset �CBO� significantly. The
resulting electron confinement potential is plotted in the in-
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FIG. 2. �Color online� Energy dependence of the phonon ampli-
tudes for an InAs sphere of radius R embedded into GaAs material.
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strained one.
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FIG. 3. �Color online� Electron-acoustic pho-
non coupling function. Compared are �a� the un-
strained combination of an InAs QD �R=5 nm�
embedded in GaAs and the more realistic �b�
strained situation. In each panel the assumption
of bulk phonons, either GaAs or InAs, is com-
pared to the full phonon calculation. The inset
shows the electron confinement potential and the
corresponding charge density r2�1

2�r�.
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sets of Fig. 3 together with the charge density in the lowest
confinement state r2�1

2�r�. In the strained case 
Fig. 3�b��, a
larger tunneling of the wave function into the barrier can be
seen. Surprisingly, in the present case, this change in the
electronic wave function affects the electron-phonon cou-
pling only marginal. This can be seen by comparing the
electron-phonon coupling functions for GaAs bulk in Figs.
3�a� and 3�b� which differ only in the electronic wave func-
tion part.

The coupling function of electrons with acoustic phonons
Eq. �14� is shown in Fig. 3 comparing the strain free case �a�
with the improved description including the strain present in
the nanostructure �b�. Within each panel the approximation
of bulk phonons using either barrier �GaAs� or dot �InAs�
material parameter are displayed, too. Compared to “dot-
bulk phonons,” a strong reduction is found, whereas “barrier-
bulk phonons” are much closer to the full solution, although
missing the existing structure in the coupling function.

The compressive strain results in an increased mass den-
sity �see Table I�, increased elastic constants in the dot and to
a reduction of the coupling strength div u�r�. The shape of
the coupling function, mainly determined by the structure in
the phonon amplitude, however, is not much changed when
including strain. The coupling is reduced further by increas-
ing the size of the QD, see Fig. 4. Here, the coupling func-
tion is even more structured �sharp drop at around 1 meV�
which has its origin in the oscillatory variation of the phonon
amplitude P�E� discussed before.

IV. CONCLUSIONS

Including the details of the phonon characteristics in
semiconductor nanostructures is essential for a quantitative
description of the electron-acoustic phonon coupling. Mate-
rial parameters, i.e., mass density and elastic constants, are
changed due to intrinsic strain in pseudomorphically grown
heterostructures and are therefore spatially dependent.
Within continuum elasticity this can be treated by introduc-
ing effective material parameters. There is a continuous en-
ergy spectrum for phonons of nanostructures embedded in an

infinite elastic medium. Compared to the assumption of bulk
phonons, an overall reduction of the electron-acoustic pho-
non coupling is found due to the structurally modified
phonons, which are influenced by the strain in the nanostruc-
ture also. Resonancelike features in the phonon modes lead
to changes in the line shape of the energy dependent cou-
pling function which are more pronounced for midsize dots
than for small dots.
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APPENDIX: ANALYTIC SOLUTION

For steplike elastic material properties an analytic solu-
tion of Eq. �3� is possible. In the present case, we have two
regions, which are the dot �index D� for r�R and the barrier
material r�R �index B�. Introducing a phase shift � into the
standard spherical Bessel functions

j1,��x� =
sin�x − ��

x2 −
cos�x − ��

x
, �A1�

the solution of Eq. �3� can be expressed as

uE�r� = �A�E�j1,0�kDr� , r � R ,

j1,�E
�kBr� , r � R

�A2�

and is in agreement with the outgoing wave condition Eq.
�11�. The original normalization Eq. �5� in a large sphere
with radius R� would produce an additional factor

N = E/�4��BvlB
2 R�� �A3�

in Eq. �A2�. The transition from Eq. �9� to Eq. �14� intro-
duces the eigenvalue density

dE

d

=

�vlB�

R�

�A4�

in the denominator. The multiplication with N2 removes the
artificial dependence on R� and leads to the prefactor in Eq.
�14� being linear in E.

Implementing the boundary conditions at the dot-barrier
interface, Eq. �4�, and introducing the abbreviations x=kDR,
y=kBR, t=tan�x�, and T=tan�y−�E� the phase shift has to be
extracted from

�y2

1 − y/T
=

x2

1 − x/t
+ � �A5�

with �=C11
B /C11

D and �=4�C44
B −C44

D � /C11
D . The prefactor

A�E� follows then from

A�E� =
j1,�E

�y�

j1,0�x�
= 1 + t2

1 + T2

x − Tx/y

y − ty/x
. �A6�
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FIG. 4. Electron-acoustic phonon coupling function: Compared
are two different radii of the strained InAs QD embedded in GaAs.
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