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A STRONG MAXIMUM MODUILUS THEOREM 
FOR MAXIMAL FUNCTION ALGEBRAS 

BY 

HI. S. BEAR 

1. Introduction. In [1] and [3] it is shown that if A is a maximal closed 
subalgebra of the algebra C(X) of all continuous complex-valued functions 
on the compact Hausdorff space X, then the Silov boundary of A is all of X. 
Tht following is an equivalent statement: if A is a maximal closed subalgebra 
of C(X) and A is considered as an algebra of functions on its maximal ideal 
space X(A), with X considered as a subset of :(A), then the Silov boundary 
of A in I(A) is X. The canonical example of a maximal algebra is the algebra 
of all continuous functions on C= { z: I zI = 1 } which have continuous exten- 
sions to K = { z: j z ? 1 } which are analytic on the interior of K (see [8]). 

For this example, the stronger statement holds that the maximum mod- 
ulus of a nonconstant function is assumed only on the Silov boundary. We 
show in ?4 that this strong maximum modulus property holds for all essen- 
tial (see 2 for definitions) maximal algebras. 

In ?3 we continue the study of the essential set of an algebra started in 
[1]. The relationship between the maximal ideal spaces of an algebra and its 
restriction to its essential set is made explicit. This result makes clear the ex- 
tent to which the maximum modulus theorem of ?4 applies. This section is 
based on Theorem 1, which is due to R. S. Pierce. 

2. Definitions. We will use the following notation and nomenclature 
throughout. 

X is an arbitrary compact Hausdorff space. C(X) is the algebra of all 
continuous complex-valued functions on X, with the algebraic operations 
carried out pointwise, and the norm I|fII =sup { If(x) : x X}. 

"A is an algebra on X" will mean that A is a proper closed subalgebra of 
C(X), containing the constants, and separating points of X. "A is a maximal 
algebra on X" will mean that A is an algebra on X and A is contained in no 
otlher proper closed subalgebra of C(X). 

The maximal ideal space of A with the Gelfand topology will be denoted 
.(A). Equivalently, 2(A) is the space of all nontrivial continuous complex 
homomorphisms of A with the weak* topology. If A is an algebra on X, 
then 2(A) is a compact Hausdorff space, and X is homeomorphic to a subset 
of I(A). We shall always assume, therefore, that XCI(A), and that A can 
be considered as an algebra either on X or on (A). 
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The S-ilov boundary of an algebra A on X is that unique minimal closed 
subset of X on which each function in A attains its maximum modulus. If 
A is an algebra on X, then the Silov boundary of A in 2(A) is a subset of X. 

If A is an algebra on X and ECX and fEA, then f| E is the restriction 
to E of the function f, and A I E is the algebra of all such restrictions. 

The essential set [1 ] of A in X is that unique minimal closed subset E of X 
such that if f is any continuous function on X and fI EEA B E, then fEA. 
That is, the essential set is the hull of the largest closed ideal of C(X) which 
is contained in A. We will say that A is an essential algebra on X if the essen- 
tial set for A is all of X. 

3. Relationship between f(A) and f(A I E). In [1 ] it is shown that if A 
is an algebra on X and E is the essential set of A in X, then 2(A) =X if 
and only if 2 (A E) =E. That is, cutting an algebra down to the essential 
set does not destroy the fact that the algebra is defined on its maximal ideal 
space. There remains the question of what happens to the maximal ideal space 
of a nonessential algebra if the algebra is restricted to its essential set. This is 
answered in Corollary 2 below. 

THEOREM 1 (R. S. PIERCE). If A is an algebra on X with essential set E in 
X, then every f(A which is zero on E is zero on I(A)(XE). 

Proof. We shall prove the following equivalent assertion: if h is a homo- 
morphism on A and h (f) $0 for some f which is zero on E, then h is evaluation 
at a point of X-E. Assume thatfEA,f=0 on E, and h(f) =aO. We show 
that h extends to a homomorphism h of C(X). Let i(g) =a-lh(fg) for any 
geC(X); h(fg) is defined, since f is zero on E, and hence fgeA. If gEA, 
i(g) =a-lh(fg) =ca-h(f)h(g) =h(g), so h is an extension of h. It is clear that 
h is linear, and we check only that h is continuous and multiplicative. For 
g1, g2 E C(X), 

L(glg2) = c0-mh(fg1g2) = h(f) c-2h(fglg2) = ac2h(fg9fg2) 
= a-1h(fg1)a'-h(fg2)=h(gl)k(92), 

so fi is nmultiplicative. For any gGC(X), 

I i(g) I = (1/ 1 a h(fg) I < (1/ I a I )1IhIl IlfgIl - (1lfl I a I )hIghI 
so A is conitiniuous. There is, therefore, a poinit xEX such that h(g) =g(x) for 
all gE9C(X). Sinice 0 $a =h(f) =h(f) =f(x), andf is zero on E, x EBE. 

COROLLARY 1. If A is an algebra on X with essential set E in X and EB X, 
then X-E is open in ZI(A). 

Proof. Let xoEX-E and f be a continuous real valued function which is 
zero on 2(A)>(X'--,E) and not zero at xo. Thisf is in A by the definition of 
E as the essential set in X, and Theorem 1. The set { x: f(x) $0 } is open in 
1(A), conitainis x0, anid is contained in X,--,E. 
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COROLLARY 2. If A is an algebra on X with essential set E in X and E $ X, 
then I (A | E) = Y, (A>) (X'E). 

Proof. Let ZI(A)'-'(X-E)=F. By Theorem 1, if f, gCA and fIE=gIE, 
then fj F = g j F. For any fCA j E, let } be the unique function on F such that 
il E =f and JCA f F. Each point x of F gives rise to a distinct homomorphism 
h, of A j E: h,(f) =f(x). We show next that every homomorphism of A I E is 
of this form. Let h be a homomorphism of A j E and note that h can be ex- 
tended to a homomorphism A of A by hi(f) = h(f I E), for each fCA. There is 
a point x(E(A) such that h(f) =f(x) for allf(EA. To see that xEX-E, con- 
sider a function fEA which is zero on E and one at x; for thisf, 1 =f(x) = h(f) 

- h(f I E) = h(O) = 0. Therefore, each homomorphism of A j E can be repre- 
sented as evaluation (of f) at a point of F. 

COROLLARY 3. If A is an algebra on X, then A is essential on X if and only 
if A is essential on I2(A). If E is the essential set of A in X, then (A) -'(X-E) 
is the essential set of A in E (A). 

Proof. Let E and F denote the essential sets of A in X and f(A) respec- 
tively. Since the complement of the essential set F is contained in the Silov 
boundary, we have f(A)-FCX, or FDZ(A)-X. By the definition of E, we 
have further that FDl(A)--(X-E). Therefore, if E=X, F=I(A). On the 
other hand, if A is not essential on X, then X--E is open in I(A) and by 
Theorem 1 every continuous function zero on I(A)>- (X-E) is in A. Hence 
A is not essential on Z(A), and FCl(A)-(X-E). We have already noted 
the other inclusion, so F=l(A)-(X-E). 

4. Maximal algebras. We proceed to our main theorem via the following 
two lemmas. 

LEMMA 1. If A is an essential maximal algebra on X, and f = i+ivEA, and 
u is constant on X, then f is constant on (A). 

Proof. If u(x) =c for all xCX, then the function (-i)(f-c) is in A alid 
equals v on X. But Helson and Quigley [4] and the author [1] have shown 
that an essential maximal algebra contains no nionconstant real functions. 
Therefore, v is constant on X, and hencef is constant on (A). 

LEMMA 2. If A is at essential maximal algebra on X and xoC=(A)>-X, then 
there is a positive Borel measure ,u whose support is all of X such that f(xo) 
-fxfdy for all f A A. 

Proof. Let xoE (A) --X, and r(f) =f(xo) for all fCA; r is a linear func- 
tional of norm one on A J X, and can be extended to a linear functional of 
norm one on all of C(X). Such a functional can be represented as an integral 
7r(f) =fxfdy for some complex Borel measure ,u of total variation one. Since 
the function identically one is in A, we have 1 =7r(1) =,(X), and it follows 
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that ,u is actually a real positive measure. Now suppose that ,.u( U) =0 for 
some open subset U of X, and let E = X U. It is shown in [1 ] that if A is a 
maximal essential algebra on X, then A I E is uniformly dense in C(E) for 
any proper closed subset E of X. Since ,u is carried on E, 7r is actually a con- 
tinuous functional on C(E) which is multiplicative on the dense subalgebra 
A I E. It follows that ir is a homomorphism of C(E), and can be represented 
as evaluation at a point of E. Thus 7r(f) =f(xi), x1GE, for allfEC(E) and in 
particular all feA. That is, f(xo) =f(xi) for all fGA, which contradicts the 
fact that A must separate points of :(A). 

THEOREM 2. If A is an essential maximal algebra on X, and If(xo) | = If/I for 
some f EA and some xoC2; (A) -X, then f is constant. 

Proof. Suppose fGA and |f(xo)| = flff and xoEC(A)>X. Let f(xo) 
=-fIlfeia, a real, and consider the function g=u+iv=e-iaf. Then gEA, 
jigfl =g(xo) =u(xo), and u(x) <u(xo) for all xEZ(A). Let , be a positive meas- 
ure on X representing evaluation at xo: h(xo) -fxhdlt for all hGA. We have 
g(xo)=u(xo)=fxudpu+ifxvd.=fxudjt. Unless u is constant on X, fxud, 
< u (xo), since the support of / is all of X and u (x) ? u (xo). Hence u is constant 
on X, and therefore by Lemma 1, g is constant on (A). It follows thatf is 
constant. 

The two lemmas and Theorem 2 have all had the hypothesis that A is an 
essential algebra on X. It is clear that Theorem 2 is false without this as- 
sumption, for in a nonessential algebra each constant has arbitrary continu- 
ous extensions off the essenitial set. We show below what can be said about a 
nonessential algebra by using Theorem 1 in connection with Theorem 2. 

THEOREM 3. If A is a maximal algebra on X with essential set E in X, 
EB X, then any function which assumes its maximum modulus at a point of 
2(A)-X is constant on 1(A)-(X'--E). 

Proof. A E is an essential inaximal algebra on E, and 2(A E) =I(A) 
-(X-E). Theorem 2 then applies. 

5. Remarks and questions. It is obvious that Theoremn 2 has no contenit if 
A is inaximal on X and N (A) =X. None of the maximal algebras known to 
the autthor have this property (e.g., Bishop [2]; Rudini [6]; Weriner [9]). 
It is a natural question whether a maximal algebra is necessarily maximal 
only on a part of its maximiial ideal space. 

Rudin has studied algebras defined on the uniit disc in the comiplex plane 
with the property that the Silov boundary is conitained in the unit circle 
[5; 7]. The quiestion here is whether this maximiium modulus property for 
algebras characterizes subalgebras of the analytic functions, and in [7] the 
answer is shown to be no. The question remains open, however, if we insist 
that the maximnal ideal space be the disc. One can replace the maximnum 
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modulus asstumnptioin by the assumiption that the algebra be nmaximlal oli the 
circle, which implies the maximuml modulus property, and ask whether this, 
with the necessary (see [9]) assumiptioni that the maximal ideal space is the 
disc, characterizes the algebra of all analytic functions continuous on the disc. 

A final question related to the preceding two is the following: Suppose that 
A is an antisymmetric algebra (A contains no nonconstant real functions) 
and the Silov boundary of A in :(A) is X# :(A). Then [1 ] A is contained in 
an algebra A1 which is maximal with respect to the properties: (i) X(A1) 
= (A), and (ii) the gilov boundary of A1 is X. Is Al1 X maximal? If so, then 
the maximum modulus property plus antisymmetry is roughly the saine as 
mazximality on the boundary. Also, our Theorem 2 would hold for arbitrary 
(not necessarily maximal) antisymmetric algebras. Note that antisymmetry 
is a necessary assumption here; i.e., maximal algebras are antisymnnetric [4]. 
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