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We show how the combination of electromagnetically induced transparency based nonlinear
and cold atom technology, under conditions of ultraslow light propagation, allows nonlinear proce
at energies of a few photons per atomic cross section. [S0031-9007(99)09290-X]

PACS numbers: 32.80.– t, 42.50.Dv, 42.50.Gy, 42.50.Hz
-
py

of

e

d
e
d

.

The recent observation by Hau and colleagues [1]
ultraslow light propagation (17 mys) motivates the study
of nonlinear optical processes under conditions whe
slow group velocity is a dominant feature of the problem
The basic idea is to combine electromagnetically induc
transparency (EIT) [2–4] and cold atom technology
create a sharp resonance with a transmission linewi
(Fig. 1) which is much less than the natural linewidth o
the atoms. A pulse of light propagating in this medium
has a phase velocity ofc and a group velocity which
can be less than1027c. The light pulse also experience
exceedingly large nonlinearities with a magnitude limite
only by the pulse width of the incident light and
ultimately, by the dephasing time of the coherence of t
transition which is used to create the transparency.

In this Letter we consider the consequences of nonl
ear optics using subnatural linewidths and ultraslow gro
velocities. A dominant feature of the problem is the sp
tial compression experienced by a pulse of light in the E
medium. For example, in the experiments of Hauet al.
[1], a 2.5 ms pulse, which is about 750 m long in free
space, compresses into a spatial pulse length of42 mm in
the cold Na vapor. As the pulse propagates, one may
four-frequency nonlinearities to sum or difference with
[5,6] or to modify its refractive index [7] and attenuation
constant [8]. The behavior and efficiency of these pr
cesses depend on the relative velocities and directions
the propagating pulses. Some striking effects should
possible. For example, by using two-photon absorption
right angles, one may take a picture of the slowly mo
ing spatially compressed pulse and thus, in effect, disp
information which is accumulated over a longer period
time. Of most interest, these processes occur at energ
corresponding to a few photons per atomic cross sect
or, equivalently, at nJ cm22.

There is now considerable literature on nonlinear opti
with EIT. The essence of all of these effects is a destru
tive interference in absorption in combination with a con
structive interference in the nonlinear susceptibility. I
addition to those cited above, other examples include e
periments and theory describing EIT-based phase c
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jugation [9,10], studies of bistability and two-photon
absorption [11], efficient frequency summing at maxi
mum coherence [12], new types of nonlinear spectrosco
[13], and studies of correlation and noise at the few
quanta level [14]. We also note earlier general studies
double lambda systems [15].

We begin by summarizing the properties of a light puls
of frequencyvp, which propagates at unity refractive
index, and with a slow group velocity, which results from
the steep slope of the refractive indexnsvpd. These
are [16]

Vg ­
c

s1 1 vp
≠n

≠vp
d

,

kE l ­
1
2

e0jEj2

√
1 1 vp

≠n
≠vp

!
,

P
A

­ kE lVg ­
1
2

se0cd jEj2 .

(1)

Because the refractive index is unity, the electric field an
power densityPyA are unchanged as the pulse enters th
medium. But still, because the group velocity is decrease
and the power density is constant, the energy densitykE l

FIG. 1. Transmission and phase of the probe with perfect EIT
© 1999 The American Physical Society 4611
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in the medium must increase. This increase occurs
compression in space to a length which we term as the H
length,Lh. In this Letter we will be especially interested
in the case where this length is less than the length of t
nonlinear medium.

An energy level diagram is shown in Fig. 2. The cou
pling laser, tuned to thej2l ! j3l transition, has Rabi
frequencyVc and is assumed to be strong and monochr
matic. Its magnitude is set so as to control the width
the transmission of Fig. 1 and therefore the bandwidth
the system. The probe pulsevp is taken to be on reso-
nance with thej1l ! j3l transition. It is assumed to be
sufficiently weak that the ratiosVpyVcd2 is much less
than unity, so that in essence all of the atomic popul
tion remains in the ground statej1l. With the exception
of Eq. (2a), we will assume the ideal case of a zero d
phasing rate,g12 ­ 0, for the j1l ! j2l transition, and
therefore takeg23 ­ g13. With these assumptions and
with the definition of the atomic adsorption cross sectio
s13 ­ v13jm13j

2ysce0h̄g13d, the propagation constants o
the slowly moving probe pulse,relative to vacuum, are
[17,18]

ap ­

√
2g12g13

jVcj2
1

8g
2
13Dv2

p

jVcj4

!
Ns13 , (2a)

bp ­
2g13Dvp

jVcj2
Ns13 , (2b)

1
Vp

­
2g13

jVcj2
Ns13 , (2c)

Lh ­

√
jVcj

2

2g13Ns13

!
Tp . (2d)

The quantitiesap and bp determine the attenuation and
phase shift of the propagating probe pulse. If the pro
is monochromatic and exactly on resonance, and w
g12 ­ 0, ap ­ bp ­ 0. For finite pulse bandwidths, to
fourth order injVcj, one obtains the group velocity and
the lowest order absorptive term. The reciprocal of th
actual (stationary frame) group velocity is equal to1yc
plus1yVp. Because the group velocity dispersion is zer
at line center, the pulse shape is quite well preserved dur
4612
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FIG. 2. Energy schematic for the analysis.

propagation. Equation (2d) gives the expression for th
Hau lengthLh. This length is the distance in which the
probe pulse would separate by one pulse length from
pulse of the same temporal length,Tp , which is traveling at
c. It is the equivalent of the walk-off length of crystalline
nonlinear optics [19]. For group velocities which are slow
enough thatc may be taken as infinite, this length is the
spatial length of the pulse in the medium.

The formulas of Eqs. (2) may be combined to establis
limits on the minimum pulse width and therefore the
minimum Lh. With the dephasing rateg12 ­ 0 and a
length of nonlinear mediumL, the minimum pulse width
is determined from Eq. (2a) by settingapL ­ 0.5. For a
Gaussian shaped pulse, one obtains

Tpsmind ­ 8 ln2

√
g13

jVcj2

!
sNs13Ld1y2 ,

Lhsmind ­ 4 ln2

√
L

Ns13

!1y2

,

(3)

We first consider collinear sum frequency generation i
atoms with the prototype energy level diagram of Fig. 2
We assume applied frequencyvp, vc, and v24, and a
generated frequencyv14. The slowly varying envelope
equation for the Rabi frequencyV14 is
≠V14

≠z
1

1
c

≠V14

≠t
1 a14V14 ­ k14Vp

cVp

"
t 2

√
1

Vp
1

1
c

!
z

#
V24

√
t 2

z
c

!
,

k14 ­ 2
j
2

g14Ns14

Dṽ14jVcj2
­ 2

√
j

4Dṽ14

! √
s14g14

s13g13

!
1

Vp
,

a14 ­

√
g

2
14

Dv
2
14 1 g

2
14

!
Ns14

2
.

(4)
e
Dv14 ­ svp 2 vc 1 v24d 2 sv4 2 v1d, Dṽ14 ­
Dv14 2 jg14, and s14 is the absorption cross section
of the j1l ! j4l transition. Equation (4) assumesk-
vector matching of the interacting frequencies. Th
is

may be attained by very small detunings of the prob
laser frequency [20]. WritingVpst, zd ­ Vpfst, zd and
V24st, zd ­ V24gst, zd, and working in a frame moving
at c, the solution of Eq. (4) is
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V14sL, td ­ k14Vp
cVpV24

3
Z L

0
expfa14sz 2 Ldg f

√
t 2

z
Vp

!
gstd dz .

(5)

We usejVijj
2 ­ s2gijsijyh̄vijd sPijyAd and, after some

algebra but with no further assumptions, obtain

Efficiency ­
s1yh̄v14d

R
P14std dt

s1yh̄v24d
R

Ppstd dt

­
1

h̄v24

√
P24

A
T24

!
s24Fsh, rd ,

(6)

where

Fsh, rd ­

µ
1

2T24

∂
r
h

Z 1`

2`

3

É Z h

0
exp

"
r
h

sj 2 hd

#
fst 2 jTpd

3 gstddj

É2
dt .

The quantityh ­ LyLh is the ratio of the material length
L to the Hau lengthLh. The quantityr ­ a14L and is
equal to the (E-field) loss in a lengthL. The ratio of
the number of photons which are generated at freque
v14 to the number of photons incident atvp is equal to a
dimensionless factorFsh, rd times the number of photons
in an atomic cross sections24.

Figure 3 showsFsh, rd, for Gaussian shaped pulses, a
a function ofh for several values ofr. In the limit when
h andr are small,

Fsh, rd ­

"
lns2d

p

#1y2
Tpq

T2
p 1 T2

24

hr ,

h ! 0, r ! 0 .
(7a)

In this limit the long-pulse, plane-wave formulas o
nonlinear optics are regained.

When the lengthLh is much less than the length of th
nonlinear material, i.e., ash becomes very large, we may

FIG. 3. Fsh, rd vs normalized length. The functionFsh, rd
is evaluated for Gaussian pulses of equal length.
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FIG. 4. cshd vs normalized length for Gaussian pulses o
equal length.

treat this length as a delta function in space and use it
obtain the asymptotic form ofFsh, rd,

Fsh, rd ­

"
lns2d

p

#1y2
r
h

exps22rd, h ! ` . (7b)

When the Hau length is short, as compared to the length
the nonlinear mediumsh ¿ 1d, generation occurs as the
v24 pulse sweeps by the almost stationary probe puls
In this limit, and for constant energy in thev24 pulse,
the generation efficiency is independent of the puls
length T24. Because of the more rapid reduction o
Lh, an attempt to increase the conversion efficiency b
reducingVc, and therefore to increase the nonlinearity
fails. For Gaussian pulses of equal length the maximu
value of Fsh, rd occurs at abouth ­ r ­ 1 and is
> 0.074 [Fig. 3]; i.e., four-frequency mixing is optimized
by choosing a group velocity such that the material leng
and the Hau length are equal. We note that the asympto
form [Eq. (7b)] ofFsh, rd is useful even as this optimum
value is approached.

We next consider the cross-Kerr nonlinearity suggest
by Schmidt and Imamoglu and indirectly measured b
Hau et al. [1,7], and the two-photon absorption proces
of Harris and Yamamoto [8]. Both occur when the idea
EIT process is modified by the interaction of the field a
frequencyv24 with the j2l ! j4l transition. With zero
detuning in this channel there is absorption and no pha
shift at vp. At finite detunings, the Stark shift of state
j2l results in a nonlinear phase accumulation atvp. Both
absorption and nonlinear phase shift are present toget
and, withDṽ24 ­ Dv24 2 jg24, are described by

≠Vp

≠z
1

√
1

Vp
1

1
c

!
≠Vp

≠t
­ kp

É
V24

√
t 2

z
c

! É2
Vp ,

kp ­

√
2j

4Dṽ24

!
1

Vp
. (8)

The coupling constantkp is inversely proportional to the
group velocity and leads to the invariance to changingVc
4613



VOLUME 82, NUMBER 23 P H Y S I C A L R E V I E W L E T T E R S 7 JUNE 1999

il
ly

te
.
l
ir
-
s

).

.

.

t.
l,

.

TABLE I. Two-photon absorption, Kerr phase shift, and
generation efficiency as a function of incident photons/area.

Photons/area
Process mulitplied by

Two-photon absorption
(power loss on resonance) s24c

Kerr nonlinearity
(phase shift;Dv24 ¿ g24) s g24

2Dv24
ds24c

Four-frequency summing
(efficiency) s24F

which is noted below. In a frame moving with the probe
the solution of Eq. (8) is

VpsL, td ­ Vps0, td

3 exp

24Z L

0
kp

É
V24

µ
t 1

z
Vp

∂ É2
dz

35 .

(9)

We evaluate the phase shift at the peak of the pulse (t ­ 0)
and express the phase shift as a function of the normaliz
lengthh ­ LyLh. With no further assumptions,

Vpshd ­ Vps0d expf2jRshdg ,

Rshd ­

√
P24T24s24

h̄v24A

! √
g24

2Dṽ24

!
cshd ,

cshd ­
1
2

erf

"p
4 ln2 Tph

T24

#
.

(10)

The propagation factorRshd is equal to the number of
photons in an atomic cross sections24 multiplied by the
factorsg24ys2Dṽ24d andcshd. The functioncshd, shown
in Fig. 4, has limits

cshd ­

√
4 ln2

p

!1y2
Tp

T24
h, h ! 0 ,

­
1
2

, h ! ` .

As Lh becomes long as compared to the sample leng
L, h ! 0, and we regain the nonlinear index o
Ref. [7]; i.e., with n ­ 1 1 n2sP24yAd, n2 ­ 2s4 ln2y
pd1y2jm13j

2jm24j
2ysce

2
0 h̄3Dv24jVcj2d and also the two-

photon absorption of Ref. [8]. In the opposite limit when
Lh is less than the material length, the phase accumu
tion and two-photon absorption become independent
the atom density and the length of the medium.

Table I summarizes the previous results. Each of t
nonlinear processes require pulse energies correspond
to a single photon per atomic cross section multiplied b
an additional factor. For the process of two-photon a
sorption, whenLh ø L, this additional factor is 0.5. For
the Kerr nonlinearity, this factor varies inversely as th
ratio of nonlinear phase shifts to nonlinear loss which
4614
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desired, and again, in the limitLh ø L, is independent of
the length of the medium. For four-frequency mixing, the
factor maximizes when the group velocity is reduced unt
the Hau length and the material length are approximate
equal. Pulse energies of nJ cm22, i.e., at least 6 orders of
magnitude less than previously used, become appropria
for near-resonant cold atom nonlinear optical processes
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