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Stationary solutions of the one-dimensional nonlinear Schro¨dinger equation.
I. Case of repulsive nonlinearity
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All stationary solutions to the one-dimensional nonlinear Schro¨dinger equation under box and periodic
boundary conditions are presented in analytic form. We consider the case of repulsive nonlinearity; in a
companion paper we treat the attractive case. Our solutions take the form of stationary trains of dark or gray
density-notch solitons. Real stationary states are in one-to-one correspondence with those of the linear Schro¨-
dinger equation. Complex stationary states are uniquely nonlinear, nodeless, and symmetry breaking. Our
solutions apply to many physical contexts, including the Bose-Einstein condensate and optical pulses in fibers.

PACS number~s!: 03.75.Fi, 05.30.Jp, 05.45.Yv
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I. INTRODUCTION

The nonlinear Schro¨dinger equation ~NLSE! models
many phenomena observed in the recently created dilute
Bose-Einstein condensates~BEC’s! @1#. In this context it is
also referred to as the Gross-Pitaevskii equation@2,3#. The
NLSE is ubiquitous. It describes wave propagation pheno
ena in many systems besides the BEC, including opt
pulses in fibers@4#, helical excitations of a vortex line@5#,
Bose-condensed photons@6#, and magnetic films@7#. It is
one of a few basic equations upon which the modern the
of integrable nonlinear systems has been founded@8,9#.

Many applications of the NLSE to BEC’s have dealt wi
ground-state properties, but there is a growing interest in
possibility of generating topological excitations of a conde
sate, which may well be described by excited-state soluti
of the NLSE. In this paper we investigate such solutions
the case of a one-dimensional NLSE for repulsive nonline
ity, subject either to box or periodic boundary conditions
a finite interval. This corresponds to a BEC with repulsi
atomic pair interactions, which is the case that has rece
the most experimental interest; a companion paper@10# treats
the case of attractive interactions. The stationary exc
states that we study here are related to the well-known s
ton solutions of the time-dependent NLSE, and when p
turbed give rise to soliton-type motions@11#. Recent experi-
ments show that such motions can be induced in BEC’s
optical engineering of the condensate phase@12,13#.

Box and periodic boundary conditions are as ubiquito
as the NLSE, and give physical insight into the solutions
more complicated potentials@14,15#. They model the poten
tially quasi-one-dimensional regime of a number of pres
experiments: the atom waveguide@16,17#; the prolate har-
monic trap in which is formed a cigar-shaped BE
@18,19,13#; the newly developed toroidal trap@20#; and fi-

*Author to whom correspondence should be addressed.
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nally an oblate harmonic trap with a barrier formed in t
middle either by a second spin state of the same atom@21,22#
or by a laser@19#, in which is formed a pancake-shaped BE
with the center removed. Periodic boundary conditions p
vide a first model for toroidal geometries; box boundary co
ditions are a good starting model for cigar-shaped geo
etries.

The full spectrum of soliton solutions to the NLSE on th
infinite line was discovered by Zakharov and Shabat@23,24#.
These authors used the inverse scattering transform
method to which a great deal of mathematical physics lite
ture has been devoted@8#. To solve the NLSE under thes
new boundary conditions, we have chosen instead to
straightforward, elementary methods, accessible to a br
spectrum of physicists and simpler than the inverse sca
ing transform.

There have been many recent applications of Zakha
and Shabat’s solutions to the BEC@11,25#. Toroidal @26,27#
and cylindrical or box-shaped@28,29# geometries were con
sidered. Some authors solved the parabolic potential num
cally @30,31,14#. However, to the best of our knowledge n
one to date has explored, analytically or otherwise, the
spectrum of bounded,stationary, multiple-soliton solutions
to the NLSE under periodic and box boundary conditions

II. QUASI-ONE-DIMENSIONAL NLSE

The nonlinear Schro¨dinger equation which describes th
BEC for T!Tc is a three-dimensional mean-field theory. W
define the BEC to be in the quasi-one-dimensional reg
when its transverse dimensions are on the order of its hea
length, and its longitudinal dimension is much longer than
transverse ones. In this case the one-dimensional~1D! limit
of the 3D NLSE is appropriate, rather than a true 1D me
field theory @32#, as would be the case for a transverse
mension on the order of the atomic interaction length or
actual atomic size.

The quasi-1D limit of the 3D NLSE is implicitly used in
many places in the literature, a recent example being
et al. @33#. Discussions which take into account transve
©2000 The American Physical Society10-1
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excitations and various other geometries may be found e
where @27,34#. We present a brief derivation in which w
require that the wave function be approximately separa
and that its transverse parts are not excited. By requiring
transverse dimensions to be on the order of the hea
length, we ensure both a separability of the wave funct
and a transverse stability of the solutions, as we have
merically illustrated in other works@35,15#.

We begin with the NLSE that describes a BEC ofN atoms
of massM, confined in an external potentialV(rW):

F2
\2

2M
¹21guc~rW,t !u21V~rW !Gc~rW,t !5 i\] tc~rW,t !, ~1!

where uc(rW,t)u2 is the single particle density such th
r(rW,t)5Nuc(rW,t)u2, the coupling constantg[4p\2aN/M ,
and a is the s-wave scattering length for binary collisio
between atoms. The case of repulsive interactions consid
here corresponds toa.0.

V(rW) is defined to be a three-dimensional rectangular b
of length L and small transverse areaAt . In the transverse
directions the wave function is required to vanish on
surface of the container; in the longitudinal direction we
quire either box or periodic boundary conditions. This mo
els the quasi-one-dimensional regime of many BEC exp
ments, as mentioned in Sec. I, as well as ring lasers@36,37#,
helical excitations of a vortex line or ring@5#, and many
other physical systems for which the 1D NLSE is a go
model.

The characteristic length scale over which the conden
density resumes its average value away from a sharp de
or from a perfectly confining wall is the healing lengthj:

j[~8pr̄uau!21/2. ~2!

r̄[N/(LAt) is the mean particle density, whereL is the lon-
gitudinal length of the confining potential, andLy andLz are
the transverse lengths.At[LyLz is the transverse area.

The BEC is in the quasi-1D regime whenLy andLz sat-
isfy the following criteria: Ly ,Lz;j and Ly ,Lz!L. The
former ensures that the condensate remains in the gro
state in the two transverse dimensions, while the latter
sures that longitudinal excitations are much lower in ene
than possible transverse excitations. Under these condit
one may make an adiabatic separation of longitudinal
transverse variables,c(rW,t)5(LAt)

21/2f (x)h(y,z)e2 imt/\,
where f (x) and h(y,z) are dimensionless and the time d
pendence of a stationary state has been assumed,m being the
chemical potential.

This reduces the three-dimensional NLSE~1! to

F2
\2

2M
¹21

gu f ~x!h~y,z!u2

LAt
1V~rW !G f ~x!h~y,z!

5m f ~x!h~y,z!. ~3!

Equation~3! may be projected onto the ground state
h(y,z), and integrated over the transverse dimensionsy and
z:
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E
0

Ly
dyE

0

Lz
dz hgs* ~y,z!Fm2

\2

2M
¹21

gu f ~x!h~y,z!u2

LAt

1V~x,y,z!G f ~x!h~y,z!50. ~4!

As will be shown in Sec. III B, in the limit thatLy ,Lz
;j, h(y,z) takes the form of the ground-state linear qua
tum mechanics particle-in-a-box solution,hgs(y,z)
5hosin(py/Ly)sin(pz/Lz). Requiring hgs(y,z) to be nor-
malized to 1, ho52. We multiply Eq. ~4! through by
2Mj2/\2 and obtain a simple, quasi-1D NLSE:

F2S m̃2
p2j2

Ly
2

2
p2j2

Lz
2 D 2

j2

L2
]x

21
9

4
u f ~x!u2

1Ṽ~x,y,z!G f ~x!50, ~5!

wheref is a dimensionless wave function describing exci
tions alongL; u f u2/L is the longitudinal part of the single
particle density;Ṽ( x̃)[(2Mj2/\2)V( x̃) is the confining po-
tential; andm̃[(2Mj2/\2)m is a dimensionless chemica
potential which is now the eigenvalue of the problem.

The notation is further simplified by combining the long
tudinal length of the confining potential and the heali
length into a single dimensionless scaling parameter:

l[j/L. ~6!

l is an important parameter which will determine many
the properties of the stationary states. For the purpose
mathematical ease,x̃[x/L. Using the approximations forLy
andLz , and dividing through by the integration factor of 9/
results in the dimensionless 1D NLSE we shall use hen
forth,

@2le f f
2 ] x̃

2
1u f ~ x̃!u21Ṽ~ x̃!# f ~ x̃!5m̃e f f f ~ x̃!, ~7!

where m̃e f f5m̃28p2/9 andle f f
2 54l2/9. For the purposes

of this presentation,j254/(938puaur̄) and m̃5(2Mj2/
\2)m28p2/9. However, we shall simply drop theeff sub-
scripts, as such constant factors make no difference in
results.

For comparison with experiment the conversion fact
from the dimensionlessm̃ to m in mK are given below. The
general conversion ism5(8.34310215)( r̄a/M )m̃, whereM

is in atomic mass units,r̄ is in cm23, anda is in nm. Using
common experimental values@1# of r̄;1014, for 23Naa
;2.75 , and for 87Rba;5.77, the conversion factors ar
0.0723 and 0.0401, respectively. Since the dimension
chemical potentials found will be on the order of 1–10 th
gives a sense of the energy scale of the solutions, on
order of 0.1 to 1mK. Note that throughout the presentatio
an experimentally reasonable test scale ofl51/25 will be
used for illustrative purposes.
0-2
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STATIONARY SOLUTIONS OF THE . . . . I. . . . PHYSICAL REVIEW A62 063610
As u f ( x̃)u2 is a single particle density, it is normalized
1 rather thanN:

E
0

1

dx̃u f ~ x̃!u251. ~8!

The number of atomsN, which is proportional to the coeffi
cient to the nonlinear term in Eq.~1!, is then contained in the
ratio of the healing length to the box length,l}N21/2. The
NLSE ~7!, subject to normalization~8! and such boundary
conditions as will be described below, is the equation we w
solve.

III. BOX BOUNDARY CONDITIONS

We now consider the solution of Eq.~7! in regions of
constant potential, which may be taken to beṼ( x̃)50 with-
out loss of generality. We note first that iff ( x̃) vanishes
anywhere in an interval, as for example at the edges of
box, thenf ( x̃) may be taken to be purely real throughout th
interval. This is easily established by considering a Tay
series expansion off in the neighborhood of the point a
which it vanishes. Thus we may remove the absolute va
symbol in Eq.~7! and so recover an ordinary nonlinear equ
tion for a real function:

2l2f 91 f 32m̃ f 50. ~9!

By multiplying through byf, integrating both sides, an
then solving fordx̃, the solution may be written in the form

x̃5
A2l

AR1

E
0

f /AR2 dt

A12t2A12mt2
, ~10!

whereR6[16A12C, with C a constant of integration, an
m5R2 /R1 . Comparing Eq.~10! to Eq. ~A1! in the Appen-
dix, it is apparent that they differ only by trivial scalin
factors. Therefore, in the box the most general solution
Jacobian elliptic function, which as shown in the Append
must be the sn function. A brief review of the form an
properties of the Jacobian elliptic functions is given in t
Appendix.

A. Solutions and spectra

The most general form of the solution is

f ~ x̃!5A sn~kx̃1d u m!, ~11!

where the notation sn(xum) is standard, as used in the Ap
pendix.k andd will be determined by the boundary cond
tions below, whileA andm will be determined by substitu
tion of Eq. ~11! into the NLSE and by normalization.

The boundary conditions are

f ~0!5 f ~1!50. ~12!

The boundary condition at the origin can be satisfied m
easliy by takingd50. The function sn(xum) is periodic in x,
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with period equal to 4K(m), whereK(m) is an elliptic inte-
gral of the first kind~see the Appendix!. Thus the boundary
equations atx̃50 and 1 are satisfied ifk52 jK (m), where
j P$1,2,3, . . . %. The number of nodes in thej th solution is
j 21. We will give a more general interpretation ofj below.
We then solve Eq.~7! by substituting Eq.~11!, using Jaco-
bian elliptic identities, and setting coefficients of equal po
ers of sn equal. This results in equations for the amplitudeA,
and the chemical potentialm̃:

A252m@2 jK ~m!#2l2, ~13!

m̃5@2 jK ~m!#2l2~11m!. ~14!

Substituting Eq.~13! into Eq. ~8!, and noting that the
integral over sn2 can be defined in multiples of the quart
periodK(m), we obtain the normalization condition

2@2 jK ~m!#2l2S 12
E~m!

K~m! D51, ~15!

whereE(m) is the complete elliptic integral of the secon
kind. Equation~11! then becomes

f ~ x̃!5A2m@2 jK ~m!#l sn@2 jK ~m!x̃ u m#. ~16!

This leaves the chemical potential~14! and the wave
function ~16! determined up to the parameterm and the scale
l. In Fig. 1 a graphical solution of Eq.~15! is shown. The
plot demonstrates that the solutions are unique. Such s
tions are in one-to-one correspondence with those of the
particle-in-a-box problem in linear quantum mechanics.

Plots of the wave function for the ground state and
first three excited states are shown in Fig. 2. To meet the

FIG. 1. This graphical solution of Eq.~15! shows that for a
given scale and number of nodes the real solution to the statio
NLSE under box or periodic boundary conditions is unique.l is the
scale, andj 21 with j P$1,2,3, . . . % or j with j P$2,4,6, . . . % is the
number of nodes, respectively. The three curved lines are plot
Eq. ~15! solved for the number of nodesj, with l215L/j
510, 25, and 50. The left-hand side of the plot is them50 linear
limit, while the right-hand side exponentially approaches them
51 topological soliton limit. The solutions are found where the
lines intersect with the horizontal lines ofj. Note the rapid conver-
gence tom50 in the high-j limit, so that for largej the solutions
are in the linear regime.
0-3
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L. D. CARR, CHARLES W. CLARK, AND W. P. REINHARDT PHYSICAL REVIEW A62 063610
boundary conditions the wave function drops to zero over
scale of the healing lengthj. When the zeros off are well
separated, the analytic behavior off near a zero,x̃o , ap-
proaches f ;tanh@(x̃2x̃o)/(lA2)#5tanh@(x2xo)/(jA2)#. We
refer to this behavior at each node off as a kink.f 2 is pro-
portional to the density of particles in a BEC; this density
constant everywhere except at the boundaries and the k
where it dips to zero.

In Fig. 3 we plot the chemical potential spectrum of th
solution type as a function ofl21, the number of healing
lengths per box length. The leftmost portion of the plot c
responds to the particle-in-a-box limit, and the rightmost p
tion to the topological soliton limit. We now discuss the
two limits.

B. Particle-in-a-box limit

High chemical potential states in which the kinks overl
become particle-in-a-box type solutions, as can be see
Fig. 2~d!. This is both the zero density linear limit and th
highly excited-state limit. Mathematically,m→01 and sn
→sin. Physically,j l@1. In this limit K(m)→p@1/21m/8
1O(m2)# andm→1/( j pl)2, so that Eq.~14! becomes:

m̃5 j 2p2l2S 11
3m

2
1O~m2! D ,

~17!

m̃5 j 2p2l2F11
3

2 j 2p2l2
1OS 1

j 4l4D G ,

corresponding to

FIG. 2. Real stationary solutions to the NLSE under box a
periodic boundary conditions. These are in one-to-one corres
dence with those of the analogous particle-in-a-box and particle
a-ring problems in linear quantum mechanics, and may also
characterized as dark soliton trains. Box:~a!–~d! are the ground
state and first three excited states. Ring:~b! and~d! are the first two

solutions of this type. Chemical potentials:~a! m̃51.120, ~b! m̃

51.253,~c! m̃51.402, and~d! m̃53.028. All plots are for the tes
scale ofj/L51/25.
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j 2p2\2

2ML2 S 11
3m

2
1O~m2! D ,

~18!

m5
j 2p2\2

2ML2 F11
12aNL

At j
2p

1OS L2N2

j 4 D G ,

which clearly converges to the well-known linear quantu
mechanics particle-in-a-box chemical potential asm→01.

One may also obtain this result from first order perturb
tion theory. The Hamiltonian for Eq.~7! is H5Ho1H1,
where Ho52(\2/2M )]x

2 , H15@g/(LAt)# f 2, and the box
boundary conditions are implicit. As the solutions are re
we have dropped the absolute value sign inH1. Note that we
have put the units back in. The solution toHof 5m (0)f is f

5A2 sin(pjx̃) with m (0)5( j 2p2\2)/(2ML2). The first-order
perturbation-correction tom (0) yields

m (1)5
4p\2aN

M

1

LAt

3

2
, ~19!

where we have substituted in the definition of the coupl
constantg. By noting thatA252 in Eq.~13! in this limit, and
using Eq.~13! together with Eq.~2! to eliminateNa in favor
of the parameterm, one recovers the same first-order pertu
bation correction as in Eq.~18!:

m (1)5
j 2p2\2

2ML2

3m

2
. ~20!

d
n-
n-
e

FIG. 3. Chemical potential spectra of real stationary states,
function of inverse scaleL/j, with stationary plane-wave spectr
shown for comparison. Solid lines: shown aren50, 1, 2, and 3,
wheren is the phase quantum number of the plane wave on the r
Dashed lines: real stationary states of the NLSE in a box and o
ring are soliton trains. Shown arej 51, 2, 3, and 4 withj 21 the
number of nodes in a box andj 52 and 4 the numbers of nodes o
a ring. Note that for very fine scale, i.e.,L/j large, the chemical
potentials are evenly spaced. This corresponds to the topolog
soliton limit in which the chemical potentials are additive, just
for vortices.
0-4



o
ll i
g
b
ar

ld
o

i

n
n
ow

na
ig

m

a

a
n

ta

no
uch
en-

on-
are
to

ry-
re-
n-

he
nt,
n-

ob-

y

n-

e
nly.

,
ote
tum
ork

STATIONARY SOLUTIONS OF THE . . . . I. . . . PHYSICAL REVIEW A62 063610
C. Topological soliton limit

One may add a kink without disturbing another kink, pr
vided that the overlap between them is exponentially sma
the ratio of their separation to the healing length. In analo
with vortices the chemical potentials of the kinks ought to
additive. This is the large particle number, highly nonline
Thomas-Fermi@1# limit. Mathematically, m→12 and sn
→tanh, formally called a topological soliton. Physically,N
→` implies l→01, so that one expects the kinks shou
never overlap. We note that in a BEC experiment the b
length is held fixed while atoms condense.

By solving for K(m) in Eq. ~15! and usingE(m)→11

~see the Appendix!, we find thatK(m)→k, where

k5
1

2 S 11A11
1

2 j 2l2D , ~21!

so that Eq.~14! becomes

m̃52~2 j !2l2k2, ~22!

while Eq. ~16! becomes

f ~ x̃!5A2~2 j k!l sn~2 j k x̃um!. ~23!

We have found that this limit suffices to calculate chem
cal potentials for whichj ,„1/(5l)… to better than 1%. This
estimate assumes an overall scale size of;5j per kink. The
chemical potentials for thej 51, 2, and 3 solutions shown i
Fig. 2 satisfy this criterion, for example, as do any grou
states for a healing length of smaller than 1/10. If we n
further require that (8j 2l2)!1 then Eq.~22! becomes

m̃5112A2 j l, ~24!

from which we see that the chemical potentials of additio
kinks are indeed additive. This additivity is apparent in F
3 in the limit l21[L/j→`. Equation~24! is identical in
form to that of the harmonic oscillator in linear quantu
mechanics.

Putting back in the units of\2/(2Mj2), we find that the
chemical potential for formation of an additional kink,Dm,
is proportional toAN,

Dm52A2 j
\2

2M
A8pNa

At

1

L3/2
, ~25!

so that the chemical potential to add a kink increases
atoms condense, when all units are included.

We may also solve for the excitation energy to add
isolated kink to theN body system by finding the expectatio
value of the many-body Hamiltonian@2#:

^H̃&5NFl2E u f 8u22
1

2E u f u4G , ~26!

where just as for the chemical potential,^H̃&[(2Mj2/
\2)^H& is a dimensionless energy. Substituting in the s
tionary solution Eq.~11!, one finds
06361
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^H̃&5N
25

3
j 4K~m!3l4@~112m!K~m!2~11m!E~m!#,

~27!

which in the limit as (8j 2l2)!1 becomes

^H̃&5N@ 1
2 12A2 j l1O~ j 2l2!#. ~28!

Therefore, the excitation energy to add a kink isD^H̃&
52NA2l, or, putting the units back in,

D^H&5
\223ApaAt

2M
r̄3/2. ~29!

This is just as one would expect; the energy to add a kink
longer depends on the box length when the kink size is m
smaller than the box. Instead, it simply depends on the d
sity.

IV. PERIODIC BOUNDARY CONDITIONS

There are three solution types for periodic boundary c
ditions. There are constant amplitude solutions which
plane waves; real symmetry-breaking solutions, similiar
those found in Sec. III; and a class of complex symmet
breaking solutions. The former two are in one-to-one cor
spondence with particle-on-a-ring solutions in linear qua
tum mechanics, while the latter one is only found in t
presence of nonlinearity. As the ring is rotationally invaria
the symmetry-breaking solutions will have a high dege
eracy, in analogy with vortices in two dimensions@38#. The
periodic boundary conditions are

f ~0!5 f ~1!, ~30!

f 8~0!5 f 8~1!. ~31!

A. Constant-amplitude solutions

If we assume that the amplitude is constant, then we
tain plane-wave solutions of the form

f ~ x̃!5ei2pnx̃, ~32!

wherenP$0,61,62, . . .%. The amplitude is constrained b
normalization to be 1. Substituting Eq.~32! into Eq. ~7!, we
find the chemical potential

m̃511~l2pn!2, ~33!

from which we obtain the lower limit of the chemical pote
tials under periodic boundary conditions,m̃51. This is just
what we expect physically for the repulsive BEC. Th
ground state on a ring is the condensate spread out eve
There is no symmetry breaking. FornÞ0 each solution is
twofold degenerate, asn can be either positive or negative
while then50, ground-state solution is nondegenerate. N
that these states could also be termed angular momen
eigenstates or quantized vortices, as for example in the w
of Matthewset al. @21#.
0-5
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B. Real symmetry-breaking solutions

As we have exchanged the ring for the box, Eq.~11! is the
real solution. One simply changesk from 2jK (m) to
4 jK (m) in order to satisfy Eqs.~30! and~31!, i.e. from mul-
tiples of the half period to multiples of the whole period. T
number of nodes will be 2j rather than j 21, where j
P$1,2,3, . . . %. We temporarily keepd set to 0. But note that
unlike for box boundary conditions, under periodic bounda
conditionsd is arbitrary.

Then all the results from Sec. III hold with the newk, by
letting j→2 j in all equations. The energy and wave functi
are determined uniquely by graphical solution of Fig. 1.
Fig. 2 we show the first two states. Both the linear quant
mechanics, particle-on-a-ring limit, and the topological so
ton limits are reproduced. In the latter the same kind of n
overlapping criterion applies as before. Thus, giv
(16j 2l2)!1, Eq. ~14! becomes

m̃5112A2~2 j !l. ~34!

Note that the factor of 2 in front ofj shows that, on a ring
kinks of this type come in pairs.

If d is permitted to vary arbitrarily, the degeneracy inhe
ent in these symmetry-breaking solutions is obtained. T
entropy associated withj kinks depends logarithmically on
the box lengthL, and, since there are approximatelyl21

possible positions for the kink, the entropy is

S;kB lnS 1

4A2 j l
D , ~35!

where the factor of 4A2 comes from 2A2j for each of the
two kinks. This is consistent with the nonoverlapping cri
rion we used in obtaining Eq.~24!.

C. Complex symmetry-breaking solutions

For complex solutions we divide the wave function into
phase and amplitude:

f ~ x̃!5r ~ x̃!eif( x̃), ~36!

and obtain four boundary conditions. Substituting Eq.~36!
into Eq. ~30!, and taking real and imaginary parts, we obta

r ~0!5r ~1!, ~37!

f~1!2f~0!52pn, ~38!

wheren is an integer which we will call the phase quantu
number. Substituting Eq.~36! into Eq. ~31! and again taking
real and imaginary parts, we obtain

@r 8cosf2rf8sinf#u x̃505@r 8cosf2rf8sinf#u x̃51 ,
~39!

@r 8sinf2rf8cosf#u x̃505@r 8sinf2rf8cosf#u x̃51 .
~40!
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Substituting Eq.~36! into Eq. ~7!, we divide the NLSE into
real and imaginary parts. We integrate once to solve forf8
in the imaginary part, and find

f85
a

S
, ~41!

wherea is an undetermined constant of integration, andS

[r ( x̃)2 is the single-particle densityu f ( x̃)u2. Substituting
Eq. ~41! into the real part, we multiply through byr 8 and
integrate again. We find

~S8!2522F2
1

l2
S31

2m̃

l2
S22bS12a2G , ~42!

whereb is an additional undetermined constant of integ
tion. A similiar solution method was used by Drazin an
Johnson in an elementary discussion of solitons@8#. For the
complex solutions, Eqs.~41!–~42! replace the NLSE as the
equations to solve, together with boundary conditions~37!–
~40!, and normalization~8!.

We may rewrite Eq.~42! as an integral:

x̃5E
0

S dS

A2A~l22!S31~22m̃l22!S21bS22a2

. ~43!

This is an elliptic integral. Any elliptic integral can be ex
pressed as the sum of a finite number of elliptic integrals
the first, second, and third kinds. Given thata andb are real,
such integrals may be reduced to a standard form with C
ley transformations, so that 0,m,1 and the parameterm is
real @39#. Therefore all intrinsically complex solutions to th
1D NLSE may be written as a sum over standard ellip
integrals.

We have found real symmetry-breaking solutions
which the density is proportional to sn2. These solutions van
ish at 2j points around the ring. We look for solutions of
similiar form for which the density does not vanish. Th
physical motivation for such a solution type will becom
clear in Sec. V. Using our physical intuition, we are able
bypass the use of Cayley transformations.

From the Jacobian elliptic identity@Eq. ~A2!#,

sn2~ x̃um!5
1

m
@12dn2~ x̃um!#, ~44!

where dn(x̃um) is the Jacobian elliptic function which w
describe in Fig. 7. We thus generalize the real symme
breaking solutions@Eq. ~11!# as

r 2~ x̃!5A2@11g dn2@kx̃1dum!#, ~45!

where21<g<0.
By setting k equal to the full period of dn, i.e.,k

52 jK (m), and d50, we will automatically match the
boundary conditions related to amplitude@Eqs. ~37!, ~39!,
and ~40!#. It will remain to satisfy the phase quantizatio
@Eq. ~38!#. For real solutions we said thatj was related to the
0-6
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number of nodes or kinks. Here, as the density no lon
goes to zero,j is to be interpreted as the number of dips,
density notches as we will call them, in the densityr ( x̃)2.
This is consistent with our previous definitions ofj. g is then
the depth of the notch, whileA2 is put in to satisfy normal-
ization. We will consider the case of generald, and thus
degeneracy, later.

Equation~45! then becomes

r 2~ x̃!5A2@11g dn2~2 jK ~m!x̃um!#. ~46!

Substituting this into Eq.~42!, using additional Jacobian
elliptic identities, and setting coefficients of equal powers
dn equal, we obtain four equations in the parametersa, b,
g, and k. Eliminating b, we are left witha, g, and A2 as
functions of m,l, j, and m̃. We use normalization~8! to
constrainm̃, and find

m̃5
3

2
112j 2l2E~m!K~m!24 j 2~22m!l2K~m!2.

~47!

From this we obtain our equations for the parametersa, g,
andA2:

a5
1

A2
F S 1

l D 2

„@118 j 2l2E~m!K~m!

28 j 2~12m!l2K~m!2#$128 j 2l2K~m!2

164j 4l4E~m!2K~m!2216j 2l2E~m!K~m!

3@2114 j 2l2K~m!2#%…G1/2

, ~48!

g52
8 j 2l2K~m!2

118 j 2l2K~m!E~m!
, ~49!

A25118 j 2l2K~m!E~m!. ~50!

This leaves the constant of integrationa in f85a/r 2, the
depthg, the prefactor to the densityA2, and the chemica
potentialm̃, determined up to the number of density notch
j, the scalel, and the parameterm. For a givenl and j we
then numerically integrate the phase@Eq. ~41!#, and, usingm
as our free parameter, adjustm until the boundary condition
~38! is met, i.e. until the phase quantum numbern is an
integer. We note that all parameters are monotonic inm, so
that our algorithm is quite straightforward. By symmetry
the ring, n can be either positive or negative, so that ea
solution is twofold degenerate, just as we found for the c
stant amplitude solutions.

In Fig. 4 we show the amplitude and phase of one and
density-notch solutions at our test scale ofl51/25. We have
plotted the amplitude above the phase to make it appa
that the phase is a background constant slope with a re
of increased slope where the density notch occurs.
deeper the notch, the larger the increase in slope. In the
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that the notch dips to zero to form a node, the phase beco
a step function of heightp per step and the real solutions a
recovered.

If d is generalized so that it is arbitrary, a similiar dege
eracy to what was found in Eq.~35! results:

S;kB lnS 1

z j l D , ~51!

wherez5pA6, as we shall show in Sec. IV D.

D. Bounds

Real stationary states can have an arbitrarily large num
of nodes. But the number of notches for nodeless state
limited. We set three bounds on the complex, nodeless s
tions: the maximum chemical potential, the minimum a
maximum phase quantum numbers, and the minimum s
to obtainj notches. As a consequence of these bounds th
are some scales at which no complex solutions exist.

The maximum number of density notches that can fit
the ring is obtained from the lower limit on the period of th
dn function in Eq.~46!. When the notches overlap too muc
they are no longer solutions to the NLSE. The dn functi
approaches its minimum period ofp asm→01. In this limit
Eq. ~47! is the maximum chemical potential:

m̃max5
1

2
~312 j 2l2p2!. ~52!

In this same limit the amplitude approaches a const
which the normalization constrains to be 1. From Eqs.~41!
and~48! we find a relation between the maximum number
density notches, the phase quantum number, and the scl

FIG. 4. Complex, symmetry-breaking stationary solutions of
NLSE on a ring. These are grey density-notch soliton trains
supercurrent around the ring exactly cancels their velocities to m
them stationary states in the lab frame.j is the number of density

notches,n is the phase quantum number, andm̃ is the chemical

potential. ~a! Amplitude and~b! phase/2p of the j 51, n51, m̃
51.197 stationary state.~c! Amplitude and~d! phase/2p of the j

52, n52, m̃51.331 stationary state. All plots are for the test sc
of j/L51/25.
0-7
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l5
1

pA8n222 j 2
. ~53!

One may invert this relation to find the maximumn for a
given number of density-notchesj. Equation~53! requires
that n. j /2. Thus there are both upper and lower bounds
n:

j

2
,n<A1

8 S 1

p2l2
12 j 2D . ~54!

As j increases,nmax→( j /2)1. Only integern can solve the
phase quantization condition~38!. It follows that, for a given
l21, more oddj solutions will be available than evenj so-
lutions, becausej/2 for odd j is half integer. This is apparen
in Fig. 5.

The above bounds imply that at a given scale the num
of density notches is bounded from above. In Fig. 5 we p
the scale at whichj density notches become possible. F
less than 7.7 healing lengths to the box length, there are
complex solutions at all. Then, in order, j
51,3,5,2,7,9,4, . . . solutions become possible:

lmin
21 5pA818 j even,

lmin
21 5pA214 j odd ~55!

for even and oddj, respectively
The minimum inverse scale forj 51 is l215pA6. This

is the natural size of a density notch. At smaller inve
scales the notches are affected by overlap, so that com
solutions do not exist, while real solutions become sin
soidal. Thus the parameterz in Eq. ~51! takes the valuez
5pA6. Checking the limits, asl21→(l21)min5pA6, S
→01. There is only one configuration.

FIG. 5. Minimum inverse scale forj density notches to becom
available. The lower curve is oddj and the upper curve is evenj.
Note that at a given inverse scale there are many more odd solu
than even solutions available. The ordering of the solutionsj
5(1,3,5,2,7,9,4, . . . ).
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E. Spectra

We show the chemical potential spectra as a function
l21 for the three types of stationary states on the ring: re
constant amplitude, and intrinsically complex. In Fig. 3 t
two lowest real spectra are shown. For comparison we h
overlaid the four lowest constant amplitude spectra on
same figure. In Fig. 6 we show the three lowest spectra
the complex solutions.

For our experimentally reasonable test scale ofl51/25
the order of stationary states, starting with the ground st
is constant amplitude, singly quantized vortex, single g
density notch, doubly quantized vortex, real two-node so
tion, two gray density notch, etc. Note that the minimu
chemical potential ism̃51.

Since the real solutions are a limiting case of the comp
solutions, the two scale in the same way and their ene
levels do not cross. But the constant amplitude solutions
pend differently on inverse scale, so their energy levels
cross with those of the other solutions.

V. CONNECTION WITH SOLITON THEORY

The dimensionless, time-dependent, free NLSE is

@ in] t1j2]xx2u f ~x,t !u2# f ~x,t !50, ~56!

wheren[2Mj2/\ has units of time, and we have chosen
usex rather thanx̃. The single gray or dark density notc
solution to this equation takes the form@40#

f ~x2ct,t !5A2F i
cn

2j
1jk tanh„k ~x2c t!…Ge2 imt/\,

~57!

wherek is the width,c is the speed, andm is the chemical
potential.

ns

FIG. 6. Chemical potential spectra for complex, symmet
breaking stationary states on the ring as a function of inverse sc
The three solutions shown here were found using the nume
algorithm prescribed in Sec. IV C. They are (j ,n)5(1,1), (2,2),
and ~3,2!, where j is the number of density notches, andn is the
phase quantum number. The leftmost points are the minimum
verse scale and maximum chemical potential possible for suc
solution. Bounds and ordering of the solutions are shown in Fig
0-8
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Using an identity to change from tanh to sech, the am
tude squared is

u f ~x2ct!u25h22j2k2sech2„k~x2ct!…, ~58!

whereh[@(c2n2)/(2j2)12k2j2#. The speed is

c5
j

n
A2Ah22k2j2, ~59!

where c varies from zero to the Bogoliubov sound speed@11#

which, upon insertion of constants, iscmax5A4p\2ar̄/m2.
For c50 we recover the dark, tanh soliton mentioned in S
III. For c→cmax

2 the gray density notch approaches ze
depth. Thus the speed of the density notch has a finite ra
and the zero depth solitons approach the speed of sound
below.

The dn function is a periodic generalization of a se
Therefore replacing the sech in Eq.~57! by a dn is equivalent
to replacing a soliton by a soliton train. With this substit
tion, Eq.~57! becomes identical in form to Eq.~46! up to its
time dependence. A single soliton is set in motion by a ph
jump @11,40#. The same holds true for a soliton train. In th
plots of the phase of the complex solutions, Figs. 4~b! and
4~d!, there was a background linear slope with a jump wh
the density notches occurred. Thus the complex station
states can be interpreted as momentum boosts of the con
sate with gray soliton trains superimposed. The velocity
the momentum boost exactly cancels the velocity of the s
ton train, resulting in a stationary state in the lab frame.

Although free gray soliton trains can vary continuously
speed up tocmax, periodic boundary conditions require th
the boost speed which brings about our stationary solut
is quantized. Using Eq.~59! and making the substitution
h5A and 22k25Ag, so that we change over to the co
stants used in Eq.~45!, the boost speed of the condensa
which results in cancellation is

cboost5
j

n
A2A~11g!, ~60!

whereg→211 is thec50 limit, andg50 is the Bogolui-
bov sound speed.g→211 reproduces the real, dark solito
solutions found in Sec. IV B. Thus the real solutions a
soliton trains at rest.

VI. CONCLUSION

We have presented the complete set of stationary s
tions to the nonlinear Schro¨dinger equation under periodi
and box boundary conditions in one dimension for the c
of repulsive nonlinearity. In a box all solutions may be tak
to be real. On a ring there are three solution types: cons
amplitude solutions which are plane waves; real symme
breaking solutions; and a class of complex symme
breaking solutions which correspond to a boost of the c
densate in one direction with density notches moving in
opposite direction, so that they are stationary in the
frame.

Real and constant amplitude solutions are in one-to-
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correspondence with those of the analogous particle-in-a-
and particle-on-a-ring problems in linear quantum mech
ics. Complex, symmetry-breaking solutions are uniqu
nonlinear. We showed that solutions of nonconstant am
tude may be treated as density-notch soliton trains. As
natural size of a density notch ispA6, the minimum scale
size needed to obtain complex solutions isL/j5pA6. In the
context of the BEC, this means that the number of ato
determines the available solution-types.

The results of this paper cast the findings of previo
work @11,41# in the larger context of a comprehensive set
solutions to the NLSE. In the previous work, perturbations
the phase of the purely real, box-type solutions were foun
induce solitonic motion. Such perturbations were recen
applied in the laboratory to three-dimensional@12# and
nearly quasi-one-dimensional@13# BEC’s, and generated
solitary waves. Our present work gives a larger class of
lutions, whose response to perturbations may suggest fur
experiments.
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APPENDIX: JACOBIAN ELLIPTIC FUNCTIONS

We briefly review the properties of Jacobian elliptic fun
tions and establish the notation used herein. There are a
of 12 such functions. All of them solve the unbounded 1
NLSE in one form or another. Of the 12, six are normal
able. Of these, only three have different physical form. Th
are the sn, the cn, and the dn. We plot them in Fig. 7.
these, only the sn solves the NLSE for repulsive nonlinear
while only the cn and dn solve the NLSE for attractive no
linearity. The cd also solves the repulsive case. It diff

FIG. 7. The three basic Jacobian elliptic functions, for the p
rameterm50.99. The solid line is sn, the dotted line is cn, and t
dashed line is dn. Note that the period of dn is half that of the ot
two, and that dn is nodeless. All Jacobian elliptic functions may
constructed from these three. Of the 12 possible functions, th
three shapes are the only normalizable ones which differ from e
other by more than a translation along the horizontal axis o
renormalization along the vertical axis.
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from the sn by a shift of a quarter period but is otherw
identical.

The function sn(uum) may be written in integral form,

u5E
0

x dt

A12t2A12m t2
, ~A1!

where u5sn21(x) so that x5sn(uum). The functions
cn(uum) and dn(uum) may then be defined by the equatio

cn~uum!5A12dn2~uum!,

dn~uum!5A12m sn2~uum!. ~A2!

The limits of the sn, cn, and dn functions, along with t
complete elliptic integralsK(m) and E(m), are listed in
v.

tt.

ht,
ia

r,

nt

t

nt
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Table I. The period of the sn and cn functions is 4K(m),
while that of the dn function is 2K(m). We direct the reader
to Abramowitz and Stegun@42# and other works@39# for a
further review of the properties of these functions.

TABLE I. Limits of Jacobian elliptic functions and integral
@42#.

m50 m51

sn(uum) sin(u) tanh(u)
cn(uum) cos(u) sech(u)
dn(uum) 1 sech(u)
K(m) p/2 `

E(m) p/2 1
ev.
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