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Forces between Cylindrical Nanoparticles in a Liquid Crystal
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Using classical density functional theory, the forces between two cylindrical nanoparticles in a liquid crystal solvent
are calculated. Both the nematic and isotropic phases of the solvent are considered. In the nematic phase, the interaction
is highly anisotropic. At short range, changes in the defect structure around the cylinders leads to a complex interaction
between them. In the isotropic phase, an attractive interaction arises due to overlap between halos of ordered fluid
adsorbed on the surfaces of the cylinders.

1. Introduction two line defects, disclinations of strength 1/2, appear on either
side of the particle. At large separations, this defect structure
gives rise to a quadrupolar effective interaction between the

The spontaneous ordering of the liquid crystal (LC) molecules cylinders!? As the separation is decreased, changes in the defect
allows manipulation of the orientatiohsand positionéof the structure around the cylinders lead to a more complex interaction.

nanoparticles. This gives rise to a number of current and potential_'E;‘(f"‘m'r"nkg th_'lf sTort-rangg mterr]actlo? ISa Igeé/ almdof this paper.
applications for these, such as in dispfaysmaterials processirf. Is work will also examine the solvent-induced Interaction

Interactions between LCs and nanoparticles are also important2®tWeen cylinders in the isotropic phase of the solvent, which

in other applications of liquid crystals, such as biosenSors. is largely qlue to ,the overlap between the halos of ordered fluid
Elastic distortions of the liquid crystal director play an important on the cylinders’ surfaces.

role in the physics of LEnanoparticle composites. Depending 2. Theory

onthe anchoring strength and direction at the nanoparticle surface, '

arange of different director configuratiohshich often contain The liquid crystal solvent is modeled as a fluid of axially

topological defects (disclinations), may exist in its vicinity. This Symmetric hard ellipsoids of aspect raéie= a/b = 15 (in the

elastic distortion gives rise to long-ranged, solvent-mediated rest of this papeth = 1, the minor axis, will be taken to be the

interactions between nanoparticles in LCs, leading to structuresunit of length). The grand potential of such a system may be

such as colloidal chaifisor crystal§ ordered over many  Written ag?

micrometers. There has been much interest in studying the

behavior of LG-nanoparticle composites, for both ordered and B Qle] = B Flel + B Felpl +

disordered phases of the LC. Attemperatures above the nematic B f dr du p(r, u) (Vo (r, u) — ) (1)

isotropic (NI) transition of the LC solven®(> Ty), a layer of

ordered (paranematic) fluid is often adsorbed on the nanopartic_IeHere,p = p(r, u) is the single-particle density, which depends

surface. Overlap between these layers leads to a strong attractiogyn the particle position vectarand orientation vectar. Vex(r,

bgtwee_n nanoparticles and hence to flocculation ir-c@lloid u) is the external potentiak is the chemical potential, anti=

dispersions close td. 1kgT. Fig[p] and Feyp] are the ideal and excess free energy

In previous work, classical density functional theory (DFT)  functionals, respectively. The ideal free energy is given by
has been applied to the study of E@anoparticle compositég1!

This has proven to give results in agreement with both molecular _ _ _
simulations and phenomenological theories, while being less B Fidlel f dr du p(r, u) (log p(r, u) — 1) 2)
computationally expensive than the former and retaining a direct The exact form of the excess free energy is generally unknown.

link to molecular structure lacking in the latter. In this paper, ..o \ve employ the Onsager approximation
attention is turned to the interaction between two parallel '

cylindrical nanopatrticles in both nematic and isotropic LCs. When BF o] =
the anchoring on the particle surface is normal (homeotropic), & 1
5 f dry dry duy du, f(ry Uy, Up) p(ry, Upe (M Up) (3)

Composites of solid particles dispersed in liquid crystals form
a class of novel materials with a wide range of phenomendlogy.
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truncating the virial expansion after the pair term. While Onsager
theory is only exact in the limit of infinite elongation, previous
studies have shown it to be in good agreement with simulations
for molecules of the elongation under consideration Feté.
The interaction between a fluid molecule located at (x,
Yy, ) and a cylindrical nanoparticle of radils whose axis is
oriented along and located a$; = (Xy, Z;) in thexzplane, is
independent of thg-coordinates and may be written as

nglx)t(s) =
V, tanh/w) [s—S—R<-b
%VO tanr(w) + tanhb/w)] lls=SI—Ri<b
0 Is—S/—R>b
(4)

wheres = (X, 2), Vo = 50kgT, andw = b/5. The nanopatrticle
radius isR = 15b. This represents a sharply varying repulsive
potential acting on the ellipsoid centers of mass; it excludes the
centers of the molecules from the cylinder and gives rise to
homeotropic (normal) anchoring at the surface. This allows half
of the ellipsoid volume of each fluid molecule to penetrate inside
the cylindrical nanoparticle: the aim is to mimic the effect of
asemipermeable surface coating, such as a polymer brush, applie
to animpermeable cylinder, such as a carbon nandafisenaller
radius. Note that, in this case, the potentigk does not depend
explicitly on the ellipsoid orientation vectar, by makingVex:
depend oru, other anchoring conditions are easily generated.
In this work, the external potential is a sum of two teris:
=V + V@ from cylinders located at, respectivel, andS,.

It should be noted that the cylindeparticle interaction is, for
practical purposes, a hard repulsive potential acting solely on the
ellipsoid particle centers, without an explicit orientation-

dependence. The results should not depend sensitively on the

values ofVy and w. The homeotropic anchoring arises from
entropic effects, that is, the packing of ellipsoids in the most
efficient manner on the surface. This anchoring condition has
been investigated quantitatively before for a planar hard surface
and for ellipsoids identical to the ones studied Hérg.The
effective extrapolation length, which measures the anchoring
strength, depends, of course, on the fluid density, but it is of the
order of the length of a molecule. This corresponds to “strong
anchoring” in the conventional terminology. By using a repulsion
of finite (but very large) height and slightly softened form, we
avoid some numerical difficulties in the minimization of the free
energy.

To make the calculations computationally tractable, the
angularly dependent functions are expanded in spherical har-
monicg011

0g 71, 1) = 5 in(9) Yinl1) (5a)
PO =S P9 Vi) (5b)
(5¢)

Vext(ri U) = Z Vlm(s) Ylm(u)
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integer values = 0, 1, 2... andn= 0, &1, ...,£l. The Mayer
function is expanded &%

f(ryp Uy, Uy) = |Z| fi1(r12) @y (U, U, Fap) (6)

whereri12= |r12], f12=r12r 12. In this equationd,,,; is a rotational
invariant®

Dy (g, Up, Frp) =

47[2(

My, Mp,m

I 12

) i (U2) Y (U) Ciy(Fr)

where (i 2 ) is the standardjasymbol andCim = (4/(2| +
1))Y2Y. inserting the expansions into eq 1, and integrating over
angles and thg-direction, gives the grand potential (per unit
length along the/-direction denoted ak)

B QL]

= [ds Z (S (Bin(®) — VAm(L + By +

BVm®) + [ ds1dS, Y it m (512 Pim(S) pim () (7)
11,my

d I5,mp

where the Kronecker deltdyo = 1 whenl = 0 anddjo = 0
otherwise. The quantitied;m,,m,(S12) come from integrating the
Mayer function and are the spherical harmonic coefficients of
the excluded length (in thg-direction) of two molecules with

a separation vect®;; = 5, — S in the xzplane, treated as a
function of the molecular orientations. As the last term in eq 7
is a convolution, it is most conveniently evaluated in reciprocal
space in the form

Z z “}ﬁ;mllzmz(k) Pllml(k) plZm?(k)

f1.my
I2.mp

wherepm(k) and/;m,m,(K) are, respectively, the two-dimensional

Fourier transforms opim(s) and_/;my,m,(S12)-

To find the equilibrium density, the functions are tabulated on
aregular grid in thezplane; the grid spacing ix= 6z= 0.5,
with the molecular length corresponding to 30 grid points. A 600
x 600 grid, that is, of side 3@) with periodic boundaries, was
found to be sufficient. The grand potential is then minimized
with respect to th@n(s) coefficients at each grid point using the
conjugate gradient methé8.When required, the coefficients
om(S) are calculated through eq 5, with angular integrations
performed using Lebedev quadratété?

Once the equilibrium density coefficientgn(s) have been
determined, the number densitys) and order tensoQqs(s)
may be found from

(8)

p(9) = [ du p(s, u) = VAz poy(s) 9)

Qui(® =3/ du pls 1) U,(9) U9 — 200,
Q, ﬁ =XYZ (10)

where translational invariance along hadirection allows us to
write the coefficients as functions ef The indices range over
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\ at chemical potentiaf$u = 1.4 (hematic) anfu = 1.2 (isotropic).
For the model and parameters used in this wgrky ~ 1.31.
The separatiors; = |S; — S| between the cylinders ranged
from S, = 30b (contact) t0oS;; = 150; and in the nematic
phase, the angle between the director and separation vector was
4 0 = 0, 7/6, /4, 7/3, andw/2. The setup is shown in Figure 1.
12 It is worth stressing that the director is not constrained to lie
perpendicular to the cylinder axes: this configuration arises
naturally as the one of lowest free energy, as is the case for a
single cylinder with homeotropic anchorifgjt would be possible
3 to constrain the far-field director in other directions, but this is
L not the topic of the present study.
2 The LC mediated force (per unit length) on the cylinders may
be found by differentiating the grand potential with respect to
(either one of) the cylinder coordinafé3®

Figure 1. Two-cylinder configuration. The system is translationally
invariant in they-direction. The anglé of the interparticle vector
is taken with respect to the far-field director, which defines the

z-direction. Fi
=
. . o _ R—Is— S
The spatially varying order parame@(s) is given by the largest /At ﬁ(—) _ 11
eigenvalue ofQg(s), and the directom(s) is given by the f ds sec w Poo®) (5= Sy) (11)

eigenvector associated wifi{(s). In the present work, the director

is found to lie in thexzplane, and so it may be characterized by (similarly for F,) where the integration is over the regi{s—

an anglep(s) such that tap = ny/n, measuring the deviation  S;| < R — b. Itis most convenient to resolve the force between
from the far-field director, which is taken to lie in teeirection. the cylinders into a radial componeRt along the separation
Calculations were performed on systems containing two cylinders vectorS;,, and a tangential componeRtperpendicular té; ».

100

] &0 100 -100 50 o &0 100

Figure 2. Maps of order paramet&)(s) (left), director anglep(s) (center), and number densibyr) (right) of LCs around two cylindrical
nanoparticles wittd = 0 in the solvent nematic phasgu(= 1.4). Only the central regior-100 < x/b, Zb < 100 is shown.
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Figure 3. Maps of order paramet&)(s) (left), director anglep(s) (center), and number densibyr) (right) of LCs around two cylindrical
nanoparticles wittd = z/4 in the solvent nematic phasgu(= 1.4). Only the central regior-100 < x/b, Zb < 100 is shown.

3. Results calculation on a 2D nematic systé&where the defects near the
particles twist around but do not merge. Whesr n/4 (Figure

" d direct | for two eviinders in th i 3), the local director between the particles rotates to lie along
meter and director angle maps for two cylinders in the NemMatc separation vector. As the particles come into contact, two of
phase fu = 1.4) of the solvent. When the separation is large, the defects shrink in size

the structure of the LC fluid around the cylinders is the same as Thech instructure i td tich i "
for isolated cylinders: the two strength-1/2 defects are clearly €change In structure Is most dramatic fora separation vector
S;» perpendicular ton, 8 = n/2 (Figure 4). On decreasing

seen both in the reduced value of the order parameter near theSe aration. the defects between the particles merae and then solit
disclination lines and in the rotation of the director angle about paration, parti 9 Pl

: e : along the director. This is in agreement with previous molecular
th lines, which lie at th me val ther tiv . . .
ese lines, which lie at the same valuesa the respective dynamics (MD) simulatior?§ and Landau-de Gennes theorf.

cyIinderaxes.Ondecreasingtheseparationbetweenthecylinders]_h hanae in defect structure is also reminiscent of the behavior
the structure of the fluid begins to deform, in a manner which of :p(;]ez;cglenanoepzﬁicSIesu\fvitlhiosfaﬁg d?Satufr(;?ing? defeébt%g avio
vari nding on the angeof th ration v : s :
aries depending on the angfeof the separation vectds, On decreasing the separation to contact, these defects decrease

relative to the far-field directon. When6 = 0 (Figure 2), the o d | o th lind ¢ il th
fluid structure changes only slightly, with the defects around I siz€ and move closer 1o the cylinder surface until they are
sitting in the cusps between them.

each particle merging together when the particles get close to
contact. This is in contrast to a Landade Gennes theory

3.1. Nematic PhaseShown in Figures 24 are order para-
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Figure 4. Maps of order paramet&)(s) (left), director anglep(s) (center), and number densibyr) (right) of LCs around two cylindrical
nanoparticles wittd = 7/2 in the solvent nematic phasgu(= 1.4). Only the central regionr-100 < x/b, Zb < 100 is shown.

Plots of the grand potential against separation for a range of
anglesf are shown in Figure 5. For all angles, the potential is
repulsive at short distances and has a potential w&lbat 33b.

The short-range repulsion is due to the overlap between the high-
density regions at the cylinder surface and the elastic distortions
due to the normal anchoring at the cylinder surface. This repulsive
interaction at short range is indicative of strong normal anchoring
on the cylinder surface’8.We note in passing that the form of
the ellipsoid-cylinder interaction studied here does not produce
a depletion interaction, that is, there is no region between the
cylinders from which the ellipsoids are geometrically excluded.
For6 =0, there is a marked potential barrier at larger separations
and a repulsive potential extending over2cylinder diameters.
Onincreasing, the potential barrier disappears and the potential
becomes attractive at lar@,. The range of this interaction is 30 60 90 120
longest for® = n/4 and shortest fof = 7/2. The short range S,,/b
of the interaction in this configuration may arise due to the short _. . . . .

: - - Figure 5. Grand potential (per unit length) against separation for
range of densn_y and order_ parameter variation perpendicular toy,, cylinders in the solvent nematic phage & 1.4) for the following
the director for isolated cylinders, which in turnis aresult of the separation angle 0 (circles, black)/6 (squares, redjy/4 (tilted
presence of the defecty?3 squares, greenj/3 (up triangles, blue), and/2 (down triangles,

The radial and tangential components of the solvent induced cyan). The inset shows the strongly repulsive region atlow separation.
force are shown in Figure & is dominated by the excluded
volume interaction of the adsorbed layers on the cylinders. Fi. In agreement with MD simulatior?§,the magnitude of this
Except ford = 0 andf = 71/2, there is a nonzero tangential force  component is significantly smaller than that of the radial
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30 60 90 120
S,,/b

Figure 6. Radial (top) and tangential (bottom) force per unit length
against separation for cylinders in the nematic phase of the solvent
(bu = 1.4) for the following separation anglés 0 (circles, black),

/6 (squares, redlz/4 (tilted squares, greeny/3 (up triangles,

blue), andz/2 (down triangles, cyan).
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component. Fof = 0 and@ = x/2, DFT predicts~; = 0 due
to the symmetry of the fluid structure around the cylinders in this
configuration.

3.2. Isotropic PhaseShown in Figure 7 are order parameter
and director angle maps for two cylinders in the isotropic phase
of the solvent, at a chemical potentjgd = 1.2 quite close to
the NI transition. When the particles are far apart, the structure
around each is cylindrically symmetrical and is localized to a
surface layer. As the cylinders are brought together, a bridge of
orientationally ordered fluid appears between them, which leads
to an attractive interaction between the cylinders. This interaction
causes flocculation of nanoparticles in LCs abdyeThe bridge
starts to form whei$;» ~ 60b—65b, which is comparable to the
distance at which a nematic bridge is seen to form between a
single cylinder and a planar substfafer this chemical potential.

The variation of the grand potential with cylinder separation
in the isotropic phase is shown in Figure 8. As in the nematic
phase, thisis strongly repulsive at small cylinder separations and
has an attractive well &,~ 33b. Atlarger distances, the potential
is attractive and varies approximately linearly with separation.
This arises from the nematic bridge that appears between the
particles at this state point. Unlike the case of a single cylinder
in the vicinity of a planar substraté there is no abrupt change
in the potential, indicating that the bridge forms continuously.

-T5-50-30-15-10 -5 5 0 15 30 S0 75 002 0026 0036 0044 0052 003

-100 50 [} 50 100 -100 50 [} 50 100

Figure 7. Maps of order paramet@)(s) (left), director anglep(s) (center), and number densiyr) (right) of liquid in the isotropic phase
(Bu = 1.2) around two cylindrical nanoparticles. Only the central regidi®0 < x/b, z/b < 100 is shown. The director map is only shown

for values of the order parametés) > 0.001.
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Figure 8. (a) Grand potential (per unit length) against separation
for cylinders in the isotropic phasgy = 1.2). (b) Radial force per
unit length against separation for cylinders in the solvent isotropic
phase.
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This is consistent with previous theoretical wéfkywhere for
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abrupt to continuous. The radial forEgis also shown in Figure
8; it is similar in appearance to that seen in the nematic phase.
The transverse forcEg; is zero by symmetry.

4. Conclusions

Classical DFT within the Onsager second-virial approximation
has been used to investigate the solvent-induced interaction
between two cylinders suspended in an isotropic liquid and a
nematic liquid crystal. The interactions in the two phases are
qualitatively different. In the nematic phase, the interaction is
highly anisotropic and gives rise to a component of force
perpendicular to the cylindetcylinder separation vector. For
the separations considered in this work, the interaction is found
not to be quadrupolar, in agreement with MD simulations and
phenomenological theoAf.In the isotropic phase, close to the
NI transition, the formation of a nematic bridge between the
cylinders gives rise to an attractive interaction.
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decreasing particle size the bridging transition changes from 1-4.



