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We have studied the single-electron and two-electron vertically assembled quantum disks in an axial
magnetic field using the effective mass approximation. The electron interaction is treated accurately
by the direct diagonalization of the Hamiltonian matrix. We calculate the six energy levels of the
single-electron quantum disks and the two lowest energy levels of the two-electron quantum disks
in an axial magnetic field. The change of the magnetic field strongly modifies the electronic
structures as an effective potential, leading to the splitting of the levels and the crossings between
the levels. The effect of the vertical alignment on the electronic structures is discussed. It is
demonstrated that the switching of the ground-state spin exists betweenS=0 andS=1. The energy
differenceDE between the lowestS=0 andS=1 states is shown as a function of the axial magnetic
field. It is also found that the variation of the energy difference between the lowestS=0 andS
=1 states in the strong-B S=0 state is fairly linear. Our results provide a possible realization for a
qubit to be fabricated by current growth techniques. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1779949]

I. INTRODUCTION

A semiconductor quantum dot(QD) is physically similar
to a set of atomic electrons bound to a nucleus, and for this
reason, these structures are sometimes termed as “artificial
atoms.” To extend the atomic analogy further, QDs are con-
sidered as “artificial molecules”1 if they join together. The
molecular orbitals of coupled QDs have been investigated
theoretically.2–6 In relevant calculations, Harjuet al.6 studied
a two-electron QD molecule consisting of two laterally
coupled QDs in magnetic field by the direct diagonalization
of the Hamilonian matrix, and also designed a qubit by the
total spin of the two-electron molecule. Fonsecaet al.5 stud-
ied stacked pyramids using an effective mass approximation
with the influence of strain and piezoelectric potential as lo-
cal modifications for the conduction-band offset. In experi-
mental investigations7–9 of coupled QDs, the progress of the
“indium-flush”7 technique produced high-quality vertically
stacked quantum disks. The applications of vertically aligned
structures are focused on fabricating QD lasers,10,11 light
storage devices,12 and quantum computers.13,14 Korkusinski
and Hawrylak15 studied the energy spectrum of the structure
mentioned earlier in the adiabatic approximation, the influ-
ence of the strain, and the dot separation on the formation of
the coupled QD levels.

We employ the transfer-matrix formalism16 to investi-
gate the electronic structures of the single-electron vertically
assembled quantum disks in an axial magnetic field. The
effect of the vertical alignment on the electronic structures is
discussed Based on these results, the calculation of the
double-electron levels is carried out by means of the direct
diagonalization of the Hamiltonian matrix. We choose basis
functions different from those in Ref. 6. These basis func-

tions can provide a more explicit physical sense and reduce
the amount of calculation. In the calculation, the electron
correlations are treated accurately. These correlation effects
are significant for they can lead to the switching of the
ground-state spin betweenS=0 andS=1, which realizes a
qubit of a quantum computer. Our results show that the
variation of the energy differenceDE between the lowestS
=0 andS=1 states is rather linear for theS=0 ground state at
a largerB. This is remarkably different from the results in
Ref. 6. Since the high-quality vertically stacked quantum
disks can now be fabricated,7 it is very realistic to obtain the
qubit of this type.

II. ELECTRONIC STRUCTURES
OF SINGLE-ELECTRON QUANTUM DISKS

Figure 1 shows two vertically assembled disk-shaped
InAs QDs. Each disk grows on a wetting layer(WL) of
thickness W containing the GaAs barrier material. Both
quantum disks have, the same heightH (typically 1–2 nm)
and the same radiusR (typically 7–12 nm). The distance
between the two wetting layers,D, forms a quantum tunnel-
ing barrier of thicknessD–H, and the conduction-band offset
between the quantum disks and the surrounding material

a)Electronic mail: qrdong@red.semi.ac.cn
FIG. 1. Schematic of the InAs/GaAs double self-assembled quantum disks
of radiusR, heightsH, and wetting-layer separationD.
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forms the confining potentialV0 for the quantum disks. The
material parameters of the quantum disks and the WLs have
their effects through the effective RydbergR=mee

4/2e2"2

and the effective Bohr radiusaB=e"2/mee
2, whereme ande

are the effective mass of an electron and the dielectric con-
stant, respectively. Throughout this paper, we will useR and
aB as the units of energy and length, respectively.

In the effective mass approximation, the Schrödinger
equation for one electron in cylindrical coordinates is ex-
pressed as

Ĥcsr,u,zd = Ecsr,u,zd, s1d

where

Ĥ = −
1

r2Sr
]

] r
r

]

] r
+

]2

] u2D +
eB

c
lz +

e2B2

4c2 r2 −
]2

] z2

+ Vsr,zd, s2d

with the potentialVsr ,zd=−V0 inside the WL and the quan-
tum disks, andVsr ,zd=0 in the barrier. Because the height of
both quantum disks is much smaller than their radius, the
electron motion in the growth direction is strongly confined.
In an adiabatic approximation, the wave function is written
as s1/Î2deimugr

vszdfm
v srd. In the growth direction, the struc-

ture includes two identical quantum wells, whose widths are
H+W or W. The ground-state energy of each isolated well is
denoted byE0, and the corresponding wave functions of the
two isolated wells are denoted byg1szd andg2szd. The wave
functiongr

0szd can be expressed in the form of symmetric and
asymmetric linear combinations of the individual quantum
well orbitals: gs

0szd=fg1szd+g2szdg /2 and gas
0 szd=fg1szd

−g2szdg /2; the corresponding eigenenergies areEs=E0

−D /2 and Easszd=E0+D /2, respectively, withD being the
splitting between these levels. While the motion in the plane
of the disk is quantized, the radial wave function corresponds
to the Bessel functions. For infinite barriers, the lateral spec-
trum can be written in terms of zeros of the Bessel function
am

n :Esm,nd=sam
n /Rd2, whereR is the radius of the disk,n is

the radial quantum number, andm is the angular momentum.
Therefore, the electronic spectrum of the structure is com-
posed of two ladders of states: the symmetric one,E0−D /2
+Es0,1d , . . . , labeled assm,n,+d; and the antisymmetric
one,E0+D /2+Es0,1d , . . . , labeled assm,n,−d. For each an-
gular momentum channelm, the functionsgr

vszd and f m
v srd

satisfy the following set of equations:

F−
]2

] z2 + Vsr,zdGgr
vszd = Evsrdgr

vszd, s3d

fĤR + Evsrdgf m
v srd = Ef m

v srd. s4d
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We first find the energyEvsrd corresponding to that of the
motion in the growth direction for a given set of structure
parameters. The details of the computational procedure can

be found elsewhere.15 Because feBlz/c,ĤRg=0, Eq. (4)
shares the same eigenfunctions with the following equation:

F−
1

r2Sr
]

] r
r

]

] r
− m2D +

e2B2

4c2 r2 + EvsrdG f m
v srd

= E8f m
v srd. s6d

The radial wave functionf m
v srd is solved for each angular

momentum channel. We approximate the effective potential
e2B2r2/4c2+Evsrd by the n-step piecewise potential:Vsrd
=vi, if r i ø r ø r i+1, where 0ø i øn,r0=0, r i+1=r i +Dr, Dr
being the step length. By using the transfer-matrix formal-
ism, E8 and fm

v srd can be obtained. The total energy of the
system is

E = E8 7
eB

c
m". s7d

In addition, the wave functions1/Î2deimugr
vszdf m

v srd is ob-
tained and will be used as a basis function afterwards.

FIG. 2. Six single-electron energies as functions of the
magnetic fieldB. (a) R=7 nm, (b) R=8 nm, (c) R
=9 nm, (d) D=4.5 nm, (e) D=5.5 nm, and (f) D
=6.5 nm. The figures are plotted for the sameD
=7.5 nm in (a), (b), and (c), whereas the sameR
=12 nm is used in(d), (e), and(f). States are labeled by
their angular momentum, radial quantum number, and
isospin. All states are on the lowest levels beforeB
<8 T.

3278 J. Appl. Phys., Vol. 96, No. 6, 15 September 2004 Dong et al.

Downloaded 15 Jun 2009 to 129.8.242.67. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



Figure 2 shows the dependence of the electronic states
on the axial magnetic fieldB. The six states are presented
with the disk heightH=2 nm, the confining potentialV0

=1 eV, corresponding to the band offset between InAs and
GaAs, and the effective massme=0.23;m0 for unstrained
InAs.

In Fig. 2, we show the electronic states for three differ-
ent disk radii:(a) R=7 nm, (b) R=8 nm, and(c) R=9 nm.
As the radius becomes larger, the quantum confinement is
weaker, which makes every level lower. AtB=0, the states
s−1,1,+d and s1,1,+d become degenerate and the states
s−1,1,−d and s1,1,−d get degenerate too. With increasing
magnetic field, the states with positive and negative angular
momenta split. The splitting depends linearly onB and re-
sults in a crossing of the statess−1,1,+d and s1,1,−d. The
statess0,1,±d get higher withB due to the effective potential
e2B2r2/4c2. As the magnetic field becomes stronger, the ef-
fective potentiale2B2r2/4c2 also becomes more important,
which can be understood easily from the fact that the levels
s1,1,±d reverse the trend of getting lower withB, because
the effective potentiale2B2r2/4c2 makes all levels higher. In
Figs. 2(d)–2(f), the electronic states for three different dis-
tancesD between two quantum disks are plotted. The results
show that asD decreases, the splitting of the symmetric and
the asymmetric states enhances. In Fig. 2(d), the level
s0,1,−d is higher than the levelss±,1,+d at B=0, but the
level s−1,1,+d will exceed the levels0,1,−d with increasing
B; on the other hand, the levels1,1,+d remains lower than
the levels0,1,−d.

To compare the effect of the vertical alignment on the
electronic structures with that of the lateral alignment in Ref.
6, we show the electronic structure withR=19 nm in Fig. 3.
In Ref. 6. the confinement strength"v0=3.0 meV is pro-
vided by the quantum dot withR=19 nm for k0ur2u0l
=" / s2mv0d is roughly equal to the dot size(radius of the
cylinder) in the radial direction. This is the reason why we
chooseR=19 nm in the present calculation. Here,u0l indi-
cates the ground state. The coupling of the two QDs is due to
the superposition of the vertical wave functions in Ref. 6,
whereas in the present calculation, the coupling of the two
QDs is due to the superposition of the radial wave functions.
Because the two QDs in the vertical alignment are identical,
the “symmetric” and “antisymmetric” levels can be distin-
guished for each angular momentum. The two QDs in the

lateral alignment do not posses translation symmetry in the
lateral direction: thus, there exist no pairs of symmetric and
antisymmetric levels. Moreover, because there is no rotation
invariance in the system in the lateral alignment, the angular
momentum is not a conserved quantity. The level of symme-
try in the vertical alignment is higher than that in the lateral
alignment.

In addition, we investigate the dependence of the elec-
tronic states on the wetting-layer spacingD (see Fig. 4). In
contrast to the situation without the magnetic field, the Zee-
man term leads to the splitting between the levels−1,1,−d
and the levels1,1,−d, as well as the splitting between the
level s−1,1,+d and the levels1,1,+d. There are some cross-
ing of states with different angular momenta, but the origins
that lead to their crossings are different. As the spacingD
decreases, for each angular momentum the splitting between
the “symmetric” and “antisymmetric” levels increases. When
the splitting exceeds the quantization of the radial motion,
the crossing between the levels0,1,−d and the level
s1,1,+d occurs. Whereas the occurrence of the crossing be-
tween the levelss1,1,−d ands−1,1,+d is due to the fact that
the splitting exceeds the difference of their Zeeman terms.

III. ELECTRONIC STRUCTURES OF TWO-ELECTRON
QUANTUM DISKS AND TWO-ELECTRON
QUANTUM-DISK QUBIT

In the following, we investigate the variation of the two-
electron levels of vertically assembled quantum disks vs the
axial magnetic field. The spin-free Hamiltonian of the system
can be expressed as

Ĥ = Ĥ1 + Ĥ2 +
e2

er12
, s8d

where Ĥ1 and Ĥ2 are single-electron Hamiltonians of the
system and remain in the formalism of Eq.(1). The Zeeman
coupling Ez=g*mBBSz of the magnetic field toSz can be
taken into account afterwards. We have obtained numerically
the eigenstates of the single-electron part of Eq.(8),
csr ,u ,zd=s1/Î2deimugr

vszdf m
v srd; thus, two-electron wave

function with the total spinS can be expressed as

FIG. 3. The dependence of the electronic structures on the axial magnetic
field B, with H=2 nm,R=19 nm, andD=9 nm. FIG. 4. The dependence of the electronic structures on the wetting-layer

spacingD, with the magnetic fieldB=5 T, H=2 nm, andR=12 nm. The
dotted lines are for the situation without magnetic field.
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cSsr1,r2d = o
iø j

ai,jhcisr1,u1,z1dc jsr2,u2,z2d

+ s− 1dScisr2,u2,z2dc jsr1,u1,z1dj, s9d

which is symmetric forS=0 and antisymmetric forS=1. The
spin part of the wave function is not explicitly written, so we
still work with the spin-independent wave functions in the
following. The coefficient vectorai and the corresponding
energyEl for the lth eigenstate are found from a generalized
eigenvalue problem, in which the Hamiltonian matrix ele-
ments can be calculated numerically. Choosing the single-
electron states as basis functions, which are different from

those in Ref. 6. the matrix elements corresponding toĤ1 and

Ĥ2 can be achieved directly. By changing the number of
basis functions, we can check the convergence and find that
it is sufficient for obtaining the two lowest double-electron
states by using the four single-electron statess0,1,±d and
s±1,1,+d as the basis functions. This can be explained sim-
ply by the fact that the two double-electron states are mainly
composed of the four single-electron states when the wave
functions are expanded according to Eq.(9). Moreover, more
double-electron states can be achieved by choosing more
single-electron states as basis functions.

Figure 5 shows the dependence of the two lowest states
on the axial magnetic fieldB in the range of B=14
,17.5 T atH=2 nm, R=12 nm, andD=7.5 nm. The two
lowest states possess different spinsS=1 and S=0. When
B=14 T, in fact, beginning fromB=0 T, the S=0 state is
lower than theS=1 state. As the magnetic fieldB enhances,
the two lowest double-electron states approach each other. At
B=15.5 T, theS=1 state turns out to be the lower one. At
B=16.8 T, theS=0 state becomes the lower one again. We
can explain these transitions by the dependence of the single-
electron states on the magnetic field. The two double-
electron states are composed mainly of the single-electron
statess0,1,+d and s1,1,+d. As the magnetic field becomes
stronger, the statess0,1,+d ands1,1,+d approach each other.
Similarly, the two lowest two-electron states approach each
other with increasing magnetic field. If we do not take into
account the electron-interaction effects, theS=0 state should
remain lower forever, because the two electrons of theS=0
state occupy the lowest single-electron state, and the two

electrons of theS=1 state cannot occupy the lowest single-
electron state simultaneously according to the Pauli exclu-
sion principle. Due to the effect of the interaction between
the two electrons, the difference of the interaction energy
between the two states leads the stateS=1 to become lower
than the stateS=0 at some point, and thus the transition
occurs. Now, we consider the effect of the Zeeman term on
the energy levels. The energy of theS=1 state is lowered by
about 60meV/T, and that of theS=0 state is unaltered. Ac-
cording to the order of the energy levels, the Zeeman term
can be neglected.

The energy differenceDE between the lowestS=0 and
S=1 states is plotted in Fig. 6 atH=2 nm, R=12 nm, and
D=7.5 nm. One can obtain different regions ofS=0 andS
=1 ground states by changing the structure parameters. The
ground-state spin of the double-electron system is eitherS
=0 or S=1, and we can change the spin by changing the
intensity of the axial magnetic field(see Fig 6). The transi-
tion from theS=0 state to theS=1 state allows us to use the
total spin of the system as a qubit. However, it should be
noted that there is a remarkable difference between our
present calculation and that in Ref. 6. In Ref. 6, when the
external magnetic field becomes stronger, it will be difficult
to distinguish the lowestS=0 state from the lowestS=1
state, and this removes the possibility to use the strongB
states for making a qubit. The little energy difference of the
lowestS=0 andS=1 states can be explained by the fact that
the single-electron levels are very close to each other in a
strong external magnetic field. However, the single-electron
levels of vertically assembled quantum disks do not ap-
proach each other but interest each other. Thus, in our result,
the variation ofDE in the strong-B S=0 state is fairly linear,
suggesting that the strong-B states can be used for making a
qubit. Because the confining potential is stronger, the size of
the quantum dots is smaller and material parameters are dif-
ferent in the present system, the maximum energy difference
DE in the S=1 state is at least ten times as large as that in
Ref. 6. Since high-quality vertically stacked quantum disks
can now be fabricated, the significance of the present calcu-
lation lies in that it is realistic beyond a model.

IV. CONCLUSION

In conclusion, we have calculated the electronic struc-
tures of vertically assembled quantum disks as a function of

FIG. 5. The two lowest two-electron states vs the axial magnetic fieldB,
with H=2 nm, D=7.5 nm, andR=12 nm. The solid line is for theS=0
state, and the dotted line is for theS=1 state.

FIG. 6. Energy difference between triplet and singlet states,DE, as a func-
tion of the magnetic fieldB with the structures parametersH=2 nm, R
=12 nm, andD=7.5 nm.
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the axial magnetic field. The electronic structures are deter-
mined by the combined effect of the quantum confinement
and the magnetic field. The total spin of the two-electron
ground state of the system can be changed by adjusting the
magnetic field betweenS=0 andS=1. The variation of the
energy difference between the lowestS=0 andS=1 states in
the strong-B S=0 state is fairly linear like that of the week-
B S=0 state. The results support the possibility to use the
system we studied as a qubit of a quantum computer, which
can be fabricated by current growth techniques.
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