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Abstract 

We consider the detection of noisy signals with neuron-like threshold crossing detectors in the context of stochastic 
resonance. On the basis of an exact spectral analysis of the outgoing stochastic spike train, we show for the first time that 
there are optimal values for the threshold which yield under given environmental conditions optimal performance. 

1. Introduction 

Threshold crossing dynamics appears to be very 

common in nature and technology. Nowadays commu- 
nication technology e.g. relies almost exclusively on 
digital information processing, where analog-digital 

converters are of vita1 importance. The human brain 
manages its outstanding information processing capa- 
bility by relying on action potentials of its numerous 

neurons. 
In a very idealized description, threshold systems 

perform some action whenever some voltage or other 

input quantity exceeds a given threshold. As common 
as the occurrence of threshold crossing dynamics is 
the presence of noise, coming with the input signal 

or being inherent in the threshold devices. The typical 
noise level, however, can vary over a large range. In 

electronic communication systems, the noise level is 
typically very small, whereas in neuronal systems the 
noise amplitude can easily be as large as that of the 
information carrying signals. It is the purpose of this 
paper to study the impact of noise on the performance 
of threshold devices and to provide optima1 design 
strategies at given environmental conditions. 

The threshold system we are studying responds with 

an action (pulse h(t)) when the noisy input exceeds 
a threshold (see also Refs. [ 1,2] ) . The pulse is com- 

pletely uncorrelated with the time evolution of the in- 
put. The output of the threshold system is a train of 
pulses h(t) located each at the times t, where the in- 
put crosses threshold, i.e. 

s(t) = -p(” - tn) = .I dt' ss(t - t’)h(P), 
n 

(1) 

Since the statistical properties of the pulse train are 

contained in the sequence of “random points” t,, it is 
sufficient to study sa ( t) . The pulse-shape h ( t) yields 
for e.g. the power spectrum of the pulse-train only a 
multiplicative form factor. 

As the input of our device, we consider a sinusoidal 
signal contaminated by Gaussian colored noise. For 

weak signal amplitudes, the stochastic spike train ( 1) 
has been studied recently in Ref. [ 21 by simulating the 
threshold crossing dynamics and analyzing the spec- 
tral properties of the pulse train (see also Ref. [ 31 for 
a review). It has turned out that the signal-to-noise ra- 
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tio (SNR) of the pulse train assumes a maximum at 
a finite noise level - a novel form of stochastic reso- 

nance [ 41 (for recent reviews see Refs. [ 5,6] ). 
Two theoretical approaches to describe this novel 

form of stochastic resonance have been developed re- 

cently. Wiesenfeld et al. [ 11 have analyzed the co- 
herence of the spike train by computing the signal-to- 

noise ratio, based on the assumption that the spikes are 

statistically independent and that the signal amplitude 

is small against the threshold. Another approximative 

treatment has been put forward by Gingl, Kiss and 

Moss [2] by taking advantage of the assumption of 
a slow input signal (low frequency) and small signal 

amplitudes. 
In order to find conditions for optimal performance 

of threshold detectors, it is necessary to overcome the 

restrictions of the previous theoretical results. In Sec- 
tions l-6, we derive from scratch exact expressions 

for the statistical and spectral properties of the random 

pulse train generated by the threshold device, driven 
by a sinusoidal signal and Gaussian colored noise. 

The exact results are compared with the approximate 
theories mentioned above. In particular, we calculate 

spike-spike correlation functions and discuss their im- 
pact on the power spectrum of the pulse train. Hav- 
ing results at hand which are not restricted in param- 

eter space, we discuss the optimal design of threshold 

detectors in Section 7. Given the input and the envi- 
ronmental conditions of the threshold detector, i.e. the 
signal strength, noise level and signal-to-noise ratio, 

we determine the design-parameter (threshold value) 
which yields the highest signal intensity or the highest 

signal-to-noise ratio. 

2. Threshold crossing rates 

In this section we consider the threshold cross- 
ing statistics of the sum x(t) of a sinusoidal signal 
A sin( fit) and colored Gaussian noise t(f). In order 
that the threshold-crossing rates are finite, the spec- 
tral density of the noise has to decay with at least the 
inverse fourth power of the frequency [ 71. Applying 
Gaussian white noise to a second order low-pass fil- 
ter yields Gaussian colored noise with the required 
property, i.e. 

5+ $+A i+~m=--_m, ( ) Jis 

(r(t)r(t’)) =2&t-t’), (2) 

where 71 and 72 are filter constants. A linear transfor- 

mation to the sum x(r) = c(t) $ A sin( at) and its 
derivative o(t) = & + ficos( fit), yields an Ornstein- 

Uhlenbeck process with a drift term which is periodic 
in time. The transition probability density for this pair 

process is known explicitly [ 51 (see also Section 5). 
Denoting by t, the times when the sum x(t) crosses 
the threshold b from below, the number of threshold 

crossings in the interval [0, t] is given by 

n(t) = 6( r’ - t,,) dr’ 

= s O(u(t’))u(r’)S(x(t’) - b) dt’. (3) 

0 

The average number of crossings per time interval 
(threshold crossing rate) is obtained from Eq. ( 3) by 
taking the ensemble average or equivalently by aver- 
aging the last term in Eq. (3) over the probability den- 

sityP(x,u,t).Forastationaryprocess (x,u) (e.g.in 
the absence of the signal A sin( at) ), the stationary 

threshold crossing rate is obtained by averaging over 
the stationary probability density 

P,,(x,u) 
1 x2 u2 

= 
27rm 

exp 
( 

- 2 - 
2a 

2 
2a,. 

1 , (4) 

with 

D a2 = ~ a2 = D 

7, fT2’ (’ 7172(71 +72)' 

yielding [ 71 

00 

r&A = 0) = @z(r)) = 
s 

uP,Jb, u) du 

0 

1 

= 2n-m 
exp( -b2/2a2). 

(5) 

In the presence of the signal (A # 0)) the inhomo- 
geneous threshold crossing rate is given by 
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00 

rcr(t) = (k(I)) = s du ul’,,( x = b, u, t), (7) 

0 

with Pas (x, u, t) being the long time asymptotic prob- 

ability density of the pair process (x(t) , u(t) ) [ 8,5], 

Pa,(x, u, t) = 
1 [x - Asin(12t)12 

2?rvG%(? 2a2 

[u - Afl~os(fit)]~ 

24 
(8) 

Inserting (8) into (7) one obtains for the inhomoge- 

neous threshold crossing rate 

rcr(t) = (it) 

1 [ 1 - Asin(L&)12 

= 2n-fi 252 > 

x [exp( -2) +iAeg 

x cos( .Qnt)erfc - 
( 

AE cos( nt> )I V% ’ 
with the dimensionless scaled parameters 

A = A/b. a2 = u2/b2, E&Y&g ( 10) 

In the adiabatic limit 0 + 0, i.e. E --f 0, we ob- 
tain an expression of the type obtained in Ref. [ 21. It 

is important to note that the second term in (9) be- 
comes large for large signal amplitudes A even if the 
frequency n is small. Neglecting this term therefore 
implies besides the adiabatic condition a limitation to 

small signal amplitudes. 

3. The power spectrum of the spike train 

As the next step we calculate the spectral properties 
of the S-spike train, generated by the above described 

statistical threshold process. If the crossing times f,, 
would be independent (white shot noise), the spectral 
density of the spike train will be frequency indepen- 
dent [ 71. For the model we are looking at, we do not 
know a priori whether the correlations between the 
spikes are negligible, and therefore have to calculate 
the power-spectrum from scratch. The stochastic 6- 

pulse train (h(t) = suS( t) ), generated by the thresh- 
old device is written as 

s(t) = soti = soC6(r - tn> 

= soO(c))&(x(t;- b). (11) 

Using the generalized Wiener-Khintchin theorem for 
periodically driven stochastic processes [ 51, the spec- 

tral density of the spike train is given by the Fourier 

transform of the time-averaged correlation function 

T 

&i”(7) = ; .I K2 ( t’ + T, t’) dt’, 

0 

Kz(t,t’) = &z(t)ri(t’)). (12) 

Inserting Eq. ( 11) into Eq. ( 12) one finds for the 
correlation function (see also Appendix A) 

00 Co 

K2( t, t’) = s; 
ss 

dv du’ uu’P( b, u, t}b, u’, t’) 

0 0 

x Pa,(b,u’,t’), (13) 

where P( x, u, tlx, o’, t’) is the conditional probability 
density, which is known explicitly for the threshold 
model under consideration (see Ref. [ 81 and Section 
5). As can be seen from EZq. (13), the correlation 
function has a singularity at r = t’. We can split this 
singularity off the correlation function by using results 

from the theory of random points (see Appendix A), 
i.e. 

Kz(t, t’) = &,,(t)&t - t’) + &f;!(t, t’), (14) 

where f2( t, t’) is a smooth function at t = t’. The 
meaning of f2( t, t’) becomes clear when we subtract 

the long-time limit of the correlation function K2 ( t > 
t’) = f;! (t > t’) -+ rcr( t) r,,( t’) . Then, the contribu- 
tion additional to the &correlation is the spike-spike 
correlation function 

g2(t,f') = f2(t,t') - rcr(t)rcr(t') 

(see Ref. [ 71 and Appendix A). 

(15) 

Using Eq. ( 14)) the time averaged correlation func- 
tion K,,(T) ( 12) can be written as the sum of a S- 
contribution and a smooth correlation function, i.e. 

K,,(r) = &r,r(t)),6(r) + $faV(r), 
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T 

fm(~) =; J fg(t’+T,r’)dt’, (16) 
0 

with (r,,(t)), being the time averaged threshold cross- 
ing rate. The spectral density consists of the sum of 

a constant (white shot noise) and a frequency depen- 

dent part, i.e. 

Sf(w) = J e-‘“‘fav(~) dr. (17) 

-cc 

4. Signal intensity 

As already mentioned above, the correlation func- 

tion K2(t, t’) decays for a large time difference r 

into the product of the time inhomogeneous threshold 
crossing rates rCr( t) rcr (t’). Performing the time av- 
erage over the time t’ according to Eq. (12), we ob- 
serve that the time averaged correlation function (in 
the large time limit) is periodic in time. Expanding 
the inhomogeneous threshold crossing rate (9) into a 
Fourier series, we find for the time averaged smooth 
correlation function for large times (i.e. faV( 7) = 

Kav(r)), 

T 
1 

c, = - 
T J r,,( 7) e-inm dr, (18) 

0 

and subsequently the sum of S-spikes for the power 
spectrum 

00 

&(w) = s; J fav ( T) epioT dr 

(19) 

with the Heaviside step function, defined by 0(x > 

0) = 1 and 0(x < 0) = 0. For increasing A, the inten- 
sity of the signal increases until it reaches a maximum 
and then increases again. The reason for this behavior 

is the following: Once the input signal has crossed the 
threshold the element cannot fire unless the input sig- 
nal first re-crosses the threshold from above to below. 
Therefore, there is independent of the signal amplitude 
exactly one crossing within each period in the absence 
of noise. In the presence of noise, additional spikes 
occur most likely when the input signal A sin( fit) is 

in the vicinity of the threshold. The noise induced in- 
crease of the spiking activity - similar to that for sub- 

threshold signals - is therefore synchronized with the 
external signal, yielding a resonance-like curve as a 
function of the noise strength. 

The Fourier coefficients c, have to be computed nu- The form of stochastic resonance observed here is 
merically from Eqs. (9) and ( 18). The non-periodic unusual for two reasons. First, the dependence of the 
decaying part of the spike-spike correlation function peak position on the signal frequency is very weak 
adds a broad noise-background to the spectral density; [ 2,9], i.e. the peak does not move towards zero noise 

the a-spikes and their intensities, however, remain un- 
changed. The intensity 47rsg]c,12 of the &spikes at the 

frequency 0, i.e. the intensity of the output signal, de- 
scribe how deep the periodic input signal is actually 
coded in the spike train. In Fig. 1, the signal intensity 

normalized by S; is shown as a function of the vari- 
ance of the noise a2 and the signal amplitude A. 

For sub-threshold signals, i.e. A < 1, the intensity 
of the spike vanishes for vanishing noise. For increas- 
ing noise, we find an increasing spike intensity, i.e. 

the signal is coded by the threshold element although 
the amplitude of the input signal is smaller than the 
threshold. The reason for this behavior is the synchro- 

nization of the random threshold crossings by the ex- 

ternal signal. When the noise becomes too large, the 
threshold crossing gets out of synchronization with the 

signal and the signal intensity decreases again. This 
phenomenon has been discussed in Refs. [ 2,1,9] for 

weak input signals as a novel form of stochastic reso- 

nance. 
For signals above threshold, the signal intensity ap- 

proaches for vanishing noise its finite deterministic 
value, given by 

47r~ilct1~ =4~~;](13(Asin(Ot) - b)e-iR’)(2 

= ,&A - 1) = 
6282 

--%(A - l), (20) 
7r r7172 
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(a) 
I 

(b) 

Fig. 

at 7, 

I. (a) Signal intensity as a function of the variance of the noise for A = 0.1 (a), A = 0.5 (b), A = 1 (c), A = 2 (d) and A = 5 (d) 

= 0.9, r? = 0.1 and E = ,fi = 0.3. (b) Signal intensity as a function of the amplitude A for a2 = 0.01 (a), r? = 0.5 (b) and * 
rr*=I (c)atq=O.9,~2=O.lande= 

as the frequency D approaches zero. Second, we ob- 
serve stochastic resonance also for excitations above 
threshold. 

As a function of the signal amplitude A, we also 
find non-monotonic behavior, since once the ampli- 

tude of the input signal is well above threshold, the 

time intervals where additional noise induced spikes 
occur decrease with increasing A. The limit of infinite 

signal amplitude is again the deterministic limit ob- 
tained (20) in the absence of the noise for an arbitrary 

super-threshold signal. 
For weak signals A << 1, the Fourier coefficient c, 

can be computed analytically, yielding for the intensity 
of the spike in the power spectrum of the spike train 

at 0. 

(21) 

The first term on the r.h.s. of (21), i.e. the adiabatic 

limit, is analogous to the results in Refs. [ 21 and [ 11. 
The second term introduces a dependence on the sig- 
nal frequency a, which moves the peak position from 

G2 = b2/2 for E = 0 to larger values of the noise level 
as the driving frequency increases. It also provides the 

leading order term for large noise. The decrease of 
the signal intensity for increasing large noise is pro- 
portional to l/c* as opposed to 1 /cr4 in the adiabatic 
limit (E = 0). The latter effect might be the expla- 

nation for the disagreement of neuronal data with the 
approximations for large noise intensities in Ref. [ I 1. 

5. Spike-spike correlation functions 

The time averaged spike-spike correlation function 

T 

&v(7) = fav(7) - ; s rdt’)r,,(f + 7) 
0 

co 

= fav(.r> - C lc,l*einat, (22) 
II=-CO 

with fav (7) related to I& (7) in ( 16) can be obtained 
for our model up to quadratures. Using the asymptotic 
probability density (8) and the transition probability 
density [ 51 
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P(x,o,rlx’,u’,t’) = 
1 

2?r&G$5 

x exp[--LY(f)(x -x1)*1 exp[-p(t)(u - ul)*l 

xexp[-Y(f)(x-x,)(u-v,)l, (23) 

with 

x,(x’, u’, t’) 

=Gexp(-y +c*exp(-f$) 
+ A sin( fit), 

u,(x’, Ll’, t’) 

_ Cl exp(_!$) -:exp(-$) 
i-1 

+ Aflcos(f2t,, 

c, = 7172 
71 -72 

X 
( 72 1 

0’ + - x’ - Asin(LV’) - ARcos(LB’)] , 
) 

x’ - A sin( Or’) - ARcos( Lb’)] 

- Asin( 

and 

(24) 

1 u!(t) 
a(t) = -( 

2 det( a) ’ 

an.(t) 
y(t) = -_ 

det(a) ’ 
det(a) =~?(t)az(t) -&(t), 

CR(t) = t7, _ 72)2 D [e+++JJ2~ 

One of the integrations in ( 13) can be carried out, 

yielding 

03 

K*(t, t’) = 
1 .I 4%-2&%$&?) o 

du’ u’ 

x exp 
( 

-&)W- Xt(b,v’,f’)12 
> 

V(t,t’), 

1 
V(f, f’) 2Plt) = -exp[-p(t)6’(t,t’)] 

+1 
J-- 

L&t, I’)NfC( J_), 
2 P(r) 

&t,t’) = uy - $$bx,), 

with the variances c and cI, of the asymptotic proba- 
bility density P,,(x, u, t) given in Eq. (5) _ The inte- 
gration in (26) and the subsequent time averages to 

obtain g,” (7) have to be carried out numerically. 
For a Poissonian process g, (7) as well as all higher 

order point-correlation functions are zero. The quan- 

tity gay(r) is therefore a good measure of how much 
the spiking of the threshold element deviates from that 
of a Poissonian process. 

The spike-spike correlation function gaV(r) is 

shown for A = 0 and A = 0.5, R = 1 for various val- 

ues of the strength of the fluctuations in Fig. 2a and 
Fig. 2b, respectively. For weak noise, the amplitude 
of the spike-spike correlation function is relatively 

small and decays monotonically in time, since spik- 
ing is a rare event and the stochastic process driving 
the threshold system is almost Markovian on the 
time-scale of a typical inter-spike time-interval. For 
larger noise, the spike-spike correlations function 
first increase, reach a maximum and then decay to 
zero. The dip of the correlations at small times is the 
consequence of a build-in refractory behavior - a sort 
of spike-repulsion. The stochastic process driving the 
threshold system has a smooth first derivative since 
it is twice low-pass filtered white noise. The larger 
the time scales rt and 72 (i.e. the smaller the cut-off 
frequency), the smoother the process. Having crossed 
the threshold, say at time f, the smoothness of the 
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Fig. 2. (a) Spike-spike correlation function in the absence of a periodic input signal (A = 0) for a’ = 0.1 (a), 2 = 1 (b), CT* = 2 (c) 

and tr’ = 4 (d) at 71 = 0.9.72 = 0. I. (b) The spike-spike correlation function at A = 0.5 for (r* = 0.1 (a), CT* = 0.5 (b), (r2 = I (c) 
and v’ = 2 (d) at 71 = 0.9,~ = 0. I and l = vGG= 0 3 (c) Fourier transform of the spike-spike correlation function at A = 0 for 
u2 = 0. I (a), (7’ = I (b), U’ = 2 (c) and CT* = 4 (d) at 71 = 0.9.72 = 0.1. (d) Fourier transform of the spike-spike correlation function 

at A = 0.5 for r? = 0.1 (a), u2 = I (b), u2 = 2 (c) and g2 = 4 (d) at 7, = 0.9.72 = 0.1 and l = Jn27,7,=0.3. 
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Fig. 3. Ratio of the contribution of the spike-spike correlation 

function and the white shot noise to the spectral density as a 

function of the noise level for ,i = 0 (a) and iT = 0.5 (b) at 

~1 = 0.9,~~ = 0.1 and Q = & = 0.3 (b). 

process requires a certain amount of time to recross 

the threshold - the refractory time. Within this time- 
interval a threshold crossing event is unlikely. This 

explanation is supported by the observation that the 

position of the maximum moves to larger times for 
larger 71 and 72 and vice versa. 

The Fourier transform yav (w ) of the time averaged 
spike-spike correlation function g,, (7)) a smooth 

function which decays to zero for large frequencies, 
describes the deviation from a frequency-independent 
shot-noise spectrum (see Figs. 2c, 2d). 

The impact of the spike-spike correlation function 
on the spectral density is shown by plotting the ratio 

of yav ( 0) and the spectral density of the shot noise 
(y,,(t)), = CO as a function of the variance of the noise 
CT in Fig. 3. 

For the parameters chosen here, i.e. 71 = 0.9,~ = 
0.1, the contribution of the spike-spike correlations 
to the noise background is smaller than the shot-noise 
contribution (rCr( t)),. For smaller values of 71 and 72, 
i.e. for larger cut-off frequencies, however, the spike- 
spike-correlations increase strongly. For e.g. 71 = 1 
and 72 = 0.01, the contribution of spike-spike corre- 
lations to the spectral density exceeds the shot-noise 
contribution. 

6. Signal-to-noise ratio 

For applications, a large signal-to-noise ratio 

(SNR) of the output might be more important than a 
large signal intensity. It is by no means clear whether 
the noise level which optimizes the intensity of the 
signal-spike in the power spectrum is a good choice 
for achieving a large SNR. 

The starting point for our considerations is Eq. 

(17), i.e. the splitting of the spectral density into a 
white shot-noise contribution (rcr( t)),, a sum of sharp 

&peaks ( 19) Sa( w) stemming from the periodicity 
of the correlation for large times, and the contribu- 

tion y(w) from spike-spike correlations. Neglecting 
the contribution from spike-spike correlations, justi- 

fied for L?‘T,Q > 1, the noise background is simply 

given by the time averaged threshold crossing rate 
which is obtained from (9) by an integration. The 

approximated SNR, given by 

SNR = v, 
rcr , 

(27) 

is shown as a function of the variance a2 = d/b2 of 
the noise in Fig. 4. It shows - similar to the signal 
intensity - a resonance-like curve. The noise level a2, 
which maximizes the SNR, is lower than the noise 

level which maximizes the signal intensity (see Fig. 
la). 

For amplitudes of the input signal larger than the 
threshold (A > 1), the SNR decreases - in contrast 
to the signal amplitude - monotonically for increasing 
noise strength. 

For a weak input signal, the approximations for 

small A and the neglect of pair correlations in the noise 
background allow one to derive an explicit expression 
for the SNR of the spike train, i.e. 

A2 
SNRoutt~ + 0) = 2ii4m 

exp(-1/2C2). (28) 

With the signal-to-noise ratio of the input 

SNRi”(E ---t 0) = 
7T‘4= 

(71 + Q)cT2 
(29) 

the ratio of the SNR of the output and that of the input 
is given by 
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Fig. 4. (a) SNR as a function of the noise level for A = 0.1 (a), A = 0.5 (b). A = 0.7 (c), A = 0.9 (d), and A = I.0 (e) at 7, = 2.~ = I 
andE=d&&J. 2 (b) SNR as a function of the signal amplitude ,i for u2 = 0.01 (a) and cr? = 0.1 (b) at 71 = 2.72 = 1 and 

l = &?$&J. 2 The SNRs shown in (a) and (b) have been obtained by neglecting spike-spike correlations. 

SNRout 
-(E + 0) 
SNRi” 

1 71+72 
=_- 

27& fi 
exp(-1/2e2). (30) 

For sufficiently small 71 or 72 Eq. (30) would imply 
a larger SNR of the output than the input for some 
values of the noise strength. At this point, however, it 

becomes important to consider the contribution of the 
spike-spike correlations to the spectral density. In Fig. 

5, we compare the signal-to-noise ratio of the output 
including the contribution from spike-spike correla- 
tion with the SNR obtained by neglecting the spike- 

spike correlations. It is interesting to note that the in- 

clusion of spike-spike correlations can result in an in- 
crease or decrease of the SNR. The SNR of the output, 

however, remained smaller than the SNR of the input 
for all parameter values we have studied (for bistable 
systems, see the discussion on this issue in Ref. [ IO] ). 

7. Optimal design of threshold devices 

In this section, we consider the question how to tune timal performance, whereas performance is measured 
the parameters of the threshold system to achieve op- by the signal intensity at the output, or alternatively, 

0.0 
00 0.2 0.4 06 08 10 

Fig. 5. The SNR obtained by neglecting the spike-spike correla- 

tions (solid lines) are compared to the exact SNRs for iT = 0.1 

(a), A = 0.5 (b). A = 1 (c) at ~1 = 0.9,~ = 0.1 and 

E= dzq&o.3. 
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Fig. 6. Signal intensity of the output as a function of the de- 

sign-parameter (threshold) b/A for A‘?/+* = 0. I (a). ,@/I?* = 0.5 

(h). AZ/i?-? = I (c). A2/(r2 = IO (d), A2/(r2 = 100 (e) at 

~1 =0.9.~=0.1 and E= dG=O.3. 

Fig. 7. SNR of the output as a function of the design-parameter 
(threshold) b/A for A2/(12 = 0.1 (a), A*/(rZ = 0.5 (b), 

A“/%’ = 1 (c). A?/$ = IO (d), A’/$ = 100 (e) at 

71 = 0.9,~~ = 0.1 and E = d% = 0.3 

by the SNR. 
In the case of a fixed threshold b and variable noise, 

the signal intensity of the output has been plotted in 
Fig. la as a function of the noise-level. For a large 
range of given amplitudes of the input signal A, there is 
a finite noise level which optimizes the signal intensity 
of the output. The SNR can be maximized for signals 

below threshold at a finite, but different noise level 

(see Fig. 4a). 
A more realistic situation is that the input signal 

and noise (signal/noise ratio) is a given quantity and 

all that can be tuned is the threshold b, the design- 
parameter. Characterizing the input by A2/c2, being 
proportional to its SNR (29), we show the signal in- 

tensity as a function of the threshold b in Fig. 6. For 
a large SNR of the input, the best performance is ob- 
tained at a threshold value b smaller than the ampli- 
tude of the input signal A; once this condition is ful- 

filled the performance is approximately constant. This 
result is not very surprising and reflects the conven- 

tional design strategy, i.e. the threshold has to be small 
enough that the signal can cross and cause spiking. It 
is far more surprising that this design-strategy is not a 

very good one for input signals having a small SNR. 

Fig, 6 shows that in such cases it is better to choose 

a threshold b above the amplitude of the input signal 
A. This result can be understood as follows: 

For a very large threshold, spiking is a rare event 
and thus the signal intensity of the output is small. 
For decreasing, but still large thresholds (b > A ) , the 
noise induced spiking rate will increase but will be 

synchronized with the input signal, yielding increasing 

signal intensities. For further decreasing values of 0, 
the spike rate will further increase, but many spikes are 

spontaneous and not correlated with the input signal, 
yielding eventually a decrease of the signal intensities 

in the output. 
In Fig. 7, we show the SNR of the output as a func- 

tion of the threshold b for various SNRs of the sig- 
nal input. Similar to the signal intensity, the SNR also 
peaks for input signals with a low SNR at thresholds 
larger than the amplitude of the input signal. 

The consequence of these results is of potential im- 
portance for technical applications. Given the environ- 
mental conditions, i.e. a typical environmental noise 
and a typical size of the input signal to be detected, 
there is an optimal value of the threshold which is 
determined by the environmental conditions. In Ref. 
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[ 111, we suggest as an application a two-dimensional 
array of threshold elements as a speed-selective de- 
tector for moving targets which can be tuned to the 
environmental conditions. 
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Appendix A 

In this Appendix, we give a brief discussion on the 
statistics of the threshold crossing times of a spiking 
threshold device introduced in Section 1, based on the 

theory of random point processes (for a comprehen- 
sive introduction, see Ref. [ 121). 

The number of threshold crossings in the interval 

[0, t] is given by 

r n(t) = J Ikl(t')s(x(t'))o(~(t'), (31) 

0 

The probability of finding n crossings given by 

P(n) = (&C,),n) (32) 

yields the characteristic function [ 131 

1(k) = (eiPtl(r)) 

=(exp(iii dt’ Ii(t',l@(i(t'), 

0 

x f3Cx(t') -b) 

>> 

. (33) 

The moments (n(t)) and (n2 (t)), i.e. the mean num- 
ber of crossings and the fluctuations of this number, 
are obtained by the first and second derivative of the 
characteristic function I(t), 

t 00 

(n(t)) = -i1’(0) = JJ dt’ du P(b,u,t’), (34) 

0 0 

f 

(n2 (t)) = -Z”(O) = JJ ’ dt’ dt” K2 ( t’, t”) , (35) 

0 0 

with 

K2(t, t’) = JJ dv dv’ vu’ 

0 0 

xP(b,u,tlb,u’,t’)P(b,u’,t’). (36) 

P(x, u, t) and P(x, u, tlx’, u’, t’) are the single event 
and transition probability densities, respectively, 
given in Section 5. Using the probability densities 

fm(h?t2 , . . . . t,,) defined via the moments (rz”(t)) 

[121> 

f 

(n(t)) = J f,(t’> dt’, 

(n”(t)) = (n(t)) + ’ dt' 

, 

JJ dt” f2 ( t’, t”) , (37) 

0 0 

we find 

co 

fl(t) = (it(t)) = J duuP(b,u,t), 

0 

fz(t,t') = fj(t)&t - t') - K2(t,t’), (38) 

where f,, (tl, t2 , . . . , t,, ) denote the probability of hav- 

ing one crossing event in each of the intervals [ tl , tI + 
dtll, lb, t2 + dt21, . . . . [t,,, t,, + dt,,], regardless of 
how many crossings have occurred outside the inter- 

val [tl,t,l. 
The covariance function k2( t, t’) = K2( t, t’) - 

fl (t) fl (t’) can then be expressed as the sum of a 
&contribution (white shot noise) and a spike-spike 
correlation function (in the literature, the term pair- 
correlation function is more common), i.e. [ 71 

k2(r,t’) = (fi(t))&t - t’) + g2(t, t’), 

g2(t,t’) = f2(t,t’) - f,tt)fl(t’). (39) 

For a Poissonian process (white shot noise), the 
spike-spike correlation function vanishes identically. 
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