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Impurity center in a semiconductor quantum ring in the presence of crossed magnetic
and electric fields

B. S. Monozoii and P. Schmelcher
Theoretische Chemie, Institutrfhysikalische Chemie der Universithleidelberg, INF 229, 69120 Heidelberg, Germany
(Received 30 July 2002; published 24 January 2003

An analytical approach to the problem of an impurity electron positioned in a quantuntQRgin the
presence of crossed axially directed homogeneous magnetic and radially directed electric fields is developed.
The quantum well wire and quantum disk regimes of the QR and weak and strong magnetic fields as well as
low and high QR'’s are considered. The analytical dependences of the total and binding energies of the impurity
electron on the strengths of the external fields, the radii, and height of the QR and the position of the impurity
center within the QR are obtained. It is shown that if the QR confinement and/or magnetic field increase, the
binding energy also increases. The binding energy reaches a maximum for the impurity center positioned at the
midplane perpendicular to the symmetry axis of the QR. For the quantum disk regime the binding energy
decreases while shifting the impurity from the internal surface towards the external one. The effects due to the
confinement and magnetic field can be balanced by those produced by a radially directed electric field. For a
relatively narrow QR the impurity influences the oscillations of the ground electron energy as a function of the
magnetic field only marginallymagnetostatic Aharonov-Bohm effecEstimates of the linear electron densi-
ties needed to bring in balance the blue energy shifts caused by the ring confinement and magnetic fields and
the changes of the binding energy induced by the displacement of the impurity are made for parameters of a
GaAs QR.
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[. INTRODUCTION merically by Barticevicet al® neglecting excitonic and im-
purity effects. Llorenset al.” performed numerical calcula-
Electronic properties of low-dimensional semiconductortions of electronic states in QR’s in the presence of an in-
heterostructures such as quantum wells, superlattices, quamlane electric field. The energy levels and oscillator strengths
tum wires, and quantum dots have become a very active fiel@ere found as functions of the ratio of the internal and ex-
of research with respect to both theory and experiment. Adiernal radii of the QR and electric field strength. Barticevic,
vances with respect to growth as well as high-resolutiorf Uster, and PacheZstudied the effect of an in-plane electric
electron-beam lithography techniques allow the fabricatiorfi€ld on the electronic energies and optical absorption prop-
of novel confined structures called quantum rHER’S). erties in the QR. Effects of the eccentricity and an in-plane

This system is modeled by a cylindrical quantum dot Ccm_electric field on the electronic and optical properties of ellip-
taining an internal axially symmetric cavity. Similar to the tical QR's were under consideration in Ref. 4. Magarill

9 ; ; P )
properties common for the above-listed confined structurese:t aI._ calculated the persistent current in e]hptmal QR.S' .
It is well known that the electronic, optical, and kinetic

the QR's possess unique features. Being subjected to an e roperties of low-dimensional structures are strongly af-

ternal magnetic field, QR’s have been shown 1o bear persi ected by impurities and/or excitons. These effects become

tent currents associated With thg magnetostatic interferengg pronounced in the presence of an external magnetic
Aharonov-Bohm effect:  oscillations of the electron energysie|q The reason for this is that the confinement and mag-
as a function of the magnetic flux are observe@he netic field both increase the binding energy of the impurity
Aharonov-Bohm effect and persistent current become possjectrons and excitor(see, for example, Bruno-Alfonso and
sible due to the ring topology. Latge’ and references thergifThe study of magnetoexcitons
First, persistent currents were studied in metallic andn QR’s was originated by Chapfitand continued in Refs.
semiconductor mesoscopic rings in which the electrons move1 and 12. Using a variational method, Bruno-Alfonso and
diffusively (noncoherently throughout the ring. References Latge’ comprehensively studied shallow donor states in QR’s
to a selection of theoretical and experimental results may b the presence of a weak and moderate magnetic field up to
found in recent papers by Bruno-Alfonso and Latg@ong 10 T. The dependences of the binding energy of the ground
and Ulloa® and Lavenere-Wanderlat al* However, recent  state on the position of the impurity center within the QR on
progress in the fabrication of the self-assembled ringlikethe radii of the QR and on the strength of the magnetic field
shaped nanostructures allowed Logkel?® to observe phase have been obtained.
coherence effects of the electrons in nanoscopic QR’s sub- The majority of the theoretical papers on the problem of
jected to an external magnetic field. the impurity electron in a QR exposed to external fields are
Investigation of electronic states in nanoscopic QR'’s inbased on numerical studies that rely on a variational method.
the presence of external fields is currently of major interestUndoubtedly, numerical methods provide highly accurate re-
The energy spectrum and optical absorption properties ofults especially needed for a comparison with experiments.
QR'’s subjected to magnetic fields have been calculated nuHdowever, a desirable complementary approach is to perform
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analytical investigations on the above systems, which will be V(p,0,2)=0 for p=a, p=b, z==+dl2, (2.2
pursued in the present work. This allows us in particular to
obtain in closed form the evolution of the impurity states asthe total energye and the wave functioW’ can be found in
a function of the parameters of the QR and external fieldPrinciple. In the following the effect of the laterkithin the
strengths, which is of major interest. The impact of the to-X-y plane confinement or magnetic field on the electron is
p0|ogy of the ring on the physica| properties remains Verytaken to be much stronger than that of the Coulomb field of
transparent throughout an analytical study. The aim of théhe impurity center. In Sec. Ill the strong lateral size confine-
present paper is an analytical study of impurity effects pro-ment dominates the interaction due to the impurity potential
vided by the ring topology and the external fields. and magnetic field. The strong lateral size confinement is
The paper is organized as follows. In Sec. Il the generaProvided by the small external radius of the QR, taken to be
analytical approach is developed and the basic equations aféuch less than the Bohr impurity radius and magnetic
derived. QR’s of extremely different radiguantum disk re- length. In Sec. IV the magnetic field confinement exceeds the
gime) in the presence of weak and strong magnetic fields aréateral size confinement and effect of the impurity Coulomb
considered in Secs. IIl and 1V, respectively. QR’s with com-field. The magnetic length is less than the Bohr impurity
parable radiiquantum well wire regimeare studied in Sec. radius and the external radius of the QR. We consider in Sec.
V. Section VI contains a discussion of our results. SectiorV the QR with the difference of the external and internal
VII provides the conclusions. radii to be much less than the radii of the QR, the Bohr
impurity radius, and the magnetic length. In this case the
narrow QR causes a strong lateral size confinement. For
Il. GENERAL APPROACH these cases approximate solutions to &gl) are given by

We consider a QR formed by the revolution ofarec:tanglethe adiabatic separation of thip, ¢) and z degrees of

around thez axis. The plane of the rectangle is parallel to the reedom,
z axis. The QR is bounded by infinite barriers at the planes

— N,m
z=+d/2 and cylindrical surfaces of internal radipis a and V(p0.2)=0 (o) M7 (2), 23
external radiugp =b. The chosen model corresponds to hard-where the function
wall confinement potential. An alternative parabolic ring
confinement potential determined by the radius of the fing explime)
and by the effective frequency) was proposed by O vmp,e)=———Rynmp) (2.9
Chakraborty and Pietiinen® and then very effectively ap- ' \/ﬁ '

plied to study of QR's:®*12For a comparison of several . .
potential models for the ring confinement see Ref. 6. Thedescnbes the lateral motion of the electron of endegy; m

position of the impurity center, is given by the cylindrical getermme_d bt)athefcontf_memefnt t?]ndNet;](terng_l f;eldts ?nd where
coordinatesa=po=b, —d/2=zo="+4d/2, and ¢o=0. The —NimZ(%) I)S cor(raes ucl)qncdli(r)ln t(c)J theean ulrﬁl I?Janstuame ngmber
uniform magnetic fieldB is assumed to be parallel to tlze r:w—,o, +1 o 'ﬁ)’he fur?ctiorf(N'm)(z? correqs ds to th
axis. A radially directed electric field is modeled by a field of |~ = == =< . ponds to the
the charged wire coinciding with theaxis and possessing a longitudinal motion parallel to the axis and satisfies the

linear effective charge density. The other length scales rel- equation

evant to our study are the Bohr radiag=4meqeh?/ ue? 2 2

and magnetic lengtag = (7i/eB)"?, wherey is the effective  — —_ —_§(N.m) 7)1y (2 F(NM(7) = WNMF(Nm) ()
electron mass and is the dielectric constant. We take the 2u dz i ’
conduction band to be parabolic, nondegenerate, and sepa- (2.5

rated from the valence band by a wide energy gap. with the boundary conditions
In the effective mass approximation the equation describ-

ing the spinless impurity electron positioned at the point d
r(p,¢,z) subject to a uniform magnetic field and the axially f(N’“”( ii) =0 (2.6
symmetric electric field produced by the charged wire has
the form and with

#2(1a( o\ 1 2 # i a9 p? e

—— |-t =+t —=+=—-—7 Vam(2)=—
‘ 2u pp(pp> p? d¢®  9Z° agde Aag A P
ex P e? v XJ@ [Rym(p)[?
* 2meeg Na~ daegg|r—ry (p.¢.2) 27 [p?—2ppo COS@+ pg+ (2—20) ]
—EV(p,¢.2). (2.1 @7

The total energ\e then becomes
By solving this equation subject to the boundary condi-
tions E=E, ymtWNM™. (2.9
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The binding energ\e, of the impurity in the QR is de- Jm(ka) Y (kb)—J (kb)Y (ka)=0. (3.3
fined as usual by the difference between the energy of the
free electron in the QRE, yn+#A2m2%2ud?, 1=1,2,...) In the leading order approximatiora£0) we obtain,
and the energ\E, Eqg. (2.8), of the impurity electron. We from Eq.(3.3),
have )
hea
SR BN =207 (3.4
E,= 2,ud2 -W . (2.9

wherean, y (N=1,2,3,...) are roots of the Bessel functions
For a low QR (i<a) the longitudinal energy becomes [Im(@mn) =01, i€ @g:=2.40, ao,=552, and ay,
WM = £27212/2,,424+ AWN™ where AWNT s the  =3.83,.... -
correction to the size-quantized energy caused by the impu- It follows from Eq.(3.3) that, under the conditioa<b

rity potential. In this case Eq2.9) gives and form=0,
— N,m -1
Ep=—AwW™m. (210 AE2 \=EQDon |ng+|n%+c . (35
Below we consider the regimes determined by the different
relationships between the radii of the QR, the Bohr impuritywhere
radius, the magnetic length, and the height of the QR he
wave functionsRy (p) describe the lateral motion of the Do mYo(aon)
electron in the presence of the magnetic fiBléSec. 1), in O’N_ao,NJé(ao,N) '

the quantum disk of radiu® (Sec. Il) or in the two-

dimensional quantum well of width— a (Sec. \) depending  C is the Euler constant=0.577. Form=#0 (|m[=1,2,3,...)
on the different regimes. Using the above wave functions, wéhe corrections to the energy become

calculate the potential energi®y (z), Eq.(2.7), the ener- 5

gies of the longitudinal motiotV™'™ in Eq. (2.5), and then AE2 —EO D (E) 3.6
the binding energieg,, Egs.(2.9) and(2.10), for the high mNTEMNEMN G ) '

(d>ap) and low ([d<ag) QR. where

IIl. QUANTUM DISK REGIME: a amn\ ALY (am )
Ht ( 2 )

WEAK ELECTRIC AND MAGNETIC FIELDS Dmn=— T[T ([ —

‘]r,n(a’m,N) .
We consider a QR having an internal radausnuch less

than the external radiud [quantum disk(QD) regimd, The corrections to the energE® and AE*, are deter-
which in turn is much less than the impurity Bohr radays ~ mined by the matrix elements of the diamagnetieag *)
Under these conditiona<b<a, and for weak magnetic and logarithmid ~In(p/a)] terms on the left-hand side of Eq.
(b<<ag) as well as electric fields the confinement caused by2.1) calculated with respect to the normalized wave func-
the external radiu® provides the dominant contribution to tions
the lateral energ¥, y m in EQ. (2.9):

! 21/2 ( p) 3
2 meAEPLAE, (30 Rinm(p) b‘]lm\+1(am,N)Jm AmNp |- (3.7

E nm=E©@+AE*+
1 N,m Zﬂaé -
We obtain
E(© is the energy of the electron in the QD of radiysand

AE? AEB, andAE* are energetical corrections due to the A2 2(m?— 1)+ af \]

nonzero internal radius, the weak magnetic fiel (dia- AEf N= Sdnat ol (3.8
magnetisn, and the weak electric field, respectively. HEB%mN

The general form of the radial wave functity (p) is  and
given by®

b
#2K? AEN = In——1
Rum(p) =Adn(kp)+BY(kp), EC+AE(@)=7 -, T 2mees| @
(3.2 |, Imla— 9 )~ 250 i)

where J,(x) and Y,(x) are the Bessel and Neuman func- azm,N‘]\zmIH(amyN)
tions, respectively, and andB are constants. The boundary (3.9

conditions (2.2), i.e., Ry m(a) =Ry m(b)=0 for the wave

functionRy m(p), EQ.(3.2), lead to a set of two linear alge- The expression3.5), (3.6), and(3.8) are valid under the
braic equations. This yields a transcendental equation for theonditions a<b<ag, a;. Equation (3.9) implies that
parametek: (en/2meqe)In(bla)<h?m?2ub?.
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A. High QR (d>ay)

In order to solve Eq(2.5 describing the longitudinal
states, it is convenient to introduce the notation

2(z—2zp)
_ 2 __ 2 2
u=——, =——5(p°—2ppoCOSe+ pg),
aon g a§n2(p PPy COSe+ pg)
N
\N(N,m):_ Ry
n n2 ’

where NRy=h2/2,ua§ is the impurity Rydberg constant.
Equation(2.5) then becomes
d2f ™ (u) 1

G AU+ g?) VAR W) - 2 F (u) =0,

(3.10

PHYSICAL REVIEW B7, 045203 (2003

line of the corresponding analysis will be given below. For
|u|>Av|g|~b/agn the general solution to E43.10 is

FN(U) =AW, 10(Ju)) +B-My 10(|u]),  (3.12

whereW,, 1, andM, 1, are the Whittaker function.
In the regionju|<1, an iteration method is performed by
the double integration of Eq3.10 using the trial function

™ (U) = Co + e [u[(U2+g) Y2In(|u| + (u?+g?) 3,
(3.13

where the constan&s.. , B, , C.., and«.. correspond to the
regionsu>0 andu<0, respectively. The continuity condi-
tions applied to the functiorﬁﬂ’\'dm)(u), Eg. (3.13, and its
first derivative atu=0 give the resulc,=c_=c and a,
=—a_=a. The results of the integration for the region

where Av indicates the average with respect to the wavéy|>Av|g| and from the standard expansion of the Whittaker

functions(2.4) and (3.7). The quantum numbert labels the

functions involved in Eq.3.12 for |u|<1 (Ref. 14 are

longitudinal states. Due to the coordinate transformation, th@ompared_ When terms of the same order are equated a set of

boundary conditior{2.6) becomes

fNM(u, ) =0,

whereu, ,=(d/agn)(2z,/d*1).

(3.1

four linear algebraic equations is obtained. The total set of
six linear algebraic equations for the coefficieAts, B.., c,
and « consists of these equations and two boundary condi-
tions (3.11) for the functionfﬁ”’m) Eqg. (3.12. This set is

The analysis of Eq(3.10 is based upon the Hasegava- solved by the determinantal procedure, yielding a transcen-
Howard methotf more elaborated in Ref. 16. Only an out- dental equation for the quantum numiser

1
¢t 5[PTE-Gi=Got V(P—£)%+(G1—Gy)’]

1
r<P+ F[PTE-G1=Gy V(p—§)?+(G1—G,)?]1 =0. (3.1

In the above expression the following notation has been used:

¢(n)=2C—-1+ z,/;(l—n)+i,

on (3.19
b
§(n)=|n%+l—Am’N, (3.16
L2l POl ml |2 Po| 52
2|m| 2 Jo amNF —Jo(amn) | +Z4=2q] Ji amNF —Ji(amn)
Amn=1-
mN U J\2m|+1(amN)

Po Po Po Po Po Po

1/ po 2Jr2n( AmNy +‘]2m+1( amN?)_Jlml<a’mNF)‘J|m|+l amNF>_Jm(a’mNF)‘J|m|+2( amNF)

_E(F) J|2m|+1(amN) '

238,

2
3 N

p(n)=
77[ pg—l—

b
b? [2(m2_1)+ar2nNJ] JO p dp R m(p)(p+po)

(3.17
4pg P 2 12 ]
E(k)|In5=+2In[1+ —|=2+Ink" |+ (1+k")K(K)(,
aghn Po
(3.18
Wi 12(v12) (=) (3.19

Gy n)=

M n,1/2( V1,2)
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wherev,;=u,, v,=—Uy, I'(X) is the gamma functionj(x)
is the psi function(the logarithmic derivative of the gamma
function), k=4(p/po)(1+plpy) 2 k'=(1—-k»¥? and
K(k) andE(k) are the complete elliptic integrals of the first
and second kinds, respectively. The wave functiBRg; in
Eq. (3.18 are defined by expressiai8.7). On solving Eq.
(3.14), the quantum number can be found that determines
the longitudinal energW(N m)—Wn

When the impurity center is located at the symmetry
plane of the QR%,=0, v;=v,, G;=G,) or at any position
of the quantum well wirgd, v, ,—%, G, ,—0) the longitu-

PHYSICAL REVIEW B57, 045203 (2003

4 -

d 2n
Gl,z(zo,d)=l“(—n)(%—n> [exr{
(3.22

For small displacementszg/agh<1 the dependence of
the quantum numbarm(zy) <1 and consequently the energy
W, of the ground state as a function of the displacenzgnt
can be found explicitly from Eq(3.21) with the result

where

d

agh

2z
172

d

Wo(2o) = W1(0) +2|Wy(0)[T'(1—ny)

dinal states possess a definite parity. The levels of even and

odd parity correspond to states determined by the second and

first curly brackets on the left-hand side of E§.14), re-
spectively. However, classification of the energy leWals

into two groups can be made for the impurity center in any

plane €,#0, v,# v,); all states determined by the above

mentioned second curly brackets are referred to as quasi-

even (g) states while those determined by the first curly
brackets are referred to as quasi-q@gl states. The quasi-
even states have quantum numipegiven by n=nq+ éng
whereny=0,1,2,..., while the quasi-odd states hawgiven
by n=ng+ én, where ny=1,2,3,.... The ground levelng
=0) is nondegenerate and has.1. The excited stateq
=1,2,3,...) have a doublet structure consisting of quasi-eve
and quasi-odd components.

Notice that Eq.(3.14 consists of elementary functions,

well-known special functions, and a one-dimensional inte-

gral determining the functiop(n) containing both elemen-

tary and special functions. This equation can be solved nu-

merically for arbitrary values of the height of the QR,
>a,y, and the impurity positiornpy, z, for d/2—|zy|>b.
However, explicit dependences of the enelyy upon the

above-mentioned parameters can be found for the limiting

cases of a high QRd(ay>1), small displacementg, of the
impurity from the symmetry plane of the QR {2/d<1),
smalla<py<b, and a maximumgdy/b~1) shift py of the
impurity from the symmetry axipg=0.

For the QR with radiudb~0.4a,, heightd~2a,, and
impurity positioned close to the midplazg=0 and internal
surfacep=a, Eq. (3.14 gives for the ground longitudinal
staten~0.5. Using in Eq.(3.14 the asymptotic expansion
for the Whittaker function for d/a,n>1, we obtain the
condition

279
on 4 sinh—
agh

d
agh

<1. (3.20

'{d
exp —
agh

0
The term containing the Whittaker functions under the

2z,
—2 cosh—
agh

square root sign can then be safely neglected. Even though 1

the impurity is shifted by a considerable distarge=d/4,
the term on the left-hand side of E@.20) is about 0.3. The
equation for the quasi-even states then becomes

1
- E(Gl+ G,)=0,
(3.21)

1 b
2C+¢Y(1—n)+ %Hn%—AmN

d

oy

27, \?

ao,

d 2ny
LA
[ 2wy (0)
nl— - NRy I}

agh,

whereW,(0)<0 is the longitudinal energy of the impurity
positioned at the symmetry plazg=0 and at any radipg.

The effect of the radial displacemep} is described by
the parameteA, y, Eq. (3.17. For po=b we haveA,
=0 and with increasing,A,, y monotonically increases to-
wards the internal boundary. Fa<py<b we have, from
Eqg. (3.17),

(3.23

1
mn(po)=1- ||m|{5[1—J%<amN>]

amNJ|m|+1(amN)
[m|

— > Jamy)
k=1

5™

For small displacements from the external surfageb
for which 4npA ., y<1, EQ.(3.2]) leads to approximate ex-
pressions for the quantum numb®A , \) and then for the
ground state energw:

1

amNPo
J’_
(Jm|+21)!

2b

(3.29

Wo(A)=W(0) = [W2(0)| 75 —Amn,

1+2n

[ 2w(0)
ny,= - NRy ,

whereW,(0) is the longitudinal energy of the impurity po-
sitioned at the external radiyg=b and for any plane,.

In the logarithmic approximatio/ay<1, |In(b/ag)|>1
the quantum number<<1 can be calculated explicitly:

(3.29

b 1
:2[ - |na_0 +Apn(po) + E[Gl(zo)*'Gz(Zo)]} .
(3.26
It enables ugsee Sec. VjIto derive the dependence of the
binding energy on the external radibsof the QR and the

position (pg, zg) of the impurity center in a qualitative way.
Below, the logarithmic approximation is used only for the
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qualitative analysis. The numerical calculations, correspondfar from the midplane,=0, which allows us to neglect the
ing figures, and estimates of the expected experimental réA/hittaker functions under the square root sign E3j29.
sults are made for realistic relationships between the paranPutting s<1 and using the asymptotic expansion for the
eters of the problem. Whittaker functions* we obtain the equation for the quan-
tum numbers:
B. Low QR (d<ap)

2
In order to find the positive longitudinal energi&¥, 2s/Inf| —| +2(C—Ann) +cot(s|n|rl|+m)
= NRy/s2 we introduce in Eq(2.5) the following notation: 0S 2
|7'2|)
2(z—z 4 =
— (iaOsO)’ §2=@(p2—2ppo cose-+pd), +cot(s|n|72|+ > |=0. (3.33
This equation can be solved by the method of iteration. In
2 [d_ the zeroth approximationd{a,=0,5=0), we find thatsa1
T2 g5\ 2 70 =(may/d)(2j+1),j=0,1,2,.... After some tedious calcula-

tions it is possible to obtain the expression for the endxgy

In the region|t|>Av|g| the ansatz for the solution of Eq. in the next-order approximation:
(2.5 satisfying the boundary conditiorf{""™(7;)=f{N-m
(7,)=0 is taken in the form h2aw?(2j+1)

W™ = +AWN™ (3.39

. 2upd?
fs(t) =A ReWis 15(t) + B IMMig 15(1), it>0.
(3.2  where
For the regionit<0 the wave functiorf(t) can be ob- ao wb(2j+1)
tained from Eq(3.27) by replacingA, by A_, B, byB_, AWJ(N’m): _ZNRV(E) -4 C—AmYN+InT
andt by —t. Using for the regiorjt|<1 the trial function
(2j+1)7zy
fOt)=c+atVt?=G2In(t+t?>-3%)  (3.28 xcoszT
and then the iteration and matching procedure described 472
above in Sec. Ill A, we arrive at the equation for the quantum +In| #2(2j+ 1) 1— ﬁ) } ] (3.35
numbers: d?
1 o _ S— The expressiori3.35) is valid under the conditions
¢+§[b+§—el—62+J(ﬁ—é)zﬂel—eg)z]] |
d - 7b(2j+1) <1
I == aym(2j+1) d '
X1 Bt S[B+E-C1- Gy V(B—H2+(81 -5y
The energiesV{™™ | Eq.(3.34, are the even size-quantized
=0, (3.29 energy levels perturbed by the quasi-Coulomb impurity po-
tential Vy m(2), Eq.(2.7).
where The quasi-odd states can be considered in much the same
T(s) . way as the quasi-even states. Equating the left-hand brackets
N L T B T of Eq. (3.29 to zero, we obtain, fos<1,
cp(s)——2i [F(is) |2+2C 1+¢(1l+is) s
| 714> 1,
—c.c.], (3.30
|71l | 72|
4s(C—1+p)+cot sin| 7|+ —|tco sin| 7|+ -
t I ! (3.3) 0 3.3
T(s) 2i|l(is) T(-is)] ' o .
wherep~a/b>1 is defined by Eq(3.18.
- ~  ReW1/x(719) In the zeroth-order approximatiobmfa,=0,s<1) we ob-
Gl,z(S):F(S)m- (332 tain s, =(2jmay/d), j=1,2,.... The next approximation
is, s

implies the explicit dependence of the parameperEg.
The parameterg(s) andP(s) can be obtained from Egs. (3.18, on the quantum number=s. This dependence is,
(3.16 and(3.18), respectively, by replacing by s. however, very difficult to obtain. Nevertheless, we conjec-

We consider the quasi-even states determined by the set#re that in this case the enerqu‘N*m) are the odd size-
ond curly brackets on the left-hand side of E§.29. As  quantized energy levels shifted towards lower energies by
before, we assume that the impurity center is shifted not tothe effect of the impurity potentia¥y (z) in Eq. (2.7).
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IV. QUANTUM DISK REGIME: STRONG MAGNETIC and the correction due to the finite value of the external
AND WEAK ELECTRIC FIELDS radiusb is
Below we consider the QR with extremely different inter- 52 y2N+Imi+1 B
nal a and externab radii subject to a strong magnetic field AEP N= X2 exp(—X2) (4.6)
m, .

such tha<ag<b,a,. In this case the effects of the electric pag  NI(N+|m])!
field, impurity center, and confinement are the perturbation

to the energy of the radial motion of the electron in the For m=0 the first term in the square brackets on the
presence of the magnetic fiel[landau levels Employing  right-hand side of Eq(4.5) is dropped. For arbitrary radé
the imposed conditions the wave functidh has the form andb of the QR and arbitrary strength of the magnetic field
(2.3) where the functiorRy (p) describes theNth radial B, Eq. (4.3 can be solved numerically.

state of the electron in the presence of the magnetic field. It follows from Eqgs. (4.2) and (4.3) that in the zeroth
The longitudinal functionf™™(z), in Eq. (2.3 obeys Eq. approximation k;=0,x,=%) the normalized unperturbed
(2.5 with the boundary condition&.6) and with the poten- wave functionRy ,(p) becomes

tial Vym(2), Eq.(2.7). For the lateral energ§, y , in Eq.

(2.8) we have . |
NmlP)= 2 0 T
E nm=E@+AE+AEP+AE?, (4.2) aZ(N+|m|)!

whereE© are the Landau levels, aniE?, AE®, andAE*  whereL|Tl(x) is the associated Laguerre polynontial.
are the corrections to these levels caused by the confinement The energy shifAE* caused by the electric field is deter-
at the surfacep=a, b and the electric field\), respectively. mined by the matrix element of the longitudinal term
The general form of the radial function is given’by ~In(p/a) on the left-hand side of Eq2.1) calculated with
respect to the function@t.7) with the result

xImi/2 ex;{ - ;) LiM(x), (4.7

R.(p)=ex _X )M AM(= y,|m|+1x)
mlp)= 2 Y, X N'

—Inx;+ W(,\Lm , (4.8

AEN NN = o
m.N 2mege

+BU(—y,|m[+1x)], 4.2
wherex= p?/2a3, where
—Maé EQ@+AE +AEb—1 +m+1 L mlr My 72
=37 (a) (b) =z (Im[+m+1)], =73 | exp(—)X™MLIM(x)12Inx dx. (4.9

M(—7,|m/+1x) and U(—y,|m|+1x) are the confluent ) o 0 2
hypergeometric function¥,and A andB are constants. The Equation(4.8) implies thatex|Inx|/2me e <fi*/ pag.
boundary condition®R,(a)=R(b)=0 for the wave func- The energy of the longitudinal motio™™ can be ob-
tion (4.2) yield a set of two linear algebraic equations thattained by solving Eq(2.9) in which the potentiaVy,m(2),
results in the transcendental equation for the quantum nunfd- (2.7), is calculated through the averaging procedure with

ber y: respect to the functionRy (p), Eq. (4.7).
M(=y,[m[+1x)U(—y,[m|+1x,) A. High QR (d>ay)
=M(=y,Im|+1x)U(—y,|m[+1x;)=0, Using an approach completely analogous to that in Sec.
(4.3 IIIA, we obtain Eq. (3.14 for the quantum numben
- - =[—Ngy/W,]*2 In this equation the functiong(n) and
wherex; =a*/2ag andx,=b/2ag. G, An) are defined by Eqs3.19 and (3.19, respectively.

Using the limiting expressions for;<1 and asymptotic  The functions¢(n) andp(n) read as follows:
expansions fox,>1 for the functionsM and U,** we find

from Eq. (4.3) the parametery and then the unperturbed 1 a2n?
0
Landau levels g(n)=1+§ —Ing—CJrANYm(xO) , (4.10
B
EQO\ = " N+|m|+m+1 N=0,1,2 4.4
mvN_,uaé 3 =0,1,2,.... (4.4  where
The corrections to these levels caused by the nonzero value N! % -
of the internal radius read An,m(X) =CHInXo+ ————— f exp(— X)X
(N+[mD! Sy
A2 [(|m]—=1)IN!|m]! 2
AE =2 x1_|m|—lnx1 scrLIml 12 X _Po
wag|  (N+|m[)! [Ln'(¥)] InXde, Xo 222" (4.17)
-1
~crutttim| @5 and
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ag o ) ticularly, it becomes clear that the enerdl, decreases with
p(n)= 2 pdpRym(P)(p+po)  increasing magnetic field strengh
0
mag 2_a§+2N+|m|+1 B. Low QR (d<ay)
4p§ p ) The methodology to calculate the positive longitudinal
X1 B[ In—-5+21In 1+E —2+Ink energiesW=Ng,/s? is similar to that presented in Sec.
0 IIIB. The equation for the quantum numbsihas the form
(1K DK (K) (4.12 (3.29 where the funct|0n$(s). and Gy ) arg d~ef|ned by
Egs.(3.30 and(3.32), respectively. The function&(s) and
_ P(s) are obtained from Eqg4.10 and(4.12), respectively,
The parameterk andk’ are the same as in E(B.18. by replacingn by s. The energies of the quasi-even states
For the ground Landau stabé=m=0 we have W}N'm) are given by Eq(3.34 where
Ao’o(XO):C"‘In Xo_Ei(_Xo), (413)

(N.m) ag 1
AWJ ' :_ZNRy e _4 _(C+AN m)
. . - . d 2 ’
where Ei(—x,) is the exponential-integral functidfi.

As above, the firs{second curly brackets on the left- mV2ag(2j +1) 7z6(2j +1)
hand side of Eq(3.14) describe the quasi-odeven longi- d cog d
tudinal states. The ground state<{ 1) is nondegenerate, and
the excited statesné=1,2,...) possess a doublet structure. 423
Comparing the above equations for the quantum numbers +In| w2(2j+ 1) —?) } (4.1
with those considered in Sec. Ill, we arrive at the conclusion

that the parameter'Zag /a, and the functiom\y m(xo)/2in g0 j=0,1,2,.... The above expression is valid under the con-
Eq. (4.11) play here the same role as the parambleg and  itions

the functionA, n(po), respectively, in the case of the QD

regime and weak magnetic field. In principle, the functions d
AN m(Xo) andp(n) can be calculated numerically for an ar-
bitrary value of the parametex,. However, explicit depen-
dences of the function@.11) and(4.12 on the parametex .
can be found for weakxp<1) or sufficient?y large 1@2 _The engrg|e§v}”*m), Egs.(3.34 and(4.19, are the even
>1,p/a9<1) displacements of the impurity from the sym- §|ze-quant|zed energy levels perturbed_ by the qu_aS|—Coqumb
metry axisp=0. Since we focus on the quasi-even groundiMPUrity potentialVy,(2), Eq.(2.7). This conclusion holds
staten< 1, it is appropriate to give the limiting expressions €dually for the quasi-odd states.

for the functionAy m(Xo), EQ. (4.1D):

’7TaB(2j +1)
agm(2j+1) a <!

V. QUANTUM WELL WIRE REGIME

N! (N+[m)t We consider the QR of width=b—a to be much less
C+ 2§Nm(N+|m|). + NI(m[+ 1)1 0 than the radii of the QRa and b, and the impurity Bohr
' ' ' radius a, (8<a,b,a;). Under these conditions and both
Anm(Xo) = Xo<<1, relatively weak magnetic and electric fields the lateral con-
C+In(xq), finement caused by the boundaries of the QR provides the
o1 main contribution to the energy. The solution to Eg.1)
0= =+ (4.14 possesses the for(@.3) where the normalized wave function
. . 2\Y2 N#
Particularly, A g o(Xo) =Xo for xo<1. For small displace- Ry m(p):(— sin—(p—a), N=1,23,.., (5.0
ments 2Z,/agh<<1, Eq. (3.23 for the energyWy(z,) re- ' g g

mains valid in the present case. The effect of the radial dis- : . . . .
placementp, is described by the function y m(Xo) in EQ. describes theé\th radial state in the two-dimensioné2D)

(4.11), with the special casd#.13 and(4.14). This function guantum well of widths, corresponding to the angular quan-

. ) tum numberam=0,=1,*=2,... and the energy
and, as a consequence, the eneWy monotonically in-
crease with increasing shift of the impurity from the internal 52 m2N2
surfacepy=a to the external surfacg,=b. E<NO):_2,

In order to study qualitatively the dependence of the bind- 2uo

ing energy on the magnetic field strend@rand the position
of the impurity (po,Zo) it is profitable to use the logarithmic ~ The longitudinal wave functiond™™(z) satisfy the
approximationag /ap<1, |In(ag/ag)|>1. In this case the ex- boundary condition$2.6) and obey Eq(2.5) with the poten-
pression for the quantum numb®can be obtained from Eqg. tial VJ(N"“), Eq. (2.7), determined by the wave functions
(3.26 by replacingb by 2Y%ag and A,y by — Ay /2. Par- Ry m(p) in Eq. (5.2).

N=1,23,.... (5.2
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It follows from Eq. (2.1) that for the narrow QR &
<a,b) the lateral componer, \ , of the total energye in
Eq. (2.8 can be written in the form

%2 +<1>21
2u0?|\ " @) T2

where® =B7b? is the magnetic flux and,=2=#%/e is the
quantum unit. The dependence of the lateral en&gy ,,

EQ+ +AEM, (5.3

Einm=

PHYSICAL REVIEW B57, 045203 (2003

B. Low QR (d<ag) of small radius (a,b<a,)

We now apply the strategy developed in Sec. 1l 2 to cal-
culate the positive longitudinal energiéNS:NRy/sz, Eq.
(3.29, for the quantum numbes: In this equation the func-
tions ¢(s) and élyz(s) are provided by Eqs(3.30 and
(3.32, respectively, while the functioné(s) andp(s) are
given by Eqgs(5.6) and(5.7), respectively, by replacing by
s. The dependence of the enerW{N'm) of the quasi-even

Eq. (5.3, on the magnetic field has been calculated in thestates on the displacemenf possesses the for(3.34 and

zeroth approximatiod=0. The energy shifAE* caused by

(3.39 taken forA,, y=0. The energ|e5¥V(N '™ of the quasi-

the electric field is determined by the matrix element of theeven (-odd) states are the evefodd) size-quantized levels

logarithmic term Inp/a)~(p—a)/a on the left-hand side of
Eq. (2.1) calculated with respect to the wave functidbsl).
As a result, we obtain

e\

AEm NT daregeb o

(5.9

Before proceeding with the longitudinal states note that

for the approximatiors=0 the potentiaVy (z), Eq.(2.7),
in Eq. (2.5 for the narrow QR §<a,b) becomes

3o
— 2NgyAv

Vaum(2) = 2, (5.9

4p? siP + (2~ 2,)?

where Av is the average with respect to the functi¢ag)
and(5.1).

A. High QR (d>a,) of small radius (a,b<ay)

In order to calculate the energy levélg,= — NRy/n2 we

follow the procedure developed in Sec. Ill A to derive the

transcendental equatidB.14) for the quantum numbaen, in
which the functionsp(n) andG; 4(n) are defined according
to Egs.(3.195 and (3.19, respectively. The functiong(n)
andp(n) are given by

&(n)= n—b +1, (5.6)
aon
_2a,( 8b )
p(n)= g In—aOn—l (5.7

As above, the firs{second curly brackets on the left-
hand side of Eq(3.14) describe the quasi-odgven longi-
tudinal states. The ground state<1) is nondegenerate; the
excited statesn(~1,2,3,...) are doublets.

The equation for the quantum numbersof the quasi-
even states in explicit form can be derived from E821)
by setting A, y=0. For small displacementszg/agn<1
the dependence of the energy of the ground féeon the
position of the impurityz, coincides completely with that
given by Eg. (3.23. In the logarithmic approximation
(b/ay<1, |In(b/ag)|>1) the expression for the quantum num-
bern<1 can be obtained from E¢3.26 atA, y=0. Obvi-
ously, the energyV, decreases with decreasing radsf
the QR.

perturbed by the quasi-Coulomb impurity potentg| ., in
Eq.(5.5.
C. High QR (d>ay) of large radius (a,b>a,)

In this case it is convenient to present the potential
Vum(2), Eq.(5.5), in closed form

a| 1 z—1270\%] 12
Vim(2)= = 2Nry| 1| = 14| 1
-7 271—1/2
XK(|1+ 0 (5.9
2b ' '

whereK(x) is the complete elliptic integradf: This potential
possesses a simple form in the limiting cases of smjall (
—20/<<2b) and large [z—zy|>2b) displacements of the
electron from the impurity center:

Vi (2) = — 2N | 22 e PR L. | k.
N.m Sy 2b |© 2b ’
(5.9

_ =) |z— 2|
VN,m(Z)_ _ZNRy|Z_ZO| ) 2b >1. (5.10

Below, we restrict ourselves to the quasiclassic calcula-
tion of the ground leveW, using the WKB expression

2u

112
ﬁ2> [Wo Vm(2)]Ydz=r, (5.11)

wherez, , are the smaller and greater roots, respectively, of
the expression under the square root sign. The ground state
implies that|z; ,— 25| <2b. It allows to substitute Eq(5.9)

for the potentiaVy (z) into the expressior5.11) with the
result

Ao
b

1| 7Ta0
=" 2%

Wo=Ngy| — (5.12

It is clear that decreasing the radioof the QR leads to
a decreasing energy/, .

D. Low QR (d<a) of large radius (a,b>ag)

In this case the longitudinal energy™™ of the quasi-
even states is given by E(B.34) where the correction to the
ground levelAW is determined by the matrix element of the
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potential Vy m(2), Eq. (5.9), calculated with respect to the
wave function of the ground stafé®)(z) of the electron in
the quantum well of widthd:

mL

2 1/2
f<°)(z)=(a) cos—. (5.13

AE/Ry

The shift AW, can be found in analytical form

1 ag a’ 2
A\NO:;NRy F In24—bz+ln24—ag+ v(2p) |,
(5.19
where ‘
504 0.2 0.0 02 0.4
) 220 2z/d
4B 2 T A= W
A R e 7 AN
4 7
1 X 27720 220 220 / \"\ \
+ —siIn d CI’JT( 1+ T) —CIW( 1- T _04 //// \\\
¢ |/ W
1 27zy| . 1+ 2z, tsinl 1 2z, n g /,’/ \ \3
_ i _ 7 A
Cos—y—|Sim d Sl d ™|, -08 // WA
// i/ \\\2\
(5.15 f W
08 |/ i
where cik) and sik) are the integral cosine and sine, i 1\
respectively:* / \‘
It follows from Eq. (5.14) that if the radiusb of the QR 100 o2 P 02 oa
increases, the energyWV, increases. The less the heighdf 22,/d
the QR the less is the energWW,. The energyAW, in- 0 - : ;
creases with the displacemeny of the impurity from the ©
midplanezy=0. In particular for small shifts Z,/d<<1 the NN
function y(zy), Eq. (5.15, becomes y(zy)=—3.18 \\
+5.80(2z,/d)?. N —
-1t \\\ ~
-
VI. DISCUSSION \s\\
A. QD regime, weak magnetic field, high QR é‘ 2

Since the contribution of the second term on the right-
hand side of Eq(3.23 to the binding energy is less than that I -
of the size-quantized energy1/d? [see Eq(2.9)], the bind-
ing energy decreases with increase of the height of the QR,
d>ag. It is clear from Eq.(3.26 that the binding energy

increases with decrease of the radusf the QR and di- 3 , ‘ .
verges ab/a,. Expression(3.23 shows that the shift of the 02 04 ;Jf) 08 !
impurity centerzy from the midplane of the Qrz=0, leads

to a decrease of the binding energy, Eg.(2.9). In the FIG. 1. CorrectiomEy, /Ngy (Ngy is the impurity Rydberg con-

narrow QR b<ay) the effective Iongltu_dlnal radiugon be- stan} as a function of(a) the longitudinal displacemerz, of the
comes small and the electron density is concentrated close ﬁ‘ﬁpurity from the midpointzo=0 of the QR for thepy/b=0.5;
the 'impurity center. This leads to a decrease with resp'ect tB/a0=0.6 andd/ay=2.0 (1), 2.5(2), 3.0 (3); (b) the Iongitudinél
the influence of the boundary planesat+d/2 aswell asin  gisplacement, of the impurity from the midpoinz,=0 of the QR
case of increasing the height of the Q®&, The impurity  for 5 /b=0.5; d/a,=2.5 andb/a,=0.4(1), 0.6(2), 0.8(3); (c) the
being positioned at the midplarze=0 produces the greatest radial displacemeng, of the impurity from the internal boundary
binding energy. The dependence of the correctidfy, on  p,=a towards the external boundapg="b for z,=0 with d/a,
the displacement of the impurity, for different heightsd =2.5 andb/ay=0.4(1), 0.6(2), (0.8) (3). Case: QD regime of high
and radiib is shown in Figs. (@ and Xb), respectively. The QR, weak magnetic field.
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wherej=0,1,2,... and wher&(0) is the binding energy of
the impurity positioned at the midplang=0. From Eq.
(6.1 it follows that the shift of the impurity from the point
Zo=0 leads to a decrease with respect to the binding energy.
The less the external radibsof the QR p<<d), the greater
is the shift of the binding energy caused by the displacement
zy. The foregoing is valid for the binding energy of the
quasi-odd states.

The dependence of the binding energy of the quasi-even
states on the radial positiop, can be derived from Egs.
(2.10 and(3.35:

a mZo(2j +1)
Eo(Amn) =Ep(0)+ 8NRy( EO) Amn cos’-oT,

(6.2
whereA , (po) is defined by Eq(3.17) with A, (b)=0. It

is clear that the binding energy decreases if the radial ghift
of the impurity center tends towards the external boundary
po=Db. A decrease of the binding energy with increasing the
radial sizes of the structure and with a shifting the impurity
center from the symmetry axis is typical for systems of both
the cylindrical and rectangufircross sections. The shift of
the binding energy associated with the parameigyy
reaches a maximum for the impurity center positioned at the
planezy,=0 and subsequently decreases with increasing dis-
placement from this plane. For a high QR the corrections to
the binding energy induced by the radiaglgf and vertical
(zo) displacements can be chosen such that they cancel each
other: i.e., in this case there is no resulting change of

e energy for specific shifts from the middle circle
po=(a+b)/2, z;,=0 to the region a<py<(a+b)/2,
—d/2=zy=<+d/2.

It was pointed out in Ref. 2 that the binding eneligy
reaches a maximum a,=0 and for the QD regime ai,

FIG. 2. Impurity binding energy contour plots as function of the
impurity position (pg,2y) for the parameters d{a,=2.5,b/a,
:OG, Eb:5'41NRy) (1), (d/ao=3.0, b/a0:08, Eb:4'57NRy)

(2); (d/ag=2.0,b/ay,=0.4; E,=6.9Ng,) (3). Case: QD regime of
high QR, weak magnetic field.

higher(d increaselsor the narrowekb decreaseshe QR is,
the less is the effect caused by the shiftof the impurity.
The radial shift of the impurity center, from the internal
surfacep = a towards the external surfage=b produces the
same effect as that induced by the displacenzgritom the
midplanez=0. If the parametep, increases, then the bind-
ing energy monotonically decreases because of a small radi
electron density- |R, n(p)|% EQ.(3.7), close to the external
surfacep=b. The wider QR(b increasesis the less is the
effect associated with the radial displacement The depen-
dence of the correctioA E}, on the shiftp, for different radii

b of the QR is depicted in Fig. (&). =a. This is completely in line with our resulfsee Figs.

It follows from the above that the corrections to the bind-
ing energy induced by the displacements from the middle!@> 1b), and 1c)] and Egs.(2.9), (3.23, and (6.1]. The

. = 7 . dependences of the binding eneigy on the radial py) and
circle po=(a+b)/2, z,=0 to the regiora<po=(a-+b)/2, longitudinal (zo) displacements and the shape of Eyecon-
—di2=zo=+di2 can be balanced. The binding energy €O tour plots (Fig. 4, below qualitatively coincide with those
tour plots determined by the conditiors,(pg,2y) = const P

are presented in Fig. 2 obtained in Ref. 2.
P 9. 2 Bruno-Alfonso and Latge studied in Ref. 2 the depen-

dence of the maximum of the binding energy ., Of the
ground statean=0 on the internal radiua of the QR. Par-

It follows from Egs. (2.10 and (3.35 that the binding ticularly, they have found that for the QD regime<b) the
energy increases with decrease of the heiijhia, and the ~Maximum binding energ, na, decreases with increasing
radiusb of the QR. These results coincide with those ob-iNtérnal radiusa. This result is explained by E43.17),
tained numerically by Liet al” and Braniset al28 for the ~ Which becomes, fom=0,
impurity located at the center of the QD and at the axis of the
guantum well wirad QWW), respectively, in the presence of a Aro—1— 1
magnetic field. For the small displacementg 21<1 from ONT 232 (o)
the midplanezy=0 we obtain, from Eqgs(2.10 and (3.35),

B. QD regime, weak magnetic field, low QR

a2

b (6.3

It follows from the above that increasing leads to a
2 w2 (2j+1)2 decrease with respect to *=(—W,/Ng,), Eq.(3.26, and
-1+ T a decrease of the binding enefgy ax given by Eq.(2.9) for
the high QR or by Eq(6.2) for the low QR with E,=
—AW}N'”‘) . In order to explain the dependence of the energy
Ep max ON the radiusa for the QWW regime obtained in Ref.

ap)\ (229
Eb(zo):Eb(o)"—ZNRy(E)(T

wh(2j+1)

x d

C_Am’N"_In

, (6.1
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2, Eq.(2.2) should be solved in the next-order approximation 0.0
with respect to the finite widtlé of the QR.

Although the confinement caused by the internal surface
p=a in case of the QD regime as well as weak magnetic and
electric fields has minor effects on the binding energy, it
influences the total enerdy[see Eq(2.8)]. It follows, from -05 -
Eq. (3.1) that the magnetic field leads to paramagnetic
(~mag?) and diamagnetic, Eq3.8), shifts of the energy
levels. They are shifted by an amoukE? [see Eqs(3.5
and (3.6)] by the confinement, associated with the internal
surface of the QR. -1.0r

It is clear from Eq.(3.9) that the energy shifAE in-
duced by the electric field of the charged wire depends on the
ratio of the radii of the QR. With increasing ratlwa the
shift |AE*| increases. Note that, in principle, the electric
field allows us to influence the binding energy. It dis- 1804 o2 0 02 04
places the maximum of the electron density with respect to 2z/d
the position of the impurity center that leads to a change of
the binding energy. This effect becomes more pronounced ir 0.0
the presence of sufficiently strong electric fields, implying N ®)
the necessity of a numerically exact solution to the problem N
of the electron in the QR subjected to an axially symmetric “
electric field. S

€
o
<

C. QD regime, strong magnetic field \\

The expression for the binding ener@y, possesses the
form (2.9 where W(N'™ s the longitudinal energy of the 2
impurity electron in the presence of a strong magnetic field 10}
calculated in Sec. IV. If the impurity center is shifted towards
the external surfacey=b or displaces from the midplane 1
z,=0, the binding energy decreases. If the magnetic field
strengthB increases, the binding energy increases also. This
coincides with the results obtained by the variational proce- _;5 . ‘ ‘
dure for the impurities in the QW’$Ref. 17 and QWW's 0 05 :/b 15 2
(Ref. 18. The dependences of the correction to the binding P
energyAE, on the displacemert, for different heightsd FIG. 3. CorrectionAE,/Ng, to the impurity binding energy
>a, are qualitatively the same as those depicted in Fig. 1 (Ng, is the impurity Rydberg constanas a function of(a) the
The corrections to the binding energyE, as functions of longitudinal displacemert, of the impurity from the midpoint of
the shiftz, and radial displacemenpt, for different magnetic ~ the QRz,=0 for pj/2a5=0.5; d/ay=2.0 and 2%ag/a,=0.4 (1),
field strengthsB are shown in Figs. (8 and 3b) respec- 0.6(2), 0.8(3); (b) the radial displacement of the impuripy from
tively. The contour plots of the binding energy determined bythe internal boundary,=a towards the external boundapy=b
the conditionEy(py,zo) = const are given in Fig. 4. for =0 d/ay=2.5 and 2”ag /a;=0.4(1), 0.6(2), 0.8(3). Case:

As expected, the radial confinement as well as a weaD regime of high QR, strong magnetic field.
electric field has minor effects on the binding eneigy.

However, the total energly in Eq. (2.8) depends on both the

radii of the QR and the linear electrical densiy If the  solution to the problem of the electron in the QR in the
internal (externa) radiusa (b) decreasefincreasef the cor-  presence of magnetic and crossed radially directed electric
rections to the energh E? in Eq. (4.5 [AE® in Eq. (4.6)] fields is desirable.

decrease and vice versa. It follows from EHd.8) that a
decrease of the internal radiasleads to an increase of the
energy shift|E*| induced by the electric field. For a nega-
tively charged wire X<0) and for the special castE? The binding energ¥,, is given by Eq(2.9) whereW
+AEP—|EN=0 the energy shifts associated with the con-is the longitudinal energy of the impurity electron in the thin
finement and the electric field cancel. If the electric field(d<a,b) QR calculated in Sec. V A. If the impurity center is
effects become equally important as the magnetic field efshifted from the midplanezg=0) of the QR, the binding
fects, it is natural that the binding energy will show anenergy decreases. The binding energy increases for a de-
equally strong dependence on both field strengths. In order torease of the radiud of the QR. For the high QR, the
study the corresponding dependencies a numerically exasmaller the radiud, the less is the effect induced by the

AE/Ry
I

D. QWW regime, QR of small radius
(N,m)
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FIG. 5. CorrectionAE,/Ng, to the impurity binding energy
(Ngy is the impurity Rydberg constaninduced by the longitudinal
displacement of the impuritg, from the midpoint of the QR for
b/ay=3, 4, 5. Case: QWW regime of low QR of large radius.

FIG. 4. Impurity binding energy contour plots as a function of
the impurity position pg,zg) for the parameters d{a,
=2.0, 2%ag/ay=0.8; E,=4.90Ng,) (1); (d/ag=2.5, 2"%ag/a,
=0.6; E,= 4.8WMNg,) (2); (d/ag=3.5 2ag/ay=0.3; E,
=5.5Mg,) (3). Case: QD regime of high QR, strong magnetic
field.

the influence of the impurities on the Aharonov-Bohm effect
can be described by a modified trial function. From our in-
displacement,. The dependence of the correctiaiE, on  Vestigation it is clear that the reason for the missing effect of
the displacement, for different heightsd are qualitatively ~an impurity in the QWW regime under the conditiok< ag
the same as those shown in Figa)l Also, the shiftsAE, as is that the confinement dominates the influence of the mag-
a function ofz, for different radiib look qualitatively similar ~ netic field on the longitudinal states. Therefore, the energy
to those depicted in Fig.(h). WM is unaffected by the magnetic field. As the magnetic
field strengthB and the widths of the QR increase, the effect
) ) of the impurities on the Aharonov-Bohm oscillations be-
E. QWW regime, QR of large radius comes more pronounced. In this case the dependence of the

For a high QR @>a,) the binding energ\E, is deter- lateral energyE, \ ,, on the magnetic field strength is con-
mined by Eq.(2.9) where the energy?v™™'™ for the ground tained in higher-order terms in the expansion & 0.
longitudinal state possesses the faBrl2. If the radiusb of Barticevicet al® calculated the lateral enerdy, , of the
the QR increases, the binding energy decreases. For a loglectron in the QR of widttd=50 A, 100 A as a function of
QR (d<ay) the binding energyE, of the ground statgsee  the mean radiup of the QR and a strength of the magnetic
Eg. (2.10] coincides apart from the sign with the correction field up to B=16 T. They reported that foB=0 andm
to the size-quantized energyW, in Eq. (5.14). With in- =0 and in the regiorp> § the lateral energy does not de-
creasing radiud of the QR the binding energy decreases.pend on the radiup and obeys the dependenEe,~ 1/5°.

The binding energy increases for a decreasing heiglithe  Also, it was found that for magnetic quantum numbars
QR. If the impurity center moves from the midplang, ( #0 the lateral energg, ,, increases with increasir|gl and
=0) towards the bottomzg=—d/2) or top (zo=+d/2) of  rapidly decreases with increase of the ragiugorB+ 0 the
the QR, then the binding energy decreatee Fig. 5. degeneracy of the states with the positiveng) and nega-

The QWW regime is favorable to demonstrate the aptive (—m) quantum numbers is lifted and the state with
proximately periodic oscillations of the ground leM&l Eq.  negativem<0 becomes the ground state. The correction to
(2.9, as a function of the fluxb with period ®, that is a the lateral energy of the state=0 induced by the magnetic
manifestation of the magnetostatic Aharonov-Bohm effectfield shows the dependendé | ,~B?2. All listed results ob-
The total energyE in Eqg. (2.9 is the oscillating lateral level tained numerically in Ref. 6 are in complete accordance with
E, nm in Eq. (5.3 shifted towards lower energies by the those resulting from the analytical expression for the lateral
amountW™™_ The impurity potentiaVy , in Eq. (5.5 and  energyE, y , in Eqg. (5.3.
consequently the binding enerds, do not depend on the In order to estimate the values to be expected in an ex-
magnetic field strengtB. Thus in the case being considered periment we take the parameters for the GaAs material
here the impurities do not effect the dependence of the tota+0.06 ,, £=12.5, a,=98.7 A, and Ngy=5.83 meV.
energy on the magnetic field and do not change the persisteAiso, we take the realistic sizes of the QR'’s typically used in
current. Following Ref. 2 in which the above circumstancethe theoretical papers and prepared in experinferitgor
was revealed first in the framework of a variational approachthe QD regime of the QR of radda=50 A, b=500 A sub-
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jected to a weak magnetic field the blueshiEF,, Eq.  bitrarily located in a QR in the presence of crossed homoge-
(3.5), induced by the nonzero internal radiascan be bal- neous magnetic and radially directed electric fields. The
anced by the redshifiEy ;, Eq.(3.9), produced by the elec- QWW and QD regimes and weak and strong magnetic fields
tric field of the effective linear charge densitx= as well as low and high QR'’s are under consideration. The
—0.7 pCnL. This density corresponds to a linear electrondependences of the total and binding energies of the impurity
density n,=0.43x10° cm!. For the same regime and a electron on the strengths of the external fields, the parameters
strong magnetic field=5.4 T the total blueshift of the Of the QR, and the position of the impurity center within the
ground Landau levelN=m=0) caused by the nonzero ra- QR are derived explicitly. It is shown that if the QR confine-
dius a=50 A, Eq. (4.5, and finite radiuso=275A, Eq. ment and/or the magnetic field strength increase, the binding
(4.6), is AE2 ;+ AED ;=9.4 meV. This shift is balanced by €N€rgy also increases. The binding energy reaches a maxi-
the effective electric field corresponding to a linear chargdum for the impurity center positioned at the midplane of
densityh=—3.2 pCm* (n,=2.0x1C° cm™1). For a low the QR. For the QD regime the binding energy decreases for
QR of heightd=40 A andeof radiia~b=300 A (Qww 2 shift of the impurity from the symmetry axis towards the
regime the correction to the binding energyE,(z,)= outer part of the ring. It is found that the effects of the con-
— AW,, Eq.(5.14), associated with the displacerr:)enot of the finement and the magnetic field can be energetically canceled
impuri%)’/ by'zo.=15; A is AE,= —1.45 meV and can there- by those caused through the axially symmetric electric field.
fore be detected experimentally. Note that the lateral energWe demonstrate_ th_at fqr arelatively narrow QR the impurity
E, 00, EQ. (5.3, of the electron in the GaAs QR of width nfluences only insignificantly the oscillations of the ground
10,0y . . ’

5=50 A and radiub= 100 A in the absence of the external electronic level as a function of the magnetic fiégfdagne-
fields is E, o =222.5 meV, ie., very close to the value tostatic Aharonov-Bohm effectEstimates of the linear elec-
EL00=210err)i(<)aV calculated in Ref. 6. An experimental study ™7 densities needed to bring in balance the blue energy
of QR’S requires substantial efforts. In particular, the ringShlfts caused by the ring confinement and magnetic fields

: : : ; and changes of the binding energy induced by the displace-
topology is hardly provided by the QD regime of the QR’s of ) .
small radif less than the impurity radiusee Sec. I Also, ment of the impurity are made for the parameters of a GaAs

the application of a radially directed electric field to theseQR' In view of thg Increasing Interest on optoelectroplc and
transport properties of nanostructured systems subjected to

QR’s calls for further experimental effort. Nevertheless, we ' : .
believe that recent advances in the fabrication of semicon?Xtemal fields the present analytical approach can be consid-

ductor nanostructures and corresponding experimental tecﬁ-red as a basis for the further _understan_dlng of the physms of
niques for their investigation provide the basis for studies ofSUCh systems as well as precise numerical calculations.

the topological effects for the different regimes of the QR’s
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