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Stationary solutions of the one-dimensional nonlinear Schrdinger equation.
I. Case of repulsive nonlinearity
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All stationary solutions to the one-dimensional nonlinear Sdimger equation under box and periodic
boundary conditions are presented in analytic form. We consider the case of repulsive nonlinearity; in a
companion paper we treat the attractive case. Our solutions take the form of stationary trains of dark or gray
density-notch solitons. Real stationary states are in one-to-one correspondence with those of the linear Schro
dinger equation. Complex stationary states are uniquely nonlinear, nodeless, and symmetry breaking. Our
solutions apply to many physical contexts, including the Bose-Einstein condensate and optical pulses in fibers.

PACS numbg(s): 03.75.Fi, 05.30.Jp, 05.45.Yv

[. INTRODUCTION nally an oblate harmonic trap with a barrier formed in the
. - . middle either by a second spin state of the same afin?

The nonlinear Schdinger equation(NLSE) models oy 5 Iase[19%]/, in which isaormed a pancake-shapedZBEC
many phenomena observed in the recently created dilute 9@th the center removed. Periodic boundary conditions pro-
Bose-Einstein condensaté8EC’s) [1]. In this context it is  vide a first model for toroidal geometries; box boundary con-
also referred to as the Gross-Pitaevskii equaf@3]. The ditions are a good starting model for cigar-shaped geom-
NLSE is ubiquitous. It describes wave propagation phenometries.
ena in many systems besides the BEC, including optical The full spectrum of soliton solutions to the NLSE on the
pulses in fiberg4], helical excitations of a vortex lings],  infinite line was discovered by Zakharov and Shqla;24.
Bose-condensed photofi€], and magnetic filmg7]. It is  These authors used the inverse scattering transform, a
one of a few basic equations upon which the modern theor ethod to which a great deal of mathematical physics litera-
of integrable nonlinear systems has been four{@®l. ure has been devotd@]. To solve the NLSE under these

My appicatons of e NLSE to BEC's have dealtwin "% bauncary condilons we have chosen rtead o Lse
ground-state properties, but there is a growing interest in thg" &9 ' y '

possibility of generating topological excitations of a conden—SpeCtrum of physicists and simpler than the inverse scatter-

; ) . . ing transform.
sate, which may well be described by excited-state solutions gThere have been many recent applications of Zakharov

of the NLSE. In this_ paper we investigate such_ solutlons, INnd Shabat's solutions to the BETL,25. Toroidal[26,27]

fche case of a one-dimensional _NL_SE for repulsive n_o_nlmearand cylindrical or box-shapef®8,29 geometries were con-
ity, subject either to box or periodic boundary conditions ongjgered. Some authors solved the parabolic potential numeri-
a finite interval. This corresponds to a BEC with repulsivecgjly [30,31,14. However, to the best of our knowledge no
atomic pair interactions, which is the case that has receiveghe to date has explored, analytically or otherwise, the full
the most experimental interest; a companion papeftreats  spectrum of boundedstationary multiple-soliton solutions
the case of attractive interactions. The stationary excitego the NLSE under periodic and box boundary conditions.
states that we study here are related to the well-known soli-

ton solutions of the time-dependent NLSE, and when per- Il. QUASI-ONE-DIMENSIONAL NLSE

turbed give rise to soliton-type motion$l]. Recent experi-

ments show that such motions can be induced in BEC'S byec o, T<T_is a three-dimensional mean-field theory. We
optical engineering of the condensate phe213.  afine the BEC to be in the quasi-one-dimensional regime
Box and periodic boundary conditions are as ubiquitousyhen its transverse dimensions are on the order of its healing
as the NLSE, and give physical insight into the solutions tqgngth, and its longitudinal dimension is much longer than its
more complicated potential[44,15. They model the poten- transverse ones. In this case the one-dimensidi) limit
tially quasi-one-dimensional regime of a number of presenpf the 3D NLSE is appropriate, rather than a true 1D mean-
experiments: the atom waveguifie6,17]; the prolate har- field theory[32], as would be the case for a transverse di-
monic trap in which is formed a cigar-shaped BEC mension on the order of the atomic interaction length or the
[18,19,13; the newly developed toroidal tra20]; and fi-  actual atomic size.
The quasi-1D limit of the 3D NLSE is implicitly used in
many places in the literature, a recent example being Liu
* Author to whom correspondence should be addressed. et al. [33]. Discussions which take into account transverse

The nonlinear Schidinger equation which describes the
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excitations and various other geometries may be found else- Ly L, 2 glf(x)h(y,2)|?
where[27,34]. We present a brief derivation in which we f dYJ dz lgs(y,z) m= WVZ+ LA
require that the wave function be approximately separable, 0 0 t

and that its transverse parts are not excited. By requiring the

transverse dimensions to be on the order of the healing +V(x,y,2) |f(x)h(y,z)=0. (4)

length, we ensure both a separability of the wave function
and a transverse stability of the solutions, as we have nu-

merically illustrated in other workg35,15. ¢, h( :
L . ~¢, h(y,z) takes the form of the ground-state linear quan-
We begin with the NLSE that describes a BEQ\W&toms 1 \achanics particle-in-a-box  solution hyq(y,2)

of massM, confined in an external potentisr): =hesin(my/Ly)sin(7z/L,). Requiring hyg(y,z) to be nor-
72 malized to 1,h,=2. We multiply Eq. (4) through by
_ mvz+g|zﬂ(F,t)|2+V(F) W(F ) =ihaw(F,t), (1) 2MEIA? and obtain a simple, quasi-1D NLSE:

_ 77252 71_2§2> §2

As will be shown in Sec. Il B, in the limit that L,

9
- = T - S ol

where |y(r,t)|? is the single particle density such that % % %
y z

p(r,t)=N]|y(r,t)|2, the coupling constarg=4x#%2aN/M,
and a is the s-wave scattering length for binary collisions
between atoms. The case of repulsive interactions considered +V(x,y,2)
here corresponds t@>0.

V(r) is defined to be a three-dimensional rectangular box ) ) ) , - .
of length L and small transverse aréq. In the transverse vyheref is a dlme2n5|o_nless wave fur_lctlon describing excita-
directions the wave function is required to vanish on thelions alongL; [f[*/L is the longitudinal part of the single
surface of the container; in the longitudinal direction we re-particle densityV(x)=(2M £%/#?)V(x) is the confining po-
quire either box or periodic boundary conditions. This mod-tential; and = (2M ¢%/%?)u is a dimensionless chemical
els the quasi-one-dimensional regime of many BEC experipotential which is now the eigenvalue of the problem.
ments, as mentioned in Sec. I, as well as ring |ag&8s37], The notation is further simplified by combining the longi-
helical excitations of a vortex line or rinfp], and many tudinal length of the confining potential and the healing
other physical systems for which the 1D NLSE is a goodlength into a single dimensionless scaling parameter:
model.

The characteristic length scale over which the condensate N=&/L. (6)
density resumes its average value away from a sharp defect
or from a perfectly confining wall is the healing lenggh \ is an important parameter which will determine many of

- the properties of the stationary states. For the purpose of
£=(8mplal) 12 (2) mathematical eas&=x/L. Using the approximations fdr,
andL,, and dividing through by the integration factor of 9/4,

p=N/(LA,) is the mean particle density, whelas the lon-  results in the dimensionless 1D NLSE we shall use hence-
gitudinal length of the confining potential, ahg andL, are  forth,
the transverse length.=L L, is the transverse area.

The BEC is in the quasi-1D regime whény andL, sat- N2 ROV T () = Tone f (X 7
isfy the following criteria:L,,L,~¢ and L ,L,<L. The [~ Xeri 160l (OO0 = prerrf (%), @)
former ensures that the condensate remains in the ground ~ ~ 2 N
state in the two transverse dimensions, while the latter enwhe“_a'“eff_“_S_” /92 andAg=4A°/9. For the purpozses
sures that longitudinal excitations are much lower in energ)i)f2 this pr(zesentanong =4/(9x8mlalp) and u=(2M&°/
than possible transverse excitations. Under these conditiorfs’) u—87°/9. However, we shall simply drop theff sub-
one may make an adiabatic separation of longitudinal angcripts, as such constant factors make no difference in our
transverse variablesy(r,t)=(LA,) Y2 (x)h(y,z)e i#/t ~ results. _ _ _ _
wheref(x) andh(y,z) are dimensionless and the time de- For comparison Wltl'l experiment the conversion factors
pendence of a stationary state has been assymbeing the ~ from the dimensionlesa to x in K are given below. The

f(x)=0, ®)

chemical potential. general conversion ig = (8.34x 10~ 1% (pa/M), whereM
This reduces the three-dimensional NL&E to is in atomic mass units is in cm™3, anda is in nm. Using
52 glf0Oh(y,2)[2 . common experimental valugd] of p~10", for #Naa
ST 24 T’+V(r) f(x)h(y,z) ~2.75, and for®Rba~5.77, the conversion factors are
t 0.0723 and 0.0401, respectively. Since the dimensionless
= uf(x)h(y,z). (3)  chemical potentials found will be on the order of 1-10 this

gives a sense of the energy scale of the solutions, on the
Equation(3) may be projected onto the ground state oforder of 0.1 to 1uK. Note that throughout the presentation
h(y,z), and integrated over the transverse dimensipaad an experimentally reasonable test scalenef1/25 will be
z used for illustrative purposes.
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As |f(x)|? is a single particle density, it is normalizedto = sHi— o 25 so H
1 rather thar: - — ~__H
1 E o — ,
f dx|f(x)[?=1. ® T
0 E 4 \ \\ N\ N
The number of atomsl, which is proportional to the coeffi- = \ S ~
cient to the nonlinear term in E@L), is then contained in the % 2 \ ~<_ - _
ratio of the healing length to the box lengthx N2 The = S P
NLSE (7), subject to normalizatiori8) and such boundary ®,

conditions as will be described below, is the equation we will
solve.

FIG. 1. This graphical solution of Eq15) shows that for a
IIl. BOX BOUNDARY CONDITIONS given scale and number of nodes the real solution to the stationary
] ) ) ) NLSE under box or periodic boundary conditions is uniqués the
We now consider the solution of E@7) in regions of  scale, and—1 withj€{1,2,3...} orjwith j €{2,4,6 ...} is the
constant potential, which may be taken to\bg«) =0 with-  number of nodes, respectively. The three curved lines are plots of

out loss of generality. We note first that i{x) vanishes EG- (15 solved for the number of nodes with A™'=L/¢
anywhere in an interval, as for example at the edges of thg 10: 25, and 50. The left-hand side of the plot is the:0 linear

~ limit, while the right-hand side exponentially approaches the
box, thenf(x) may be taken to be purely real throughout that:l topological soliton limit. The solutions are found where these

interval. This is easily established by considering a Taylor“nes intersect with the horizontal lines pfNote the rapid conver-

series expansion of in the neighborhood of the point at gence tom=0 in the highj limit, so that for largej the solutions
which it vanishes. Thus we may remove the absolute valugye in the linear regime.

symbol in Eq.(7) and so recover an ordinary nonlinear equa-

tion for a real function: with period equal to &(m), whereK(m) is an elliptic inte-

gral of the first kind(see the Appendjx Thus the boundary
equations ak=0 and 1 are satisfied K=2jK(m), where
je{1,2,3...}. The number of nodes in thigh solution is
j—1. We will give a more general interpretation jobelow.
We then solve Eq(7) by substituting Eq(11), using Jaco-
bian elliptic identities, and setting coefficients of equal pow-
(10) ers of sn equal. This results in equations for the amplitége,

— N2+ f3-uf=0. 9

By multiplying through byf, integrating both sides, and
then solving ford, the solution may be written in the form

~ 2\ (iR dt
X= ——

VR, Jo Ji-t2J1-m¢’ and the chemical potentiai:
whereR. =1+ /1—C, with C a constant of integration, and AZ=2m[2jK(m)]?\2, (13
m=R_/R, . Comparing Eq(10) to Eq.(Al) in the Appen-
dix, it is apparent that they differ only by trivial scaling n=[2jK(m)]2\3(1+m). (14)

factors. Therefore, in the box the most general solution is a
Jacobian elliptic function, which as shown in the Appendix  Substituting Eq.(13) into Eqg. (8), and noting that the
must be the sn function. A brief review of the form and integral over sh can be defined in multiples of the quarter

properties of the Jacobian elliptic functions is given in theperiodK(m), we obtain the normalization condition
Appendix.
E(m
( >> .

K(m) (15

; 2y2( 1_
A. Solutions and spectra 2[2jK(m)]°A (1

The most general form of the solution is . s
9 where E(m) is the complete elliptic integral of the second

£(X) = A sn(Kx+ sl m), (11) kind. Equation(11) then becomes
where the notation s®(m) is standard, as used in the Ap- f(x)=v2m[2jK (m)Ix s 2jK(m)x | m].  (16)
pendix.k and § will be determined by the boundary condi- . ) .
tions below, whileA andm will be determined by substitu-  This leaves the chemical potentigl4) and the wave
tion of Eq. (11) into the NLSE and by normalization. functlor_1(16) determlned up to the parametl_arand the scale
The boundary conditions are \. In Fig. 1 a graphical solution of Eq15) is shown. The
plot demonstrates that the solutions are unique. Such solu-
f(0)="f(1)=0. (12)  tions are in one-to-one correspondence with those of the 1D

particle-in-a-box problem in linear quantum mechanics.
The boundary condition at the origin can be satisfied most Plots of the wave function for the ground state and the
easliy by takings=0. The function sn{|m) is periodic in x,  first three excited states are shown in Fig. 2. To meet the box
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X X FIG. 3. Chemical potential spectra of real stationary states, as a
FIG. 2. Real . uti he NLSE under b dfunction of inverse scal&/&, with stationary plane-wave spectra
G. 2. Real stationary solutions to the SE under box an shown for comparison. Solid lines: shown are0, 1, 2, and 3,

periodic boundary conditions. These are in one-to-one COrresponyharen is the phase quantum number of the plane wave on the ring.

de’.‘ce with those .Of t_he analogous particle-in?a-box and particle-ongy o he fines: real stationary states of the NLSE in a box and on a
a-ring problems in linear quantum mechanics, and may also bﬁng are soliton trains. Shown aje=1, 2, 3, and 4 withj— 1 the

charactedri?ed ?13 dark _sol(ijton trains._ B@);(g) are :]hef_ground number of nodes in a box arjé=2 and 4 the numbers of nodes on
state and first three excited states. Rifi:and(d) are the first two a ring. Note that for very fine scale, i.d4./¢ large, the chemical

solutions of this type. Chemical potential&) n=1.120,(b) «#  potentials are evenly spaced. This corresponds to the topological
=1.253,(c) u=1.402, andd) n=3.028. All plots are for the test soliton limit in which the chemical potentials are additive, just as

scale of¢/L=1/25. for vortices.

boundary conditions the wave function drops to zero over the j272h2 3m

scale of the healing length. When the zeros of are well w= S| 1+ 7+O(m2)),

separated, the analytic behavior bhear a zero}o, ap- 2ML

proachesf ~tanh (X—x)/(\y2)] = tant (x—x))/(£42)]. We (18)
refer to this behavior at each nodefods a kink.f2 is pro- j2m?h? 12aNL L2N?2

portional to the density of particles in a BEC; this density is m= > ST ") ,

constant everywhere except at the boundaries and the kinks, 2ML Aqm ]

where it dips to zero.

In Fig. 3 we plot the (_:hemic:all potential spectrum of thiswhich clearly converges to the well-known linear quantum
solution type as a function of %, the number of healing mechanics particle-in-a-box chemical potentiainas0*.
lengths per box length. The leftmost portion of the plot cor-  One may also obtain this result from first order perturba-
responds to the particle-in-a-box limit, and the rightmost por+ion theory. The Hamiltonian for Eq(7) is H=H,+H;,
tion to the topological soliton limit. We now discuss theseyhere Ho=—(#2/2M)d%, H,=[g/(LA)]f% and the box
two limits. boundary conditions are implicit. As the solutions are real,

we have dropped the absolute value sigilin Note that we
B. Particle-in-a-box limit have put the units back in. The solutiontif = u(9f is f
= /2 sin(mjx) with 1(9= (j27242)/(2ML?). The first-order

High chemical potential states in which the kinks overla iRerturbation-correction 12 © yields

become particle-in-a-box type solutions, as can be seen
Fig. 2(d). This is both the zero density linear limit and the
highly excited-state limit. Mathematicallypn—0* and sn " 4rhcaN 1 3

—sin. Physically,jA>1. In this limit K(m)— [ 1/2+m/8 N VI VWX (19
+0(m?)] andm—1/(j w\)?, so that Eq(14) becomes:

where we have substituted in the definition of the coupling

constany. By noting thatA?=2 in Eq.(13) in this limit, and
17) using Eq.(13) together with Eq(2) to eliminateNa in favor

of the parametem, one recovers the same first-order pertur-

bation correction as in Eq198):

~ 3m
w=j2m\?| 1+ 7+0(m2)),

=j2m2\2

1+ 3 +O( !
2j27T2)\2 j4)\4
i27?h? 3m
=] - (20

corresponding to 2ML? 2
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C. Topological soliton limit

e 2° 14 3y 4

One may add a kink without disturbing another kink, pro- (H)= N3l K(m)"AT(A+2m)K(m) = (1+m)E(m)],
vided that the overlap between them is exponentially small in (27
the ratio of their separation to the healing length. In analogy = . o s
with vortices the chemical potentials of the kinks ought to beWhich in the limit as (§°A%)<1 becomes
additive. This is the large particle number, highly nonlinear, ~ N i oo
Thomas-Fermi[1] limit. Mathematically, m—1~ and sn (H)=N[z +2\/§J)‘+O(J A9 (28)
—tanh, formally called a topological soliton. Physically, o o~
— o implies A\—0", so that one expects the kinks should Therefore, the excitation energy to add a kinkAigH)
never overlap. We note that in a BEC experiment the box=2Nv2\, or, putting the units back in,
length is held fixed while atoms condense.

By solving for K(m) in Eq. (15) and usingE(m)—1" A(H)= ﬁzng”aAt;a/z (29)
(see the Appendijx we find thatk(m)— «, where 2M '
1 1 This is just as one would expect; the energy to add a kink no
K=5 1+ \/ 1+ —=|. (21) longer depends on the box length when the kink size is much
2)°\ smaller than the box. Instead, it simply depends on the den-
sity.

so that Eq.(14) becomes
7;,:2(2j)2)\2;(2 (22) IV. PERIODIC BOUNDARY CONDITIONS

There are three solution types for periodic boundary con-
ditions. There are constant amplitude solutions which are

~ ; .o plane waves; real symmetry-breaking solutions, similiar to
F(x)=2(2j )n sn(2j ex|m). @3 those found in Sec. Ill; and a class of complex symmetry-

We have found that this limit suffices to calculate chemi-Preaking solutions. The former two are in one-to-one corre-
cal potentials for whichj < (1/(5\)) to better than 1%. This SPondence with particle-on-a-ring solutions in linear quan-
estimate assumes an overall scale size 6 per kink. The ~ tum mechanics, while the latter one is only found in the
chemical potentials for the=1, 2, and 3 solutions shown in Presence of nonlinearity. As the ring is rotationally invariant,
Fig. 2 satisfy this criterion, for example, as do any groundthe symmetry-breaking solutions will have a high degen-
states for a healing length of smaller than 1/10. If we noweracy, in analogy with vortices in two dimensiof@3]. The

while Eq. (16) becomes

further require that (FPA%) <1 then Eq.(22) becomes periodic boundary conditions are

u=1+2\2jx, (24) f(0)="1(1), (30
from which we see that the chemical potentials of additional f'(0)=1"(1). (31)
kinks are indeed additive. This additivity is apparent in Fig.
3 in the limit A "=L/¢é—o. Equation(24) is identical in A. Constant-amplitude solutions
fr;)rergh;(:]i?sat of the harmonic oscillator in linear quantum If we assume that the amplitude is constant, then we ob-

Putting back in the units aE%/(2M £2), we find that the 2" Plane-wave solutions of the form

chemical potential for formation of an additional kinku, f(')‘():eizwn”x (32)

is proportional toyN,
wherene {0,+£1,+2,...}. The amplitude is constrained by

#? [8wNa 1 izati ituti i
Apu=22j = 25 normallzatlon to be 1. Sgbsututmg E@?2) into Eq.(7), we
M Ar 132 find the chemical potential

so that the chemical potential to add a kink increases as ,TL=1+()\27-rn)2, (33
atoms condense, when all units are included. . _ o _
We may also solve for the excitation energy to add arfrom which we obtain the lower limit of the chemical poten-

(Fy=N , (26)

isolated kink to theN body system by finding the expectation tials under periodic boundary conditions=1. This is just
value of the many-body Hamiltonidr2]: what we expect physically for the repulsive BEC. The
ground state on a ring is the condensate spread out evenly.
ZJ' , 2_1J 4 There is no symmetry breaking. Far=0 each solution is
N P== | If] . - .
2 twofold degenerate, as can be either positive or negative,

5 while then= 0, ground-state solution is nondegenerate. Note
where just as for the chemical potentidid)=(2M &%/ that these states could also be termed angular momentum
#2)(H) is a dimensionless energy. Substituting in the staeigenstates or quantized vortices, as for example in the work
tionary solution Eq(11), one finds of Matthewset al.[21].

063610-5



L. D. CARR, CHARLES W. CLARK, AND W. P. REINHARDT PHYSICAL REVIEW A62 063610

B. Real symmetry-breaking solutions Substituting Eq(36) into Eq. (7), we divide the NLSE into
real and imaginary parts. We integrate once to solve¢for

As we have exchanged the ring for the box, Bd) isthe ' k ‘ X
in the imaginary part, and find

real solution. One simply changes from 2jK(m) to
4jK(m) in order to satisfy Eq9.30) and(31), i.e. from mul- o
tiples of the half period to multiples of the whole period. The d'==, (41)
number of nodes will be R rather thanj—1, wherej S

€{1,2,3 .. .}. We temporarily keeg set to 0. But note that, where « is an undetermined constant of integration, &hd

unlike for box boundary conditions, under periodic boundar ~ . ) . e~ o
conditionss is arbitrar)x P yEr(x)2 is the single-particle densityf(x)|2. Substituting

Then all the results from Sec. Il hold with the néywby Eq. (41) into the real part, we multiply through by and

letting j— 2] in all equations. The energy and wave function Ntégrate again. We find

are determined uniquely by graphical solution of Fig. 1. In ~

Fig. 2 we show the first two states. Both the linear quantum (S')2=—2| — i53+2—M52—BS+2a2 , (42)
mechanics, particle-on-a-ring limit, and the topological soli- A2 \?

ton limits are reproduced. In the latter the same kind of non-

overlapping criterion applies as before. Thus, givenwherep is an additional undetermined constant of integra-

(16j°\?)<1, Eq.(14) becomes tion. A similiar solution method was used by Drazin and
~ Johnson in an elementary discussion of solittBis For the
w=1+22(2j)\. (34  complex solutions, Eqg41)—(42) replace the NLSE as the

equations to solve, together with boundary conditi¢3i8—
Note that the factor of 2 in front gf shows that, on a ring, (40), and normalization8).

kinks of this type come in pairs. We may rewrite Eq(42) as an integral:
If §is permitted to vary arbitrarily, the degeneracy inher-
ent in these symmetry-breaking solutions is obtained. The _ s ds
entropy associated withkinks depends logarithmically on = J (43
the box lengthL, and, since there are approximately * 0 \/5\/()\*2)53+(—2ﬁxf2)82+,88—2a2

possible positions for the kink, the entropy is
This is an elliptic integral. Any elliptic integral can be ex-

1 pressed as the sum of a finite number of elliptic integrals of
S~kgln - ) , (35  thefirst, second, and third kinds. Given tlhaand 3 are real,
4\/51)\ such integrals may be reduced to a standard form with Cay-

ley transformations, so thatOm<1 and the parameten is
where the factor of 42 comes from 2/2¢ for each of the  real[39]. Therefore all intrinsically complex solutions to the
two kinks. This is consistent with the nonoverlapping crite-1D NLSE may be written as a sum over standard elliptic

rion we used in obtaining Ed24). integrals.
We have found real symmetry-breaking solutions for
C. Complex symmetry-breaking solutions which the density is proportional to &rThese solutions van-

ish at 2 points around the ring. We look for solutions of a
similiar form for which the density does not vanish. The
physical motivation for such a solution type will become
clear in Sec. V. Using our physical intuition, we are able to
bypass the use of Cayley transformations.

From the Jacobian elliptic identifyfEq. (A2)],

For complex solutions we divide the wave function into a
phase and amplitude:

f(x)=r(x)e 4™, (36)

and obtain four boundary conditions. Substituting E2p)
into Eq.(30), and taking real and imaginary parts, we obtain 5 1 _
sre(x|m)= —[1—dré(x|m)], (44)
r(0)=r(1), (37) m

where dnf<|m) is the Jacobian elliptic function which we
$(1)=$(0)=2mn, (38) describe in Fig. 7. We thus generalize the real symmetry-

_ _ _ _ breaking solution$Eq. (11)] as
wheren is an integer which we will call the phase quantum

number. Substituting Eq36) into Eq.(31) and again taking r2(x)=A2[ 1+ y dré[Kx+ 8|m)], (45)
real and imaginary parts, we obtain
where— 1< y=<0.

[r'cos¢p—re¢'sing]lz—o=[r'cos¢—re¢’'singd]lz=1, By setting k equal to the full period of dn, i.ek
(39 =2jK(m), and =0, we will automatically match the

boundary conditions related to amplitufiggs. (37), (39),
[r'sing—r ¢’ cosg]lz—o=[r'sing—r¢’'cose]lz—1. and (40)]. It will remain to satisfy the phase quantization

(40) [Eq. (39)]. For real solutions we said thptvas related to the
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number of nodes or kinks. Here, as the density no longer _ (@ . (©
goes to zeroj is to be interpreted as the number of dips, or %) 1 nx)
density notches as we will call them, in the dengifx)?. 22 0.8 m
This is consistent with our previous definitionsjofy is then 0.4 gi
the depth of the notch, whil&? is put in to satisfy normal- 0.2 0.2
ization. We will consider the case of genem@l and thus T T e T e TR R R
degeneracy, later. X X
Equation(45) then becomes o5 | ®) WD @
~ . ~ ;0.8 / H /
r2(x)=A2[1+ ydr?(2jK(m)x|m)]. (46) ) 1o
4 | '
Substituting this into Eq(42), using additional Jacobian . 0.5
elliptic identities, and setting coefficients of equal powers of 0 [ 0 /
dn equal, we obtain four equations in the parameterss, R PN 0e0s g

v, andk. Eliminating 3, we are left witha, vy, andA? as
functions of m,\, j, and ITL We use normalizatiori8) to FIG. 4. Co_mplex, symmetry-breaking _stationary so_lutions_of the
constrainﬁ, and find NLSE on a ring. These are grey densnty-notch sollto_n_ trains. A
supercurrent around the ring exactly cancels their velocities to make
3 them stationary states in the lab franjés the number of density
w= §+12j IN2E(m)K(m)—4j%(2—m)\2K(m)2. notches,n is the phase quantum number, apdis the chemical
47 potential.(8) Amplitude and(b) phase/2r of the j=1, n=1, u
=1.197 stationary statéc) Amplitude and(d) phase/zr of the j

From this we obtain our equations for the parametersy, =2,n=2, :L: 1.331 stationary state. All plots are for the test scale
andAZ: of ¢/L=1/25.

17/1\2 that the notch dips to zero to form a node, the phase becomes

a= —[ (X) ((1+8j°\%E(m)K(m) a step function of heighi per step and the real solutions are
V2 recovered.
24 2 291 _ai2y 2 2 If §is generalized so that it is arbitrary, a similiar degen-
8] (1 —m)A“K(m)“J{1—-8j“N“K(m) eracy to what was found in EG35) results:
+64j *N*E(m)?K (m)2— 16j2A2E(m)K (m)
1
172 S~k In(.—), (52)
X[ —1+4] ZAZK(m)Z]})} , (48) eolan
where/= /6, as we shall show in Sec. IV D.
8j2\?K(m)?
Y= (49)

 1+8]22K(m)E(m)’ D. Bounds

Real stationary states can have an arbitrarily large number
A?=1+8j°\*K(m)E(m). (50 of nodes. But the number of notches for nodeless states is
) _ o limited. We set three bounds on the complex, nodeless solu-

This leaves the constant of integratiarin ¢’ =a/r? the  tions: the maximum chemical potential, the minimum and
depth y, the prefactor to the densit%®, and the chemical maximum phase quantum numbers, and the minimum scale
potentialx, determined up to the number of density notchesto obtainj notches. As a consequence of these bounds there
j, the scalex, and the parametan. For a given\ andj we  are some scales at which no complex solutions exist.
then numerically integrate the phddgy. (41)], and, usingn The maximum number of density notches that can fit on
as our free parameter, adjustuntil the boundary condition the ring is obtained from the lower limit on the period of the
(38) is met, i.e. until the phase quantum numbreis an  dn function in Eq.(46). When the notches overlap too much
integer. We note that all parameters are monotonim,iso  they are no longer solutions to the NLSE. The dn function
that our algorithm is quite straightforward. By symmetry of approaches its minimum period afasm—0™*. In this limit
the ring, n can be either positive or negative, so that eachEq. (47) is the maximum chemical potential:
solution is twofold degenerate, just as we found for the con-
stant amplitude solutions.

In Fig. 4 we show the amplitude and phase of one and two
density-notch solutions at our test scale\ef 1/25. We have
plotted the amplitude above the phase to make it apparent In this same limit the amplitude approaches a constant
that the phase is a background constant slope with a regiomhich the normalization constrains to be 1. From Ed4)
of increased slope where the density notch occurs. Thand(48) we find a relation between the maximum number of
deeper the notch, the larger the increase in slope. In the limdensity notches, the phase quantum number, and thescale

~ 1 ]
Mmax:§(3+212)\2772)- (52

063610-7



L. D. CARR, CHARLES W. CLARK, AND W. P. REINHARDT PHYSICAL REVIEW A62 063610

50 — 1.8 | | |
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40 1.6 E{*\'\ = e [

L/g
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20 12 \&‘*\»\\
. odd %:Sﬁ

0 20 40 60 80 100
L/g

0 10 20 30 40 50
i

FIG. 6. Chemical potential spectra for complex, symmetry-

available. The lower curve is oddand the upper curve is evgn breaking stationary states on the ring as a function of inverse scale.

Note that at a given inverse scale there are many more odd solutiori—{e three solutions shown here were found using the numerical

than even solutions available. The ordering of the solutiong is gorithm prescr.ib.ed in Sec. IVC. They. arg ) =(1.1), (2,2),
=(1,35.2.7,9.4...) and (3,2), wherej is the number of density notches, ands the

phase quantum number. The leftmost points are the minimum in-
verse scale and maximum chemical potential possible for such a

FIG. 5. Minimum inverse scale fgrdensity notches to become

N 1 53 solution. Bounds and ordering of the solutions are shown in Fig. 5.
m8n°-2] E. Spectra

We show the chemical potential spectra as a function of
A1 for the three types of stationary states on the ring: real,
onstant amplitude, and intrinsically complex. In Fig. 3 the
wo lowest real spectra are shown. For comparison we have
overlaid the four lowest constant amplitude spectra on the
same figure. In Fig. 6 we show the three lowest spectra for

] 1/ 1 _2 the complex solutions.
><"=7V\3 2202 +2)7]. (54) For our experimentally reasonable test scale\ef1/25

the order of stationary states, starting with the ground state,
is constant amplitude, singly quantized vortex, single gray
As j increasesnax—(j/2)". Only integern can solve the  density notch, doubly quantized vortex, real two-node solu-
phase quantization conditidB88). It follows that, for a given  tion, two gray density notch, etc. Note that the minimum
A~ more oddj solutions will be available than evgmnso-  chemical potential ig=1.
lutions, becausg? for oddj is half integer. This is apparent  gince the real solutions are a limiting case of the complex
in Fig. 5. ) ) solutions, the two scale in the same way and their energy
The above bounds imply that at a given scale the numbegyels do not cross. But the constant amplitude solutions de-

of density notches is bounded from above. In Fig. 5 we plopeng differently on inverse scale, so their energy levels can
the scale at which density notches become possible. Forqrgss with those of the other solutions.

less than 7.7 healing lengths to the box length, there are no
complex solutions at all. Then, in order,j
=1,3,5,2,7,9,4. . . solutions become possible:

Nmin= T8+ 8] eyen

One may invert this relation to find the maximumfor a
given number of density-notchgs Equation(53) requires
thatn>j/2. Thus there are both upper and lower bounds o
n:

V. CONNECTION WITH SOLITON THEORY

The dimensionless, time-dependent, free NLSE is
[iVﬁt—i_gzaxx_|f(X1t)|2]f(th):O1 (56)

A;]ilr,:fr 2+ 4544 (55) wherev=2M £?/% has units of time, and we have chosen to

usex rather thanx. The single gray or dark density notch

for even and odg, respectively solution to this equation takes the foif#0]

The minimum inverse scale fgr=1 is\ ~*=6. This
is the natural size of a density notch. At smaller inverse _ _ . Cv _ Siptlh
scales the notches are affected by overlap, so that complex (X~ Ct= V2 '2¢ +éxtanhlk (x=c))le '
solutions do not exist, while real solutions become sinu- (57)
soidal. Thus the parametérin Eq. (51) takes the valug
=7/6. Checking the limits, a3 '—(\ Y)min=716, S  wherex is the width,c is the speed, angt is the chemical
—07". There is only one configuration. potential.
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Using an identity to change from tanh to sech, the ampli-
tude squared is

[f(x—ct)|?=n—2&%k?sech(k(x—ct)), (58)

sn(u | m) etc.

where 7=[(c?v?)/(2&%) + 2k?£?]. The speed is

-0.
c= émn— 228, (59)
where c varies from zero to the Bogoliubov sound sgéddl u

. . . . _ 2 -y 2
\II:thCh_,(l)Jpon msertlonhOfdcorllStants’Cﬁl‘_ax_ 47Tﬁ apg’.‘ .S FIG. 7. The three basic Jacobian elliptic functions, for the pa-
orc=0 we recover the dark, tanh soliton mentioned in ecrameterm:O.QQ. The solid line is sn, the dotted line is cn, and the

ll. For c—cpay the gray density notch approaches zerogaghed line is dn. Note that the period of dn is half that of the other
depth. Thus the speed of the density notch has a finite rang@o, and that dn is nodeless. All Jacobian elliptic functions may be
and the zero depth solitons approach the speed of sound froganstructed from these three. Of the 12 possible functions, these
below. three shapes are the only normalizable ones which differ from each
The dn function is a periodic generalization of a sech.other by more than a translation along the horizontal axis or a
Therefore replacing the sech in E§7) by a dn is equivalent renormalization along the vertical axis.
to replacing a soliton by a soliton train. With this substitu-
tion, Eq.(57) becomes identical in form to E¢46) up to its  correspondence with those of the analogous particle-in-a-box
time dependence. A single soliton is set in motion by a phas@nd particle-on-a-ring problems in linear quantum mechan-
jump [11,40. The same holds true for a soliton train. In the jcs. Complex, symmetry-breaking solutions are uniquely
plots of the phase of the complex solutions, Figd)4nd  nonlinear. We showed that solutions of nonconstant ampli-
4(d), there was a background linear slope with a jump whereude may be treated as density-notch soliton trains. As the
the density notches occurred. Thus the complex stationaryatyral size of a density notch /6, the minimum scale
states can be interpreted as momentum boosts of the condegj;e needed to obtain complex solutions ig= 76. In the
sate with gray soliton trains superimposed. The velocity Of;ontext of the BEC, this means that the number of atoms
the momentum boost exactly cancels the velocity of the soliyetermines the available solution-types.
ton train, resulting in a stationary state in the lab frame. The results of this paper cast the findings of previous
Although free gray soliton trains can vary continuously inyyork [11,41] in the larger context of a comprehensive set of
speed up (@, periodic boundary conditions require that sojytions to the NLSE. In the previous work, perturbations of
the boost speed which brings about our stationary solutiongye phase of the purely real, box-type solutions were found to
is quantized. U23|ng Eq59) and making the substitutions jnguce solitonic motion. Such perturbations were recently
n=A and —2x“=Ay, so that we change over to the con- gppjied in the laboratory to three-dimensiorfd2] and
stants used in Eq(45), the boost speed of the condensatepearly quasi-one-dimensiondll3] BEC’s, and generated

which results in cancellation is solitary waves. Our present work gives a larger class of so-
£ lutions, whose response to perturbations may suggest further
Choos= — [2A(1+ ), (60) experiments.
wherey— —17 is thec=0 limit, and y=0 is the Bogolui- ACKNOWLEDGMENTS

bov sound speedr— — 1" reproduces the real, dark soliton
solutions found in Sec. IV B. Thus the real solutions are
soliton trains at rest.
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We have presented the complete set of stationary solu-
tions to the nonlinear Schdinger equation under periodic
and box boundary conditions in one dimension for the case
of repulsive nonlinearity. In a box all solutions may be taken  We briefly review the properties of Jacobian elliptic func-
to be real. On a ring there are three solution types: constanions and establish the notation used herein. There are a total
amplitude solutions which are plane waves; real symmetryef 12 such functions. All of them solve the unbounded 1D
breaking solutions; and a class of complex symmetryNLSE in one form or another. Of the 12, six are normaliz-
breaking solutions which correspond to a boost of the conable. Of these, only three have different physical form. They
densate in one direction with density notches moving in there the sn, the cn, and the dn. We plot them in Fig. 7. Of
opposite direction, so that they are stationary in the lalithese, only the sn solves the NLSE for repulsive nonlinearity,
frame. while only the cn and dn solve the NLSE for attractive non-

Real and constant amplitude solutions are in one-to-onénearity. The cd also solves the repulsive case. It differs

VI. CONCLUSION

APPENDIX: JACOBIAN ELLIPTIC FUNCTIONS

063610-9



L. D. CARR, CHARLES W. CLARK, AND W. P. REINHARDT PHYSICAL REVIEW A62 063610

from the sn by a shift of a quarter period but is otherwise TABLE I. Limits of Jacobian elliptic functions and integrals
identical. [42].
The function sng/m) may be written in integral form,

m=0 m=1
u= fXL, (A1) sn(ulm) sin(u) tanh(i)
0y1-t?J1-m#t cn(ulm) cos(i) sech()

3 ] dn(u|m) 1 sech()
where u=sn }(x) so that x=sn(u|m). The functions K(m) 2 -
cn(u|m) and dn@|m) may then be defined by the equations E(m) 2 1

cn(u|lm)=+1—dré(ujm),
dn(u|m) = yI—msre(u]m). (A2) Table I. The period of the sn and cn functions iK(4n),

while that of the dn function is R(m). We direct the reader

The limits of the sn, cn, and dn functions, along with theto Abramowitz and Steguf¥2] and other workg39] for a
complete elliptic integralk(m) and E(m), are listed in further review of the properties of these functions.
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