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Using classical density functional theory, the forces between two cylindrical nanoparticles in a liquid crystal solvent
are calculated. Both the nematic and isotropic phases of the solvent are considered. In the nematic phase, the interaction
is highly anisotropic. At short range, changes in the defect structure around the cylinders leads to a complex interaction
between them. In the isotropic phase, an attractive interaction arises due to overlap between halos of ordered fluid
adsorbed on the surfaces of the cylinders.

1. Introduction

Composites of solid particles dispersed in liquid crystals form
a class of novel materials with a wide range of phenomenology.1

The spontaneous ordering of the liquid crystal (LC) molecules
allows manipulation of the orientations2,3 and positions4 of the
nanoparticles. This gives rise to a number of current and potential
applications for these, such as in displays5or materials processing.2

Interactions between LCs and nanoparticles are also important
in other applications of liquid crystals, such as biosensors.6

Elastic distortions of the liquid crystal director play an important
role in the physics of LC-nanoparticle composites. Depending
on the anchoring strength and direction at the nanoparticle surface,
a range of different director configurations,7 which often contain
topological defects (disclinations), may exist in its vicinity. This
elastic distortion gives rise to long-ranged, solvent-mediated
interactions between nanoparticles in LCs, leading to structures
such as colloidal chains8 or crystals9 ordered over many
micrometers. There has been much interest in studying the
behavior of LC-nanoparticle composites, for both ordered and
disordered phases of the LC. At temperatures above the nematic-
isotropic (NI) transition of the LC solvent (T > TNI), a layer of
ordered (paranematic) fluid is often adsorbed on the nanoparticle
surface. Overlap between these layers leads to a strong attraction
between nanoparticles and hence to flocculation in LC-colloid
dispersions close toTNI.

In previous work, classical density functional theory (DFT)
has been applied to the study of LC-nanoparticle composites.10,11

This has proven to give results in agreement with both molecular
simulations and phenomenological theories, while being less
computationally expensive than the former and retaining a direct
link to molecular structure lacking in the latter. In this paper,
attention is turned to the interaction between two parallel
cylindrical nanoparticles in both nematic and isotropic LCs. When
the anchoring on the particle surface is normal (homeotropic),

two line defects, disclinations of strength 1/2, appear on either
side of the particle. At large separations, this defect structure
gives rise to a quadrupolar effective interaction between the
cylinders.12As the separation is decreased, changes in the defect
structure around the cylinders lead to a more complex interaction.
Examining this short-range interaction is a key aim of this paper.
This work will also examine the solvent-induced interaction
between cylinders in the isotropic phase of the solvent, which
is largely due to the overlap between the halos of ordered fluid
on the cylinders’ surfaces.

2. Theory

The liquid crystal solvent is modeled as a fluid of axially
symmetric hard ellipsoids of aspect ratioe ) a/b ) 15 (in the
rest of this paper,b ) 1, the minor axis, will be taken to be the
unit of length). The grand potential of such a system may be
written as13

Here,F ≡ F(r, u) is the single-particle density, which depends
on the particle position vectorr and orientation vectoru. Vext(r,
u) is the external potential,µ is the chemical potential, andâ )
1/kBT. Fid[F] and Fex[F] are the ideal and excess free energy
functionals, respectively. The ideal free energy is given by

The exact form of the excess free energy is generally unknown.
Here, we employ the Onsager approximation14

wherer12 ) r1 - r2 andf(r12, u1, u2) ) exp{-âV(r12, u1, u2)}
- 1 is the Mayer function.V(r12, u1, u2) is the intermolecular
potential, which in the present work is the hard ellipsoid potential
that is∞ when two molecules overlap (f(r12, u1, u2) ) - 1) and
0 otherwise (f(r12, u1, u2) ) 0). Equation 3 corresponds to
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â Ω[F] ) â Fid[F] + â Fex[F] +

â ∫ dr du F(r, u) (Vext(r, u) - µ) (1)

â Fid[F] ) ∫ dr du F(r, u) (log F(r, u) - 1) (2)

â Fex[F] )

- 1
2∫ dr1 dr2 du1 du2 f(r12, u1, u2) F(r1, u1)F (r2, u2) (3)
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truncating the virial expansion after the pair term. While Onsager
theory is only exact in the limit of infinite elongation, previous
studies have shown it to be in good agreement with simulations
for molecules of the elongation under consideration here.15,16

The interaction between a fluid molecule located atr ) (x,
y, z) and a cylindrical nanoparticle of radiusR, whose axis is
oriented alongy and located atS1 ) (X1, Z1) in thexz-plane, is
independent of they-coordinates and may be written as

wheres ) (x, z), V0 ) 50kBT, andw ) b/5. The nanoparticle
radius isR ) 15b. This represents a sharply varying repulsive
potential acting on the ellipsoid centers of mass; it excludes the
centers of the molecules from the cylinder and gives rise to
homeotropic (normal) anchoring at the surface. This allows half
of the ellipsoid volume of each fluid molecule to penetrate inside
the cylindrical nanoparticle: the aim is to mimic the effect of
a semipermeable surface coating, such as a polymer brush, applied
to an impermeable cylinder, such as a carbon nanotube2of smaller
radius. Note that, in this case, the potentialVext does not depend
explicitly on the ellipsoid orientation vectoru; by makingVext

depend onu, other anchoring conditions are easily generated.
In this work, the external potential is a sum of two termsVext

) Vext
(1) + Vext

(2) from cylinders located at, respectively,S1 andS2.
It should be noted that the cylinder-particle interaction is, for

practical purposes, a hard repulsive potential acting solely on the
ellipsoid particle centers, without an explicit orientation-
dependence. The results should not depend sensitively on the
values ofV0 and w. The homeotropic anchoring arises from
entropic effects, that is, the packing of ellipsoids in the most
efficient manner on the surface. This anchoring condition has
been investigated quantitatively before for a planar hard surface
and for ellipsoids identical to the ones studied here.16,17 The
effective extrapolation length, which measures the anchoring
strength, depends, of course, on the fluid density, but it is of the
order of the length of a molecule. This corresponds to “strong
anchoring’’ in the conventional terminology. By using a repulsion
of finite (but very large) height and slightly softened form, we
avoid some numerical difficulties in the minimization of the free
energy.

To make the calculations computationally tractable, the
angularly dependent functions are expanded in spherical har-
monics10,11

where translational invariance along they-direction allows us to
write the coefficients as functions ofs. The indices range over

integer valuesl ) 0, 1, 2... andm ) 0, (1, ...,(l. The Mayer
function is expanded as18

wherer12) |r12|, r̂12) r12/r12. In this equation,Φl1l2l is a rotational
invariant19

where (m1

l1
m2

l2
m
l ) is the standard 3j-symbol andClm ) (4π/(2l +

1))1/2Ylm. Inserting the expansions into eq 1, and integrating over
angles and they-direction, gives the grand potential (per unit
length along they-direction denoted asL)

where the Kronecker deltaδl0 ) 1 when l ) 0 andδl0 ) 0
otherwise. The quantitiesLl1m1l2m2(s12) come from integrating the
Mayer function and are the spherical harmonic coefficients of
the excluded length (in they-direction) of two molecules with
a separation vectors12 ) s1 - s2 in the xz-plane, treated as a
function of the molecular orientations. As the last term in eq 7
is a convolution, it is most conveniently evaluated in reciprocal
space in the form

whereFlm(k) andLl1m1l2m2(k) are, respectively, the two-dimensional
Fourier transforms ofFlm(s) andLl1m1l2m2(s12).

To find the equilibrium density, the functions are tabulated on
a regular grid in thexz-plane; the grid spacing isδx ) δz) 0.5b,
with the molecular length corresponding to 30 grid points. A 600
× 600 grid, that is, of side 300b, with periodic boundaries, was
found to be sufficient. The grand potential is then minimized
with respect to theF̃lm(s) coefficients at each grid point using the
conjugate gradient method.20 When required, the coefficients
Flm(s) are calculated through eq 5, with angular integrations
performed using Lebedev quadrature.21,22

Once the equilibrium density coefficientsFlm(s) have been
determined, the number densityF(s) and order tensorQRâ(s)
may be found from
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Vext
(1)(s) )

{V0 tanh(b/w) |s - S1| - R < -b

1
2
V0[tanh(R - |s - S1|

w ) + tanh(b/w)] ||s - S1| - R| < b

0 |s - S1| - R > b
(4)

log F(r, u) ) ∑
l,m

F̃lm(s) Ylm(u) (5a)

F(r, u) ) ∑
l,m

Flm(s) Ylm
/ (u) (5b)

Vext(r, u) ) ∑
l,m

Vlm(s) Ylm(u) (5c)

f(r12, u1, u2) ) ∑
l1,l2,l

fl1l2l(r12) Φl1l2l
(u1, u2, r̂12) (6)

Φl1l2l
(u1, u2, r̂12) )

4π ∑
m1,m2,m

( m1

l1
m2

l2
m
l ) Yl1m1

(u1) Yl2m2
(u2) Clm(r̂12)

â Ω[F]

L
) ∫ ds∑

l,m

Flm(s) (F̃lm(s) - x4π(1 + âµ)δl0 +

â Vlm(s)) + ∫ ds1 ds2 ∑
l1,m1

l2,m2

Ll1m1l2m2
(s12) Fl1m1

(s1) Fl2m2
(s2) (7)

∑
k

∑
l1,m1
l2,m2

Ll1m1l2m2
(k) Fl1m1

(k) Fl2m2
(k) (8)

F(s) ) ∫ du F(s, u) ) x4π F00(s) (9)

QRâ(s) ) 3
2∫ du F(s, u) uR(s) uâ(s) - 1

2
δRâ

R, â ) x, y, z (10)
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The spatially varying order parameterQ(s) is given by the largest
eigenvalue ofQRâ(s), and the directorn(s) is given by the
eigenvector associated withQ(s). In the present work, the director
is found to lie in thexz-plane, and so it may be characterized by
an angleæ(s) such that tanæ ) nx/nz, measuring the deviation
from the far-field director, which is taken to lie in thez-direction.
Calculations were performed on systems containing two cylinders

at chemical potentialsâµ ) 1.4 (nematic) andâµ ) 1.2 (isotropic).
For the model and parameters used in this work,âµNI ≈ 1.31.
The separationS12 ) |S1 - S2| between the cylinders ranged
from S12 ) 30b (contact) toS12 ) 150b; and in the nematic
phase, the angle between the director and separation vector was
θ ) 0, π/6, π/4, π/3, andπ/2. The setup is shown in Figure 1.

It is worth stressing that the director is not constrained to lie
perpendicular to the cylinder axes: this configuration arises
naturally as the one of lowest free energy, as is the case for a
single cylinder with homeotropic anchoring.23It would be possible
to constrain the far-field director in other directions, but this is
not the topic of the present study.

The LC mediated force (per unit length) on the cylinders may
be found by differentiating the grand potential with respect to
(either one of) the cylinder coordinates24,25

(similarly for F2) where the integration is over the region|s -
S1| < R - b. It is most convenient to resolve the force between
the cylinders into a radial componentFr along the separation
vectorS12, and a tangential componentFt perpendicular toS12.

Figure 1. Two-cylinder configuration. The system is translationally
invariant in they-direction. The angleθ of the interparticle vector
is taken with respect to the far-field director, which defines the
z-direction.

Figure 2. Maps of order parameterQ(s) (left), director angleæ(s) (center), and number densityF(r) (right) of LCs around two cylindrical
nanoparticles withθ ) 0 in the solvent nematic phase (âµ ) 1.4). Only the central region-100 e x/b, z/b e 100 is shown.

âF1

L
)

∫ dsx4πw-1 sech2(R - |s - S1|
w ) F00(s) (s - S1) (11)
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3. Results

3.1. Nematic Phase.Shown in Figures 2-4 are order para-
meter and director angle maps for two cylinders in the nematic
phase (âµ ) 1.4) of the solvent. When the separation is large,
the structure of the LC fluid around the cylinders is the same as
for isolated cylinders: the two strength-1/2 defects are clearly
seen both in the reduced value of the order parameter near the
disclination lines and in the rotation of the director angle about
these lines, which lie at the same values ofz as the respective
cylinder axes. On decreasing the separation between the cylinders,
the structure of the fluid begins to deform, in a manner which
varies depending on the angleθ of the separation vectorS12

relative to the far-field directorn. Whenθ ) 0 (Figure 2), the
fluid structure changes only slightly, with the defects around
each particle merging together when the particles get close to
contact. This is in contrast to a Landau-de Gennes theory

calculation on a 2D nematic system12 where the defects near the
particles twist around but do not merge. Whenθ ) π/4 (Figure
3), the local director between the particles rotates to lie along
the separation vector. As the particles come into contact, two of
the defects shrink in size.

The change in structure is most dramatic for a separation vector
S12 perpendicular ton, θ ) π/2 (Figure 4). On decreasing
separation, the defects between the particles merge and then split
along the director. This is in agreement with previous molecular
dynamics (MD) simulations26 and Landau-de Gennes theory.12

The change in defect structure is also reminiscent of the behavior
of spherical nanoparticles with so-called “Saturn ring’’ defects.27-29

On decreasing the separation to contact, these defects decrease
in size and move closer to the cylinder surface until they are
sitting in the cusps between them.
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Figure 3. Maps of order parameterQ(s) (left), director angleæ(s) (center), and number densityF(r) (right) of LCs around two cylindrical
nanoparticles withθ ) π/4 in the solvent nematic phase (âµ ) 1.4). Only the central region-100 e x/b, z/b e 100 is shown.
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Plots of the grand potential against separation for a range of
anglesθ are shown in Figure 5. For all angles, the potential is
repulsive at short distances and has a potential well atS12≈ 33b.
The short-range repulsion is due to the overlap between the high-
density regions at the cylinder surface and the elastic distortions
due to the normal anchoring at the cylinder surface. This repulsive
interaction at short range is indicative of strong normal anchoring
on the cylinder surfaces.12 We note in passing that the form of
the ellipsoid-cylinder interaction studied here does not produce
a depletion interaction, that is, there is no region between the
cylinders from which the ellipsoids are geometrically excluded.
Forθ ) 0, there is a marked potential barrier at larger separations
and a repulsive potential extending over 2-3 cylinder diameters.
On increasingθ, the potential barrier disappears and the potential
becomes attractive at largeS12. The range of this interaction is
longest forθ ) π/4 and shortest forθ ) π/2. The short range
of the interaction in this configuration may arise due to the short
range of density and order parameter variation perpendicular to
the director for isolated cylinders, which in turn is a result of the
presence of the defects.10,23

The radial and tangential components of the solvent induced
force are shown in Figure 6.Fr is dominated by the excluded
volume interaction of the adsorbed layers on the cylinders.26

Except forθ ) 0 andθ ) π/2, there is a nonzero tangential force
Ft. In agreement with MD simulations,26 the magnitude of this
component is significantly smaller than that of the radial

Figure 4. Maps of order parameterQ(s) (left), director angleæ(s) (center), and number densityF(r) (right) of LCs around two cylindrical
nanoparticles withθ ) π/2 in the solvent nematic phase (âµ ) 1.4). Only the central region-100 e x/b, z/b e 100 is shown.

Figure 5. Grand potential (per unit length) against separation for
two cylinders in the solvent nematic phase (âµ ) 1.4) for the following
separation anglesθ: 0 (circles, black),π/6 (squares, red),π/4 (tilted
squares, green),π/3 (up triangles, blue), andπ/2 (down triangles,
cyan). The inset shows the strongly repulsive region at low separation.
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component. Forθ ) 0 andθ ) π/2, DFT predictsFt ) 0 due
to the symmetry of the fluid structure around the cylinders in this
configuration.

3.2. Isotropic Phase.Shown in Figure 7 are order parameter
and director angle maps for two cylinders in the isotropic phase
of the solvent, at a chemical potentialâµ ) 1.2 quite close to
the NI transition. When the particles are far apart, the structure
around each is cylindrically symmetrical and is localized to a
surface layer. As the cylinders are brought together, a bridge of
orientationally ordered fluid appears between them, which leads
to an attractive interaction between the cylinders. This interaction
causes flocculation of nanoparticles in LCs aboveTNI. The bridge
starts to form whenS12 ≈ 60b-65b, which is comparable to the
distance at which a nematic bridge is seen to form between a
single cylinder and a planar substrate11for this chemical potential.

The variation of the grand potential with cylinder separation
in the isotropic phase is shown in Figure 8. As in the nematic
phase, this is strongly repulsive at small cylinder separations and
has an attractive well atS12≈33b. At larger distances, the potential
is attractive and varies approximately linearly with separation.
This arises from the nematic bridge that appears between the
particles at this state point. Unlike the case of a single cylinder
in the vicinity of a planar substrate,11 there is no abrupt change
in the potential, indicating that the bridge forms continuously.

Figure 6. Radial (top) and tangential (bottom) force per unit length
against separation for cylinders in the nematic phase of the solvent
(âµ ) 1.4) for the following separation anglesθ: 0 (circles, black),
π/6 (squares, red),π/4 (tilted squares, green),π/3 (up triangles,
blue), andπ/2 (down triangles, cyan).

Figure 7. Maps of order parameterQ(s) (left), director angleæ(s) (center), and number densityF(r) (right) of liquid in the isotropic phase
(âµ ) 1.2) around two cylindrical nanoparticles. Only the central region-100e x/b, z/b e 100 is shown. The director map is only shown
for values of the order parameterQ(s) > 0.001.
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This is consistent with previous theoretical work,30 where for
decreasing particle size the bridging transition changes from

abrupt to continuous. The radial forceFr is also shown in Figure
8; it is similar in appearance to that seen in the nematic phase.
The transverse forceFt is zero by symmetry.

4. Conclusions
Classical DFT within the Onsager second-virial approximation

has been used to investigate the solvent-induced interaction
between two cylinders suspended in an isotropic liquid and a
nematic liquid crystal. The interactions in the two phases are
qualitatively different. In the nematic phase, the interaction is
highly anisotropic and gives rise to a component of force
perpendicular to the cylinder-cylinder separation vector. For
the separations considered in this work, the interaction is found
not to be quadrupolar, in agreement with MD simulations and
phenomenological theory.26 In the isotropic phase, close to the
NI transition, the formation of a nematic bridge between the
cylinders gives rise to an attractive interaction.
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Figure 8. (a) Grand potential (per unit length) against separation
for cylinders in the isotropic phase (âµ ) 1.2). (b) Radial force per
unit length against separation for cylinders in the solvent isotropic
phase.
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