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A STRONG MAXIMUM MODULUS THEOREM
FOR MAXIMAL FUNCTION ALGEBRAS

BY
H. S. BEAR

1. Introduction. In [1] and [3] it is shown that if 4 is a maximal closed
subalgebra of the algebra C(X) of all continuous complex-valued functions
on the compact Hausdorff space X, then the Silov boundary of 4 is all of X.
The following is an equivalent statement: if 4 is a maximal closed subalgebra
of C(X) and 4 is considered as an algebra of functions on its maximal ideal
space 2(4), with X considered as a subset of £(4), then the Silov boundary
of 4 in 2(A4) is X. The canonical example of a maximal algebra is the algebra
of all continuous functions on C={z: |z| =1} which have continuous exten-
sions to K = {z: ]z] = 1} which are analytic on the interior of K (see [8]).

For this example, the stronger statement holds that the maximum mod-
ulus of a nonconstant function is assumed only on the Silov boundary. We
show in §4 that this strong maximum modulus property holds for all essen-
tial (see 2 for definitions) maximal algebras.

In §3 we continue the study of the essential set of an algebra started in
[1]. The relationship between the maximal ideal spaces of an algebra and its
restriction to its essential set is made explicit. This result makes clear the ex-
tent to which the maximum modulus theorem of §4 applies. This section is
based on Theorem 1, which is due to R. S. Pierce.

2. Definitions. We will use the following notation and nomenclature
throughout.

X is an arbitrary compact Hausdorff space. C(X) is the algebra of all
continuous complex-valued functions on X, with the algebraic operations
carried out pointwise, and the norm [|f|| =sup {|f(x)|: x€X}.

“A is an algebra on X” will mean that 4 is a proper closed subalgebra of
C(X), containing the constants, and separating points of X. “4 is ¢ maximal
algebra on X” will mean that A is an algebra on X and 4 is contained in no
other proper closed subalgebra of C(X).

The maximal ideal space of A with the Gelfand topology will be denoted
2(A4). Equivalently, 2(4) is the space of all nontrivial continuous complex
homomorphisms of 4 with the weak* topology. If A is an algebra on X,
then 2(A4) is a compact Hausdorff space, and X is homeomorphic to a subset
of 2(4). We shall always assume, therefore, that X C2Z(4), and that 4 can
be considered as an algebra cither on X or on 2(4).
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The Silov boundary of an algebra A on X is that unique minimal closed
subset of X on which each function in 4 attains its maximum modulus. If
A is an algebra on X, then the Silov boundary of 4 in £(A4) is a subset of X.

If A is an algebra on X and ECX and f&A, then f | E is the restriction
to E of the function f, and 4 [ E is the algebra of all such restrictions.

The essential set [1] of A in X is that unique minimal closed subset E of X
such that if f is any continuous function on X and f|EEA|E, then fEA.
That is, the essential set is the hull of the largest closed ideal of C(X) which
is contained in A. We will say that 4 is an essential algebra on X if the essen-
tial set for 4 is all of X.

3. Relationship between Z(4) and =(4| E). In [1] it is shown that if 4
is an algebra on X and E is the essential set of 4 in X, then 2(4)=X if
and only if 2(A|E) =E. That is, cutting an algebra down to the essential
set does not destroy the fact that the algebra is defined on its maximal ideal
space. There remains the question of what happens to the maximal ideal space
of a nonessential algebra if the algebra is restricted to its essential set. This is
answered in Corollary 2 below.

TueoreM 1 (R. S. PIERCE). If A is an algebra on X with essential set E in
X, then every fE A which is zero on E is zero on Z(A)~(X~E).

Proof. We shall prove the following equivalent assertion: if % is a homo-
morphism on 4 and k(f) 0 for some f which is zero on E, then % is evaluation
at a point of X~E. Assume that fEA, f=0on E, and i(f) =a#0. We show
that & extends to a homomorphism % of C(X). Let &(g) =a~'h(fg) for any
gEC(X); h(fg) is defined, since f is zero on E, and hence fgEA. If g&A,
k(g) =o' (fg) = h(f)h(g) = h(g), so k is an extension of k. It is clear that
% is linear, and we check only that % is continuous and multiplicative. For
41, g2€C(X ),

h(g1g2) = o h(ferge) = A(f) ah(fgigs) = & 2h(fg1fg2)
= o h(fg) o h(fgs) = h(g)h(g),

so /& is multiplicative. For any g& C(X),
[k | = /T2 ] = A/l = A/ ]l

so i is continuous. There is, therefore, a point x € X such that &(g) =g(x) for
all g&€C(X). Since 0=a=~h(f) =k(f) =f(x), and f is zero on E, x & E.

CoROLLARY 1. If A is an algebra on X with essential set E in X and E#X,
then X~E is open in Z(A).

Proof. Let xo&X~E and f be a continuous real valued function which is
zero on Z(4)~(X~E) and not zero at x,. This f is in 4 by the definition of
E as the essential set in X, and Theorem 1. The set {x:f(x)>0} is open in
Z(4), contains xo, and is contained in X~E.
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COROLLARY 2. If A is an algebra on X with essential set E in X and E#X,
then 2(A|E) =2 (A)~(X~E).

Proof. Let 2(4)~(X~E)=F. By Theorem 1, if f, g€ 4 and f|E=g|E,
then fl F=g| F. For any fEA l E, let f be the unique function on F such that
f'| E=fand fE4 [ F. Each point x of F gives rise to a distinct homomorphism
hs of AIE: ho(f) =f(x). We show next that every homomorphism of A|E is
of this form. Let & be a homomorphism of A]E and note that % can be ex-
tended to a homomorphism % of 4 by k(f) =k(f| E), for each fEA. There is
a point x X (4) such that k(f) =f(x) for all fEA. To see that x X ~E, con-
sider a function f&€ A which is zero on E and one at x; for this f, 1 =f(x) = k(f)
=h(f|E)=h(0)=0. Therefore, each homomorphism of AIE can be repre-
sented as evaluation (of f) at a point of F.

COROLLARY 3. If A is an algebra on X, then A is essential on X if and only
if A is essential on Z(A). If E is the essential set of A in X, then Z(A)~(X~E)
is the essential set of A in Z(A4).

Proof. Let E and F denote the essential sets of 4 in X and Z(4) respec-
tively. Since the complement of the essential set F is contained in the Silov
boundary, we have Z(4)~FCX, or FOZ(A)~X. By the definition of E, we
have further that FOZ(4)~(X~E). Therefore, if E=X, F=2Z(4). On the
other hand, if 4 is not essential on X, then X~E is open in Z(4) and by
Theorem 1 every continuous function zero on 2(4)~(X~E) is in 4. Hence
A is not essential on Z(4), and FCZ(4A)~(X~E). We have already noted
the other inclusion, so F=2(4)~(X~E).

4. Maximal algebras. We proceed to our main theorem via the following
two lemmas.

LeMMA 1. If A is an essential maximal algebra on X, and f=u-+1vEA, and
w is constant on X, then f is constant on Z(4).

Proof. If u(x)=c for all x&€X, then the function (—17)(f—c¢) is in 4 and
equals v on X. But Helson and Quigley [4] and the author [1] have shown
that an essential maximal algebra contains no nonconstant real functions.
Therefore, v is constant on X, and hence f is constant on Z(4).

LeMMA 2. If A is an essential maximal algebra on X and xoEZ(A)~X, then
there is a positive Borel measure u whose support is all of X such that f(xo)

= [xfdu for all fEA.

Proof. Let x0EZ(4)~X, and w(f) =f(xo) for all fEA; 7 is a linear func-
tional of norm one on 4| X, and can be extended to a linear functional of
norm one on all of C(X). Such a functional can be represented as an integral
7(f) = [xfdu for some complex Borel measure u of total variation one. Since
the function identically one is in 4, we have 1=7r(1) =u(X), and it follows
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that u is actually a real positive measure. Now suppose that u(U)=0 for
some open subset U of X, and let E=X~U. It is shown in [1] that if 4 isa
maximal essential algebra on X, then A|E is uniformly dense in C(E) for
any proper closed subset E of X. Since u is carried on E, 7 is actually a con-
tinuous functional on C(E) which is multiplicative on the dense subalgebra
A | E. It follows that 7 is a homomorphism of C(E), and can be represented
as evaluation at a point of E. Thus 7 (f) =f(x1), 21 EE, for all fEC(E) and in
particular all fEA. That is, f(xo) =f(x1) for all f& A4, which contradicts the
fact that A must separate points of Z(4).

THEOREM 2. If A is an essential maximal algebra on X, and |f(xo)| =||f|| for
some fEA and some xoSZ(A)~X, then f is constant.

Proof. Suppose fEA and |f(xo)| =|f] and ®xEZ(4)~X. Let f(xo)
=||flle*, @ real, and consider the function g=u-iv=eief. Then g4,
Hg“ =g(x0) =u(x0), and u(x) Su(x,) for all x EZ(4). Let u be a positive meas-
ure on X representing evaluation at xo: k(%o) = [xhdu for all hEA. We have
g(x0) =u(x0) = [xudp+i[xvdu= [xudu. Unless u is constant on X, [xudu
<u (%), since the support of u is all of X and u(x) Su(x,). Hence # is constant
on X, and therefore by Lemma 1, g is constant on Z(4). It follows that f is
constant.

The two lemmas and Theorem 2 have all had the hypothesis that 4 is an
essential algebra on X. It is clear that Theorem 2 is false without this as-
sumption, for in a nonessential algebra each constant has arbitrary continu-
ous extensions off the essential set. We show below what can be said about a
nonessential algebra by using Theorem 1 in connection with Theorem 2.

THEOREM 3. If A is a maximal algebra on X with essential set E in X,
E=X, then any function which assumes its maximum modulus at ¢ point of
2(A)~X s constant on Z(A)~(X~E).

Proof. AIE is an essential maximal algebra on E, and 2(A|E)=E(A)
~(X~E). Theorem 2 then applies.

5. Remarks and questions. I't is obvious that Theorem 2 has no content if
A is maximal on X and 2(4)=X. None of the maximal algebras known to
the author have this property (e.g., Bishop [2]; Rudin [6]; Wermer [9]).
It is a natural question whether a maximal algebra is necessarily maximal
only on a part of its maximal ideal space.

Rudin has studied algebras defined on the unit disc in the complex plane
with the property that the Silov boundary is contained in the unit circle
[5; 7]. The question here is whether this maximum modulus property for
algebras characterizes subalgebras of the analytic functions, and in [7] the
answer is shown to be no. The question remains open, however, if we insist
that the maximal ideal space be the disc. One can replace the maximum
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modulus assumption by the assumption that the algebra be maximal on the
circle, which implies the maximum modulus property, and ask whether this,
with the necessary (see [9]) assumption that the maximal ideal space is the
disc, characterizes the algebra of all analytic functions continuous on the disc.

A final question related to the preceding two is the following: Suppose that
A is an antisymmetric algebra (4 contains no nonconstant real functions)
and the Silov boundary of 4 in Z(4) is X Z(4). Then [1] 4 is contained in
an algebra A, which is maximal with respect to the properties: (i) Z(4:)
=2(4), and (ii) the Silov boundary of 4, is X. Is All X maximal? If so, then
the maximum modulus property plus antisymmetry is roughly the same as
maximality on the boundary. Also, our Theorem 2 would hold for arbitrary
(not necessarily maximal) antisymmetric algebras. Note that antisymmetry
is a necessary assumption here; i.e., maximal algebras are antisymmetric [4].
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