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Impurity center in a semiconductor quantum ring in the presence of crossed magnetic
and electric fields

B. S. Monozon* and P. Schmelcher
Theoretische Chemie, Institut fu¨r Physikalische Chemie der Universita¨t Heidelberg, INF 229, 69120 Heidelberg, Germany

~Received 30 July 2002; published 24 January 2003!

An analytical approach to the problem of an impurity electron positioned in a quantum ring~QR! in the
presence of crossed axially directed homogeneous magnetic and radially directed electric fields is developed.
The quantum well wire and quantum disk regimes of the QR and weak and strong magnetic fields as well as
low and high QR’s are considered. The analytical dependences of the total and binding energies of the impurity
electron on the strengths of the external fields, the radii, and height of the QR and the position of the impurity
center within the QR are obtained. It is shown that if the QR confinement and/or magnetic field increase, the
binding energy also increases. The binding energy reaches a maximum for the impurity center positioned at the
midplane perpendicular to the symmetry axis of the QR. For the quantum disk regime the binding energy
decreases while shifting the impurity from the internal surface towards the external one. The effects due to the
confinement and magnetic field can be balanced by those produced by a radially directed electric field. For a
relatively narrow QR the impurity influences the oscillations of the ground electron energy as a function of the
magnetic field only marginally~magnetostatic Aharonov-Bohm effect!. Estimates of the linear electron densi-
ties needed to bring in balance the blue energy shifts caused by the ring confinement and magnetic fields and
the changes of the binding energy induced by the displacement of the impurity are made for parameters of a
GaAs QR.

DOI: 10.1103/PhysRevB.67.045203 PACS number~s!: 73.21.2b, 78.20.Bh, 73.20.Hb
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I. INTRODUCTION

Electronic properties of low-dimensional semiconduc
heterostructures such as quantum wells, superlattices, q
tum wires, and quantum dots have become a very active
of research with respect to both theory and experiment.
vances with respect to growth as well as high-resolut
electron-beam lithography techniques allow the fabricat
of novel confined structures called quantum rings~QR’s!.
This system is modeled by a cylindrical quantum dot co
taining an internal axially symmetric cavity. Similar to th
properties common for the above-listed confined structu
the QR’s possess unique features. Being subjected to an
ternal magnetic field, QR’s have been shown to bear per
tent currents associated with the magnetostatic interfere
Aharonov-Bohm effect: oscillations of the electron ener
as a function of the magnetic flux are observed.1 The
Aharonov-Bohm effect and persistent current become p
sible due to the ring topology.

First, persistent currents were studied in metallic a
semiconductor mesoscopic rings in which the electrons m
diffusively ~noncoherently! throughout the ring. Reference
to a selection of theoretical and experimental results may
found in recent papers by Bruno-Alfonso and Latge,2 Song
and Ulloa,3 and Lavenere-Wanderlayet al.4 However, recent
progress in the fabrication of the self-assembled ringli
shaped nanostructures allowed Lorkeet al.5 to observe phase
coherence effects of the electrons in nanoscopic QR’s s
jected to an external magnetic field.

Investigation of electronic states in nanoscopic QR’s
the presence of external fields is currently of major intere
The energy spectrum and optical absorption properties
QR’s subjected to magnetic fields have been calculated
0163-1829/2003/67~4!/045203~14!/$20.00 67 0452
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merically by Barticevicet al.6 neglecting excitonic and im-
purity effects. Llorenset al.7 performed numerical calcula
tions of electronic states in QR’s in the presence of an
plane electric field. The energy levels and oscillator streng
were found as functions of the ratio of the internal and e
ternal radii of the QR and electric field strength. Barticev
Fuster, and Pacheco8 studied the effect of an in-plane electr
field on the electronic energies and optical absorption pr
erties in the QR. Effects of the eccentricity and an in-pla
electric field on the electronic and optical properties of ell
tical QR’s were under consideration in Ref. 4. Magar
et al.9 calculated the persistent current in elliptical QR’s.

It is well known that the electronic, optical, and kinet
properties of low-dimensional structures are strongly
fected by impurities and/or excitons. These effects beco
more pronounced in the presence of an external magn
field. The reason for this is that the confinement and m
netic field both increase the binding energy of the impur
electrons and excitons~see, for example, Bruno-Alfonso an
Latge2 and references therein!. The study of magnetoexciton
in QR’s was originated by Chaplic10 and continued in Refs
11 and 12. Using a variational method, Bruno-Alfonso a
Latge2 comprehensively studied shallow donor states in Q
in the presence of a weak and moderate magnetic field u
10 T. The dependences of the binding energy of the gro
state on the position of the impurity center within the QR
the radii of the QR and on the strength of the magnetic fi
have been obtained.

The majority of the theoretical papers on the problem
the impurity electron in a QR exposed to external fields
based on numerical studies that rely on a variational meth
Undoubtedly, numerical methods provide highly accurate
sults especially needed for a comparison with experime
However, a desirable complementary approach is to perf
©2003 The American Physical Society03-1
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analytical investigations on the above systems, which will
pursued in the present work. This allows us in particular
obtain in closed form the evolution of the impurity states
a function of the parameters of the QR and external fi
strengths, which is of major interest. The impact of the
pology of the ring on the physical properties remains v
transparent throughout an analytical study. The aim of
present paper is an analytical study of impurity effects p
vided by the ring topology and the external fields.

The paper is organized as follows. In Sec. II the gene
analytical approach is developed and the basic equations
derived. QR’s of extremely different radii~quantum disk re-
gime! in the presence of weak and strong magnetic fields
considered in Secs. III and IV, respectively. QR’s with co
parable radii~quantum well wire regime! are studied in Sec
V. Section VI contains a discussion of our results. Sect
VII provides the conclusions.

II. GENERAL APPROACH

We consider a QR formed by the revolution of a rectan
around thez axis. The plane of the rectangle is parallel to t
z axis. The QR is bounded by infinite barriers at the plan
z56d/2 and cylindrical surfaces of internal radiusr5a and
external radiusr5b. The chosen model corresponds to ha
wall confinement potential. An alternative parabolic rin
confinement potential determined by the radius of the rinr̄
and by the effective frequencyV was proposed by
Chakraborty and Pietila¨inen13 and then very effectively ap
plied to study of QR’s.3,6,11,12 For a comparison of severa
potential models for the ring confinement see Ref. 6. T
position of the impurity centerr0 is given by the cylindrical
coordinatesa<r0<b, 2d/2<z0<1d/2, and w050. The
uniform magnetic fieldB is assumed to be parallel to thez
axis. A radially directed electric field is modeled by a field
the charged wire coinciding with thez axis and possessing
linear effective charge densityl. The other length scales re
evant to our study are the Bohr radiusa054p«0«\2/me2

and magnetic lengthaB5(\/eB)1/2, wherem is the effective
electron mass and« is the dielectric constant. We take th
conduction band to be parabolic, nondegenerate, and s
rated from the valence band by a wide energy gap.

In the effective mass approximation the equation desc
ing the spinless impurity electron positioned at the po
r (r,w,z) subject to a uniform magnetic field and the axia
symmetric electric field produced by the charged wire h
the form

H 2
\2

2m F1

r

]

r S r
]

r D1
1

r2

]2

]w2 1
]2

]z2 1
i

aB
2

]

]w
2

r2

4aB
4 G

1
el

2p««0
ln

r

a
2

e2

4p««0ur2r0uJ C~r,w,z!

5EC~r,w,z!. ~2.1!

By solving this equation subject to the boundary con
tions
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C~r,w,z!50 for r5a, r5b, z56d/2, ~2.2!

the total energyE and the wave functionC can be found in
principle. In the following the effect of the lateral~within the
x-y plane! confinement or magnetic field on the electron
taken to be much stronger than that of the Coulomb field
the impurity center. In Sec. III the strong lateral size confin
ment dominates the interaction due to the impurity poten
and magnetic field. The strong lateral size confinemen
provided by the small external radius of the QR, taken to
much less than the Bohr impurity radius and magne
length. In Sec. IV the magnetic field confinement exceeds
lateral size confinement and effect of the impurity Coulom
field. The magnetic length is less than the Bohr impur
radius and the external radius of the QR. We consider in S
V the QR with the difference of the external and intern
radii to be much less than the radii of the QR, the Bo
impurity radius, and the magnetic length. In this case
narrow QR causes a strong lateral size confinement.
these cases approximate solutions to Eq.~2.1! are given by
the adiabatic separation of the~r, w! and z degrees of
freedom,

C~r,w,z!5Q'N,m~r,w! f ~N,m!~z!, ~2.3!

where the function

Q'N,m~r,w!5
exp~ imw!

A2p
RN,m~r! ~2.4!

describes the lateral motion of the electron of energyE'N,m
determined by the confinement and external fields and wh
RN,m(r) is the function of the Nth radial state (N
51,2,3,...) corresponding to the angular quantum num
m50, 61, 62,... . The functionf (N,m)(z) corresponds to the
longitudinal motion parallel to thez axis and satisfies the
equation

2
\2

2m

d2

dz2 f ~N,m!~z!1VN,m~z! f ~N,m!~z!5W~N,m! f ~N,m!~z!,

~2.5!

with the boundary conditions

f ~N,m!S 6
d

2D50 ~2.6!

and with

VN,m~z!52
e2

4p«0«

3E dr

2p

uRN,m~r!u2

@r222rr0 cosw1r0
21~z2z0!2#1/2.

~2.7!

The total energyE then becomes

E5E'N,m1W~N,m!. ~2.8!
3-2
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The binding energyEb of the impurity in the QR is de-
fined as usual by the difference between the energy of
free electron in the QR (E'N,m1\2p2l 2/2md2, l 51,2,...)
and the energyE, Eq. ~2.8!, of the impurity electron. We
have

Eb5
\2p2l 2

2md2 2W~N,m!. ~2.9!

For a low QR (d,a0) the longitudinal energy become
W(N,m)5\2p2l 2/2md21DW(N,m), where DW(N,m) is the
correction to the size-quantized energy caused by the im
rity potential. In this case Eq.~2.9! gives

Eb52DW~N,m!. ~2.10!

Below we consider the regimes determined by the differ
relationships between the radii of the QR, the Bohr impur
radius, the magnetic length, and the height of the QR,d. The
wave functionsRN,m(r) describe the lateral motion of th
electron in the presence of the magnetic fieldB ~Sec. IV!, in
the quantum disk of radiusb ~Sec. III! or in the two-
dimensional quantum well of widthb2a ~Sec. V! depending
on the different regimes. Using the above wave functions,
calculate the potential energiesVN,m(z), Eq. ~2.7!, the ener-
gies of the longitudinal motionW(N,m) in Eq. ~2.5!, and then
the binding energiesEb , Eqs.~2.9! and ~2.10!, for the high
(d.a0) and low (d,a0) QR.

III. QUANTUM DISK REGIME:
WEAK ELECTRIC AND MAGNETIC FIELDS

We consider a QR having an internal radiusa much less
than the external radiusb @quantum disk~QD! regime#,
which in turn is much less than the impurity Bohr radiusa0 .
Under these conditionsa!b!a0 and for weak magnetic
(b!aB) as well as electric fields the confinement caused
the external radiusb provides the dominant contribution t
the lateral energyE'N,m in Eq. ~2.8!:

E'N,m5E~0!1DEa1
\2

2maB
2 m1DEB1DEl. ~3.1!

E(0) is the energy of the electron in the QD of radiusb, and
DEa, DEB, andDEl are energetical corrections due to t
nonzero internal radiusa, the weak magnetic fieldB ~dia-
magnetism!, and the weak electric field, respectively.

The general form of the radial wave functionRN,m(r) is
given by2,6

RN,m~r!5AJm~kr!1BYm~kr!, E~0!1DE~a!5
\2k2

2m
,

~3.2!

whereJm(x) and Ym(x) are the Bessel and Neuman fun
tions, respectively, andA andB are constants. The bounda
conditions ~2.2!, i.e., RN,m(a)5RN,m(b)50 for the wave
functionRN,m(r), Eq. ~3.2!, lead to a set of two linear alge
braic equations. This yields a transcendental equation for
parameterk:
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Jm~ka!Ym~kb!2Jm~kb!Ym~ka!50. ~3.3!

In the leading order approximation (a50) we obtain,
from Eq. ~3.3!,

Em,N
~0! 5

\2am,N
2

2mb2 , ~3.4!

wheream,N (N51,2,3,...) are roots of the Bessel functio
@Jm(am,N)50#, i.e., a0,152.40, a0,255.52, and a1,1
53.83,... .14

It follows from Eq. ~3.3! that, under the conditiona!b
and form50,

DEm,N
a 5E0,N

~0!D0,NF ln
a

b
1 ln

a0,N

2
1CG21

, ~3.5!

where

D0,N5
pY0~a0,N!

a0,NJ08~a0,N!
.

C is the Euler constant~'0.577!. For mÞ0 (umu51,2,3,...)
the corrections to the energy become

DEm,N
a 5Em,N

~0! Dm,NS a

bD 2

, ~3.6!

where

Dm,N52
p

umu! ~ umu21!! S am,N

2 D 2umu21 Ym~am,N!

Jm8 ~am,N!
.

The corrections to the energy,DEB and DEl, are deter-
mined by the matrix elements of the diamagnetic (;aB

24)
and logarithmic@; ln(r/a)# terms on the left-hand side of Eq
~2.1! calculated with respect to the normalized wave fun
tions

R'N,m~r!5
21/2

bJumu11~am,N!
JmS am,N

r

b D . ~3.7!

We obtain

DEm,N
B 5

\2b2@2~m221!1am,N
2 #

24maB
4am,N

2 ~3.8!

and

DEm,N
l 5

el

2p«0« F ln
b

a
21

1
umu~12J0

2~am,N!22(k51
umu21Jk

2~am,N!!

am,N
2 Jumu11

2 ~am,N! G .
~3.9!

The expressions~3.5!, ~3.6!, and~3.8! are valid under the
conditions a!b!aB , a0 . Equation ~3.9! implies that
(el/2p«0«)ln(b/a)!\2p2/2mb2.
3-3
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A. High QR „dÌa0…

In order to solve Eq.~2.5! describing the longitudina
states, it is convenient to introduce the notation

u5
2~z2z0!

a0n
, g25

4

a0
2n2 ~r222rr0 cosw1r0

2!,

Wn
~N,m!52

NRy

n2 ,

where NRy5\2/2ma0
2 is the impurity Rydberg constan

Equation~2.5! then becomes

d2f n
~N,m!~u!

du2 1nAvu~u21g2!21/2u f n
~N,m!~u!2

1

4
f n

~N,m!~u!50,

~3.10!

where Av indicates the average with respect to the w
functions~2.4! and ~3.7!. The quantum numbern labels the
longitudinal states. Due to the coordinate transformation,
boundary condition~2.6! becomes

f ~N,m!~u1,2!50, ~3.11!

whereu1,25(d/a0n)(2z0 /d61).
The analysis of Eq.~3.10! is based upon the Hasegav

Howard method15 more elaborated in Ref. 16. Only an ou
04520
e

e

line of the corresponding analysis will be given below. F
uuu@Avugu;b/a0n the general solution to Eq.~3.10! is

f n
~N,m!~u!5A6Wn,1/2~ uuu!1B6Mn,1/2~ uuu!, ~3.12!

whereWn,1/2 andMn,1/2 are the Whittaker functions.14

In the regionuuu!1, an iteration method is performed b
the double integration of Eq.~3.10! using the trial function

f n,0
~n,m!~u!5c61a6uuu~u21g2!1/2 ln~ uuu1~u21g2!1/2!,

~3.13!

where the constantsA6 , B6 , C6 , anda6 correspond to the
regionsu.0 andu,0, respectively. The continuity condi
tions applied to the functionf n,0

(N,m)(u), Eq. ~3.13!, and its
first derivative atu50 give the resultc15c2[c and a1

52a2[a. The results of the integration for the regio
uuu@Avugu and from the standard expansion of the Whittak
functions involved in Eq.~3.12! for uuu!1 ~Ref. 14! are
compared. When terms of the same order are equated a s
four linear algebraic equations is obtained. The total se
six linear algebraic equations for the coefficientsA6 , B6 , c,
and a consists of these equations and two boundary con
tions ~3.11! for the function f n

(N,m) Eq. ~3.12!. This set is
solved by the determinantal procedure, yielding a transc
dental equation for the quantum numbern:
H w1
1

2
@p1j2G12G21A~p2j!21~G12G2!2#J H w1

1

2
@p1j2G12G22A~p2j!21~G12G2!2#J 50. ~3.14!

In the above expression the following notation has been used:

w~n!52C211c~12n!1
1

2n
, ~3.15!

j~n!5 ln
b

a0n
112Dm,N , ~3.16!

Dm,N512
2umu
amN

2

1

2 FJ0
2S amN

r0

b D2J0
2~amN!G1(k51

umu FJk
2S amN

r0

b D2Jk
2~amN!G

Jumu11
2 ~amN!

2
1

2 S r0

b D 2 Jm
2 S amN

r0

b D1Jumu11
2 S amN

r0

b D2Jumu21S amN

r0

b D Jumu11S amN

r0

b D2JumuS amN

r0

b D Jumu12S amN

r0

b D
Jumu11

2 ~amN!
,

~3.17!

p~n!5
2a0

pH r0
21

b2

3

b2~m221!1amN
2 c

amN
2 J E0

b

r dr RN,m
2 ~r!~r1r0!H E~k!F ln

4r0
2

a0
2n2 12 lnS 11

r

r0
D221 ln k8G1~11k82!K~k!J ,

~3.18!

G1,2~n!5
Wn,1/2~n1/2!G~2n!

Mn,1/2~n1,2!
, ~3.19!
3-4
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wheren15u2 , n252u1 , G(x) is the gamma function,c(x)
is the psi function~the logarithmic derivative of the gamm
function!, k54(r/r0)(11r/r0)22, k85(12k2)1/2, and
K(k) andE(k) are the complete elliptic integrals of the fir
and second kinds, respectively. The wave functionsRN,m in
Eq. ~3.18! are defined by expression~3.7!. On solving Eq.
~3.14!, the quantum numbern can be found that determine
the longitudinal energyWn

(N,m)[Wn .
When the impurity center is located at the symme

plane of the QR (z050, n15n2 , G15G2) or at any position
of the quantum well wire~d, n1,2→`, G1,2→0) the longitu-
dinal states possess a definite parity. The levels of even
odd parity correspond to states determined by the second
first curly brackets on the left-hand side of Eq.~3.14!, re-
spectively. However, classification of the energy levelsWn
into two groups can be made for the impurity center in a
plane (z0Þ0, n1Þn2); all states determined by the abov
mentioned second curly brackets are referred to as qu
even ~g! states while those determined by the first cu
brackets are referred to as quasi-odd~u! states. The quasi
even states have quantum numbern given by n5n01dng
wheren050,1,2,..., while the quasi-odd states haven given
by n5n01dnu where n051,2,3,... . The ground level (n0
50) is nondegenerate and hasn,1. The excited states (n0
51,2,3,...) have a doublet structure consisting of quasi-e
and quasi-odd components.

Notice that Eq.~3.14! consists of elementary functions
well-known special functions, and a one-dimensional in
gral determining the functionp(n) containing both elemen
tary and special functions. This equation can be solved
merically for arbitrary values of the height of the QR,d
.a0 , and the impurity positionr0 , z0 for d/22uz0u@b.
However, explicit dependences of the energyWn upon the
above-mentioned parameters can be found for the limi
cases of a high QR (d/a0.1), small displacementsz0 of the
impurity from the symmetry plane of the QR (2z0 /d!1),
small a<r0!b, and a maximum (r0 /b'1) shift r0 of the
impurity from the symmetry axisr50.

For the QR with radiusb'0.4a0 , height d'2a0 , and
impurity positioned close to the midplanez050 and internal
surfacer5a, Eq. ~3.14! gives for the ground longitudina
staten'0.5. Using in Eq.~3.14! the asymptotic expansio
for the Whittaker functions14 for d/a0n@1, we obtain the
condition

S d

a0nD 2n 4 sinh
2z0

a0n

expS d

a0nD22 cosh
2z0

a0n

!1. ~3.20!

The term containing the Whittaker functions under t
square root sign can then be safely neglected. Even tho
the impurity is shifted by a considerable distancez05d/4,
the term on the left-hand side of Eq.~3.20! is about 0.3. The
equation for the quasi-even states then becomes

2C1c~12n!1
1

2n
1 ln

b

a0n
2Dm,N2

1

2
~G11G2!50,

~3.21!
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where

G1,2~z0 ,d!5G~2n!S d

a0nD 2nH expF d

a0n S 17
2z0

d D G21J 21

.

~3.22!

For small displacements 2z0 /a0n!1 the dependence o
the quantum numbern(z0),1 and consequently the energ
W0 of the ground state as a function of the displacemenz0
can be found explicitly from Eq.~3.21! with the result

W0~z0!5W1~0!12uW1~0!uG~12n1!

3S 2z0

a0n1
D 2S d

a0n1
D 2n1

expS 2
d

a0n1
D

n15A2
2W1~0!

NRy
, ~3.23!

whereW1(0),0 is the longitudinal energy of the impurit
positioned at the symmetry planez050 and at any radiir0 .

The effect of the radial displacementr0 is described by
the parameterDm,N , Eq. ~3.17!. For r05b we haveDm,N
50 and with increasingr0Dm,N monotonically increases to
wards the internal boundary. Fora<r0!b we have, from
Eq. ~3.17!,

Dm,N~r0!512
2

amN
2 Jumu11

2 ~amN! H umuF1

2
@12J0

2~amN!#

2 (
k51

umu

Jk
2~amN!G

1
1

~ umu11!! 2 S amNr0

2b D 2~ umu11!J . ~3.24!

For small displacements from the external surfacer05b
for which 4n0Dm,N!1, Eq. ~3.21! leads to approximate ex
pressions for the quantum numbern(Dm,N) and then for the
ground state energyW0 :

W0~D!5W2~0!2uW2~0!u
4n2

112n2
Dm,N ,

n25A2
2W2~0!

NRy
, ~3.25!

whereW2(0) is the longitudinal energy of the impurity po
sitioned at the external radiusr05b and for any planez0 .

In the logarithmic approximationb/a0!1, u ln(b/a0)u@1
the quantum numbern,1 can be calculated explicitly:

1

n
52H 2 ln

b

a0
1Dm,N~r0!1

1

2
@G1~z0!1G2~z0!#J .

~3.26!

It enables us~see Sec. VI! to derive the dependence of th
binding energy on the external radiusb of the QR and the
position (r0 , z0) of the impurity center in a qualitative way
Below, the logarithmic approximation is used only for th
3-5
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qualitative analysis. The numerical calculations, correspo
ing figures, and estimates of the expected experimenta
sults are made for realistic relationships between the par
eters of the problem.

B. Low QR „dËa0…

In order to find the positive longitudinal energiesWs
5NRy /s2 we introduce in Eq.~2.5! the following notation:

t5
2~z2z0!

ia0s
, g̃25

4

a0
2s2 ~r222rr0 cosw1r0

2!,

t1,25
2

ia0s S d

2
7z0D .

In the regionutu@Avug̃u the ansatz for the solution of Eq
~2.5! satisfying the boundary conditionsf s

(N,m)(t1)5 f s
(N,m)

(t2)50 is taken in the form

f s~ t !5A1 ReWis,1/2~ t !1B1 Im Mis,1/2~ t !, i t .0.
~3.27!

For the regioni t ,0 the wave functionf s(t) can be ob-
tained from Eq.~3.27! by replacingA1 by A2 , B1 by B2 ,
and t by 2t. Using for the regionutu!1 the trial function

f s
~0!~ t !5c1atAt22g̃2 ln~ t1At22g̃2! ~3.28!

and then the iteration and matching procedure descr
above in Sec. III A, we arrive at the equation for the quant
numbers:

H w̃1
1

2
@ p̃1 j̃2G̃12G̃21A~ p̃2 j̃ !21~G̃12G̃2!2#J

3H w̃1
1

2
@ p̃1 j̃2G̃12G̃22A~ p̃2 j̃ !21~G̃12G̃2!2#J

50, ~3.29!

where

w̃~s!5
G̃~s!

2i H 1

G~ is! F i
p

2
12C211c~11 is!2

1

2isG
2c.c.J , ~3.30!

1

G̃~s!
5

1

2i
F 1

G~ is!
2

1

G~2 is!
G , ~3.31!

G̃1,2~s!5G̃~s!
ReWis,1/2~t1,2!

Im Mis,1/2~t1,2!
. ~3.32!

The parametersj̃(s) and p̃(s) can be obtained from Eqs
~3.16! and ~3.18!, respectively, by replacingn by s.

We consider the quasi-even states determined by the
ond curly brackets on the left-hand side of Eq.~3.29!. As
before, we assume that the impurity center is shifted not
04520
d-
e-

-

d

c-

o

far from the midplanez050, which allows us to neglect the
Whittaker functions under the square root sign Eq.~3.29!.
Putting s!1 and using the asymptotic expansion for t
Whittaker functions,14 we obtain the equation for the quan
tum numbers:

2sF lnS b

a0sD
2

12~C2Dm,N!G1cotS s lnut1u1
ut1u
2 D

1cotS s lnut2u1
ut2u
2 D50. ~3.33!

This equation can be solved by the method of iteration.
the zeroth approximation (d/a050,s50), we find thats0

21

5(pa0 /d)(2 j 11), j 50,1,2,... . After some tedious calcula
tions it is possible to obtain the expression for the energyWs
in the next-order approximation:

Wj
~N,m!5

\2p2~2 j 11!2

2md2 1DWj
~N,m! , ~3.34!

where

DWj
~N,m!522NRyS a0

d D H 24FC2Dm,N1 ln
pb~2 j 11!

d G
3cos2

~2 j 11!pz0

d

1 lnFp2~2 j 11!2S 12
4z0

2

d2 D G J . ~3.35!

The expression~3.35! is valid under the conditions

d

a0p~2 j 11!
!1,

pb~2 j 11!

d
!1.

The energiesWj
(N,m) , Eq. ~3.34!, are the even size-quantize

energy levels perturbed by the quasi-Coulomb impurity p
tential VN,m(z), Eq. ~2.7!.

The quasi-odd states can be considered in much the s
way as the quasi-even states. Equating the left-hand brac
of Eq. ~3.29! to zero, we obtain, fors!1,

ut1,2u@1,

4s~C211p!1cotS s lnut1u1
ut1u
2 D1cotS s lnut2u1

ut2u
2 D

50, ~3.36!

wherep;a/b@1 is defined by Eq.~3.18!.
In the zeroth-order approximation (b/a050,s!1) we ob-

tain s0
215(2 j pa0 /d), j 51,2,... . The next approximation

implies the explicit dependence of the parameterp, Eq.
~3.18!, on the quantum numbern[s. This dependence is
however, very difficult to obtain. Nevertheless, we conje
ture that in this case the energiesWj

(N,m) are the odd size-
quantized energy levels shifted towards lower energies
the effect of the impurity potentialVN,m(z) in Eq. ~2.7!.
3-6
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IV. QUANTUM DISK REGIME: STRONG MAGNETIC
AND WEAK ELECTRIC FIELDS

Below we consider the QR with extremely different inte
nal a and externalb radii subject to a strong magnetic fieldB
such thata!aB!b,a0 . In this case the effects of the electr
field, impurity center, and confinement are the perturbat
to the energy of the radial motion of the electron in t
presence of the magnetic field~Landau levels!. Employing
the imposed conditions the wave functionC has the form
~2.3! where the functionRN,m(r) describes theNth radial
state of the electron in the presence of the magnetic fi
The longitudinal functionf (N,m)(z), in Eq. ~2.3! obeys Eq.
~2.5! with the boundary conditions~2.6! and with the poten-
tial VN,m(z), Eq. ~2.7!. For the lateral energyE'N,m in Eq.
~2.8! we have

E'N,m5E~0!1DEa1DEb1DEl, ~4.1!

whereE(0) are the Landau levels, andDEa, DEb, andDEl

are the corrections to these levels caused by the confine
at the surfacesr5a, b and the electric field~l!, respectively.

The general form of the radial function is given by2

Rm~r!5expS 2
x

2D ~x! umu/2@AM~2g,umu11,x!

1BU~2g,umu11,x!#, ~4.2!

wherex5r2/2aB
2,

g5
maB

2

\2 S E~0!1DE~a!1DE~b!2
1

2
~ umu1m11! D ,

M (2g,umu11,x) and U(2g,umu11,x) are the confluent
hypergeometric functions,14 andA andB are constants. The
boundary conditionsRm(a)5Rm(b)50 for the wave func-
tion ~4.2! yield a set of two linear algebraic equations th
results in the transcendental equation for the quantum n
ber g:

M ~2g,umu11,x1!U~2g,umu11,x2!

2M ~2g,umu11,x2!U~2g,umu11,x1!50,

~4.3!

wherex15a2/2aB
2 andx25b2/2aB

2.
Using the limiting expressions forx1!1 and asymptotic

expansions forx2@1 for the functionsM and U,14 we find
from Eq. ~4.3! the parameterg and then the unperturbe
Landau levels

Em,N
~0! 5

\2

maB
2 S N1

umu1m11

2 D N50,1,2,... . ~4.4!

The corrections to these levels caused by the nonzero v
of the internal radiusa read

DEm,N
a 5

\2

maB
2 F ~ umu21!!N! umu!

~N1umu!!
x1

2umu2 ln x1

2C1c~11umu!G21

, ~4.5!
04520
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and the correction due to the finite value of the exter
radiusb is

DEm,N
b 5

\2

maB
2

x2
2N1umu11 exp~2x2!

N! ~N1umu!!
. ~4.6!

For m50 the first term in the square brackets on t
right-hand side of Eq.~4.5! is dropped. For arbitrary radiia
andb of the QR and arbitrary strength of the magnetic fie
B, Eq. ~4.3! can be solved numerically.

It follows from Eqs. ~4.2! and ~4.3! that in the zeroth
approximation (x150,x25`) the normalized unperturbe
wave functionRN,m(r) becomes

RN,m~r!5
N!

aB
2~N1umu!!

xumu/2 expS 2
x

2DLN
umu~x!, ~4.7!

whereLN
umu(x) is the associated Laguerre polynomial.14

The energy shiftDEl caused by the electric field is dete
mined by the matrix element of the longitudinal ter
; ln(r/a) on the left-hand side of Eq.~2.1! calculated with
respect to the functions~4.7! with the result

DEm,N
l ~l!5

el

2p«0« F2 ln x11
N!

~N1umu!!
zN,mG , ~4.8!

where

zN,m5
1

2 E0

`

exp~2x!xumu@LN
umu~x!#2 ln x dx. ~4.9!

Equation~4.8! implies thatelu ln x1u/2p«0«!\2/maB
2.

The energy of the longitudinal motionW(N,m) can be ob-
tained by solving Eq.~2.5! in which the potentialVN,m(z),
Eq. ~2.7!, is calculated through the averaging procedure w
respect to the functionsRN,m(r), Eq. ~4.7!.

A. High QR „dÌa0…

Using an approach completely analogous to that in S
III A, we obtain Eq. ~3.14! for the quantum numbern
5@2NRy /Wn#1/2. In this equation the functionsw(n) and
G1,2(n) are defined by Eqs.~3.15! and ~3.19!, respectively.
The functionsj(n) andp(n) read as follows:

j~n!511
1

2 F2 ln
a0

2n2

2aB
2 2C1LN,m~x0!G , ~4.10!

where

LN,m~x0!5C1 ln x01
N!

~N1umu!! Ex0

`

exp~2x!xumu

3@LN
umu~x!#2 ln

x

x0
dx, x05

r0
2

2aB
2 , ~4.11!

and
3-7
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p~n!5
a0

paB
2 F r0

2

2aB
2 12N1umu11G E0

`

r dr RN,m
2 ~r!~r1r0!

3H E~k!F ln
4r0

2

a0
2n2 12 lnS 11

r

r0
D221 ln k8G

1~11k82!K~k!J . ~4.12!

The parametersk andk8 are the same as in Eq.~3.18!.
For the ground Landau stateN5m50 we have

L0,0~x0!5C1 ln x02Ei~2x0!, ~4.13!

where Ei(2x0) is the exponential-integral function.14

As above, the first~second! curly brackets on the left-
hand side of Eq.~3.14! describe the quasi-odd~even! longi-
tudinal states. The ground state (n,1) is nondegenerate, an
the excited states (n'1,2,...) possess a doublet structu
Comparing the above equations for the quantum numb
with those considered in Sec. III, we arrive at the conclus
that the parameter 21/2aB /a0 and the functionLN,m(x0)/2 in
Eq. ~4.11! play here the same role as the parameterb/a0 and
the functionDm,N(r0), respectively, in the case of the Q
regime and weak magnetic field. In principle, the functio
LN,m(x0) andp(n) can be calculated numerically for an a
bitrary value of the parameterx0 . However, explicit depen-
dences of the functions~4.11! and~4.12! on the parameterx0
can be found for weak (x0!1) or sufficiently large (x0
@1,r0 /a0!1) displacements of the impurity from the sym
metry axisr50. Since we focus on the quasi-even grou
staten,1, it is appropriate to give the limiting expression
for the functionLN,m(x0), Eq. ~4.11!:

LNm~x0!55
C12zNm

N!

~N1umu!!
1

~N1umu!!
N! ~ umu11!!

x0
m11,

x0!1,

C1 ln~x0!,

x0@1.
~4.14!

Particularly,L0,0(x0)'x0 for x0!1. For small displace-
ments 2z0 /a0n!1, Eq. ~3.23! for the energyW0(z0) re-
mains valid in the present case. The effect of the radial
placementr0 is described by the functionLN,m(x0) in Eq.
~4.11!, with the special cases~4.13! and~4.14!. This function
and, as a consequence, the energyW0 monotonically in-
crease with increasing shift of the impurity from the intern
surfacer05a to the external surfacer05b.

In order to study qualitatively the dependence of the bi
ing energy on the magnetic field strengthB and the position
of the impurity (r0 ,z0) it is profitable to use the logarithmi
approximationaB /a0!1, u ln(aB /a0)u@1. In this case the ex
pression for the quantum numbern can be obtained from Eq
~3.26! by replacingb by 21/2aB andDm,N by 2LN,m/2. Par-
04520
.
rs
n

s

s-

l

-

ticularly, it becomes clear that the energyW0 decreases with
increasing magnetic field strengthB.

B. Low QR „dËa0…

The methodology to calculate the positive longitudin
energiesWs5NRy /s2 is similar to that presented in Sec
III B. The equation for the quantum numbers has the form
~3.29! where the functionsw̃(s) and G̃1,2(s) are defined by
Eqs.~3.30! and ~3.32!, respectively. The functionsj̃(s) and
p̃(s) are obtained from Eqs.~4.10! and ~4.12!, respectively,
by replacingn by s. The energies of the quasi-even stat
Wj

(N,m) are given by Eq.~3.34! where

DWj
~N,m!522NRyS a0

d D H 24F1

2
~C1LN,m!

1 ln
p&aB~2 j 11!

d Gcos2
pz0~2 j 11!

d

1 lnFp2~2 j 11!2S 12
4z0

2

d2 D G J ~4.15!

for j 50,1,2,... . The above expression is valid under the c
ditions

d

a0p~2 j 11!
!1,

paB~2 j 11!

d
!1.

The energiesWj
(N,m) , Eqs.~3.34! and~4.15!, are the even

size-quantized energy levels perturbed by the quasi-Coulo
impurity potentialVN,m(z), Eq. ~2.7!. This conclusion holds
equally for the quasi-odd states.

V. QUANTUM WELL WIRE REGIME

We consider the QR of widthd5b2a to be much less
than the radii of the QR,a and b, and the impurity Bohr
radius a0 (d!a,b,a0). Under these conditions and bot
relatively weak magnetic and electric fields the lateral co
finement caused by the boundaries of the QR provides
main contribution to the energy. The solution to Eq.~2.1!
possesses the form~2.3! where the normalized wave functio

RN,m~r!5S 2

d D 1/2

sin
Np

d
~r2a!, N51,2,3,..., ~5.1!

describes theNth radial state in the two-dimensional~2D!
quantum well of widthd, corresponding to the angular qua
tum numbersm50,61,62,... and the energy

EN
~0!5

\2p2N2

2md2 , N51,2,3,... . ~5.2!

The longitudinal wave functionsf (N,m)(z) satisfy the
boundary conditions~2.6! and obey Eq.~2.5! with the poten-
tial Vj

(N,m) , Eq. ~2.7!, determined by the wave function
RN,m(r) in Eq. ~5.1!.
3-8
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It follows from Eq. ~2.1! that for the narrow QR (d
!a,b) the lateral componentE'N,m of the total energyE in
Eq. ~2.8! can be written in the form

E'N,m5EN
~0!1

\2

2mb2 F S m1
F

F0
D 2

2
1

4G1DEl, ~5.3!

whereF5Bpb2 is the magnetic flux andF052p\/e is the
quantum unit. The dependence of the lateral energyE'N,m ,
Eq. ~5.3!, on the magnetic field has been calculated in
zeroth approximationd50. The energy shiftDEl caused by
the electric field is determined by the matrix element of
logarithmic term ln(r/a)'(r2a)/a on the left-hand side o
Eq. ~2.1! calculated with respect to the wave functions~5.1!.
As a result, we obtain

DEm,N
l 5

el

4p«0«b
d. ~5.4!

Before proceeding with the longitudinal states note t
for the approximationd50 the potentialVN,m(z), Eq. ~2.7!,
in Eq. ~2.5! for the narrow QR (d!a,b) becomes

VN,m~z!522NRYAv
a0

F4b2 sin2
w

2
1~z2z0!2G1/2, ~5.5!

where Av is the average with respect to the functions~2.4!
and ~5.1!.

A. High QR „dÌa0… of small radius „a,b™a0…

In order to calculate the energy levelsWn52NRy /n2 we
follow the procedure developed in Sec. III A to derive t
transcendental equation~3.14! for the quantum numbern, in
which the functionsw(n) andG1,2(n) are defined according
to Eqs. ~3.15! and ~3.19!, respectively. The functionsj(n)
andp(n) are given by

j~n!5 ln
b

a0n
11, ~5.6!

p~n!5
2a0

pb S ln
8b

a0n
21D . ~5.7!

As above, the first~second! curly brackets on the left-
hand side of Eq.~3.14! describe the quasi-odd~even! longi-
tudinal states. The ground state (n,1) is nondegenerate; th
excited states (n'1,2,3,...) are doublets.

The equation for the quantum numbersn of the quasi-
even states in explicit form can be derived from Eq.~3.21!
by setting Dm,N50. For small displacements 2z0 /a0n!1
the dependence of the energy of the ground stateW0 on the
position of the impurityz0 coincides completely with tha
given by Eq. ~3.23!. In the logarithmic approximation
(b/a0!1, u ln(b/a0)u@1) the expression for the quantum num
bern,1 can be obtained from Eq.~3.26! at Dm,N50. Obvi-
ously, the energyW0 decreases with decreasing radiusb of
the QR.
04520
e

e

t

B. Low QR „dËa0… of small radius „a,b™a0…

We now apply the strategy developed in Sec. III 2 to c
culate the positive longitudinal energiesWs5NRy /s2, Eq.
~3.29!, for the quantum numbers. In this equation the func-
tions w̃(s) and G̃1,2(s) are provided by Eqs.~3.30! and
~3.32!, respectively, while the functionsj̃(s) and p̃(s) are
given by Eqs.~5.6! and~5.7!, respectively, by replacingn by
s. The dependence of the energyWj

(N,m) of the quasi-even
states on the displacementz0 possesses the form~3.34! and
~3.35! taken forDm,N50. The energiesWj

(N,m) of the quasi-
even ~-odd! states are the even~odd! size-quantized levels
perturbed by the quasi-Coulomb impurity potentialVN,m in
Eq. ~5.5!.

C. High QR „dÌa0… of large radius „a,bša0…

In this case it is convenient to present the poten
VN,m(z), Eq. ~5.5!, in closed form

VN,m~z!522NRyS a0

b D 1

p F11S z2z0

2b D 2G21/2

3KXF11S z2z0

2b D 2G21/2C, ~5.8!

whereK(x) is the complete elliptic integral.14 This potential
possesses a simple form in the limiting cases of smalluz
2z0u!2b) and large (uz2z0u@2b) displacements of the
electron from the impurity center:

VN,m~z!522NRyS a0

b D 1

p F2 ln 22 ln
uz2z0u

2b G , uz2z0u
2b

!1,

~5.9!

VN,m~z!522NRy

a0

uz2z0u
,

uz2z0u
2b

@1. ~5.10!

Below, we restrict ourselves to the quasiclassic calcu
tion of the ground levelW0 using the WKB expression

S 2m

\2 D 1/2E
z1

z2
@W02VN,m~z!#1/2dz5p, ~5.11!

wherez1,2 are the smaller and greater roots, respectively
the expression under the square root sign. The ground s
implies thatuz1,22z0u,2b. It allows to substitute Eq.~5.9!
for the potentialVN,m(z) into the expression~5.11! with the
result

W05NRyS a0

b D 1

p
ln

p2a0

27b
. ~5.12!

It is clear that decreasing the radiusb of the QR leads to
a decreasing energyW0 .

D. Low QR „dËa… of large radius „a,bša0…

In this case the longitudinal energyWj
(N,m) of the quasi-

even states is given by Eq.~3.34! where the correction to the
ground levelDW0 is determined by the matrix element of th
3-9



e

e,

ht
at

Q

e
t

t

B. S. MONOZON AND P. SCHMELCHER PHYSICAL REVIEW B67, 045203 ~2003!
potentialVN,m(z), Eq. ~5.9!, calculated with respect to th
wave function of the ground statef (0)(z) of the electron in
the quantum well of widthd:

f ~0!~z!5S 2

dD 1/2

cos
pz

d
. ~5.13!

The shiftDW0 can be found in analytical form

DW05
1

p
NRyS a0

b D F ln
a0

2

24b2 1 ln
d2

24a0
2 1g~z0!G ,

~5.14!

where

g~z0!5 lnS 12
4z0

2

d2 D 1
2z0

d
ln

11
2z0

d

12
2z0

d

22

1
1

p
sin

2pz0

d FcipS 11
2z0

d D2cipS 12
2z0

d D G
2

1

p
cos

2pz0

d FsipS 11
2z0

d D1sipS 12
2z0

d D1p G ,
~5.15!

where ci(x) and si(x) are the integral cosine and sin
respectively.14

It follows from Eq. ~5.14! that if the radiusb of the QR
increases, the energyDW0 increases. The less the heightd of
the QR the less is the energyDW0 . The energyDW0 in-
creases with the displacementz0 of the impurity from the
midplanez050. In particular for small shifts 2z0 /d!1 the
function g(z0), Eq. ~5.15!, becomes g(z0)523.18
15.80(2z0 /d)2.

VI. DISCUSSION

A. QD regime, weak magnetic field, high QR

Since the contribution of the second term on the rig
hand side of Eq.~3.23! to the binding energy is less than th
of the size-quantized energy;1/d2 @see Eq.~2.9!#, the bind-
ing energy decreases with increase of the height of the
d.a0 . It is clear from Eq.~3.26! that the binding energy
increases with decrease of the radiusb of the QR and di-
verges atb/a0 . Expression~3.23! shows that the shift of the
impurity centerz0 from the midplane of the QR,z50, leads
to a decrease of the binding energyEb , Eq. ~2.9!. In the
narrow QR (b,a0) the effective longitudinal radiusa0n be-
comes small and the electron density is concentrated clos
the impurity center. This leads to a decrease with respec
the influence of the boundary planes atz56d/2 as well as in
case of increasing the height of the QR,d. The impurity
being positioned at the midplanez50 produces the greates
binding energy. The dependence of the correctionDEb on
the displacement of the impurityz0 for different heightsd
and radiib is shown in Figs. 1~a! and 1~b!, respectively. The
04520
-

R,

to
to

FIG. 1. CorrectionDEb /NRy (NRy is the impurity Rydberg con-
stant! as a function of~a! the longitudinal displacementz0 of the
impurity from the midpointz050 of the QR for ther0 /b50.5;
b/a050.6 andd/a052.0 ~1!, 2.5 ~2!, 3.0 ~3!; ~b! the longitudinal
displacementz0 of the impurity from the midpointz050 of the QR
for r0 /b50.5; d/a052.5 andb/a050.4 ~1!, 0.6~2!, 0.8~3!; ~c! the
radial displacementr0 of the impurity from the internal boundary
r05a towards the external boundaryr05b for z050 with d/a0

52.5 andb/a050.4 ~1!, 0.6~2!, ~0.8! ~3!. Case: QD regime of high
QR, weak magnetic field.
3-10
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higher~d increases! or the narrower~b decreases! the QR is,
the less is the effect caused by the shiftz0 of the impurity.

The radial shift of the impurity centerr0 from the internal
surfacer5a towards the external surfacer5b produces the
same effect as that induced by the displacementz0 from the
midplanez50. If the parameterr0 increases, then the bind
ing energy monotonically decreases because of a small ra
electron density;uRm,N(r)u2, Eq.~3.7!, close to the externa
surfacer5b. The wider QR~b increases! is the less is the
effect associated with the radial displacementr0 . The depen-
dence of the correctionDEb on the shiftr0 for different radii
b of the QR is depicted in Fig. 1~c!.

It follows from the above that the corrections to the bin
ing energy induced by the displacements from the mid
circle r05(a1b)/2, z050 to the regiona<r0<(a1b)/2,
2d/2<z0<1d/2 can be balanced. The binding energy co
tour plots determined by the conditionsEb(r0 ,z0)5const
are presented in Fig. 2.

B. QD regime, weak magnetic field, low QR

It follows from Eqs. ~2.10! and ~3.35! that the binding
energy increases with decrease of the heightd,a0 and the
radius b of the QR. These results coincide with those o
tained numerically by Liet al.17 and Braniset al.18 for the
impurity located at the center of the QD and at the axis of
quantum well wire~QWW!, respectively, in the presence of
magnetic field. For the small displacements 2z0 /d!1 from
the midplanez050 we obtain, from Eqs.~2.10! and ~3.35!,

Eb~z0!5Eb~0!12NRyS a0

d D S 2z0

d D 2H 211
p2~2 j 11!2

2

3FC2Dm,N1 ln
pb~2 j 11!

d G J , ~6.1!

FIG. 2. Impurity binding energy contour plots as function of t
impurity position (r0 ,z0) for the parameters (d/a052.5,b/a0

50.6; Eb55.41NRy) ~1!; (d/a053.0, b/a050.8; Eb54.57NRy)
~2!; (d/a052.0, b/a050.4; Eb56.93NRy) ~3!. Case: QD regime of
high QR, weak magnetic field.
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where j 50,1,2,... and whereEb(0) is the binding energy of
the impurity positioned at the midplanez050. From Eq.
~6.1! it follows that the shift of the impurity from the poin
z050 leads to a decrease with respect to the binding ene
The less the external radiusb of the QR (b!d), the greater
is the shift of the binding energy caused by the displacem
z0 . The foregoing is valid for the binding energy of th
quasi-odd states.

The dependence of the binding energy of the quasi-e
states on the radial positionr0 can be derived from Eqs
~2.10! and ~3.35!:

Eb~Dm,N!5Eb~0!18NRyS a0

d DDm,N cos2
pz0~2 j 11!

d
,

~6.2!

whereDm,N(r0) is defined by Eq.~3.17! with Dm,N(b)50. It
is clear that the binding energy decreases if the radial shifr0
of the impurity center tends towards the external bound
r05b. A decrease of the binding energy with increasing t
radial sizes of the structure and with a shifting the impur
center from the symmetry axis is typical for systems of bo
the cylindrical and rectangular19 cross sections. The shift o
the binding energy associated with the parameterDm,N
reaches a maximum for the impurity center positioned at
planez050 and subsequently decreases with increasing
placement from this plane. For a high QR the corrections
the binding energy induced by the radial (r0) and vertical
(z0) displacements can be chosen such that they cancel
other: i.e., in this case there is no resulting change
the energy for specific shifts from the middle circ
r05(a1b)/2, z050 to the region a<r0<(a1b)/2,
2d/2<z0<1d/2.

It was pointed out in Ref. 2 that the binding energyEb
reaches a maximum atz050 and for the QD regime atr0
5a. This is completely in line with our results@see Figs.
1~a!, 1~b!, and 1~c!# and Eqs.~2.9!, ~3.23!, and ~6.1!#. The
dependences of the binding energyEb on the radial (r0) and
longitudinal (z0) displacements and the shape of theEb con-
tour plots ~Fig. 4, below! qualitatively coincide with those
obtained in Ref. 2.

Bruno-Alfonso and Latge studied in Ref. 2 the depe
dence of the maximum of the binding energyEb max of the
ground statem50 on the internal radiusa of the QR. Par-
ticularly, they have found that for the QD regime (a!b) the
maximum binding energyEb max decreases with increasin
internal radiusa. This result is explained by Eq.~3.17!,
which becomes, form50,

D0,N512
1

2J1
2~a0N!

S a

bD 2

. ~6.3!

It follows from the above that increasinga leads to a
decrease with respect ton215(2Wn /NRy), Eq. ~3.26!, and
a decrease of the binding energyEb max given by Eq.~2.9! for
the high QR or by Eq.~6.2! for the low QR with Eb5

2DWj
(N,m) . In order to explain the dependence of the ene

Eb max on the radiusa for the QWW regime obtained in Ref
3-11
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2, Eq.~2.1! should be solved in the next-order approximati
with respect to the finite widthd of the QR.

Although the confinement caused by the internal surf
r5a in case of the QD regime as well as weak magnetic
electric fields has minor effects on the binding energy
influences the total energyE @see Eq.~2.8!#. It follows, from
Eq. ~3.1! that the magnetic fieldB leads to paramagnetic
(;maB

22) and diamagnetic, Eq.~3.8!, shifts of the energy
levels. They are shifted by an amountDEa @see Eqs.~3.5!
and ~3.6!# by the confinement, associated with the intern
surface of the QR.

It is clear from Eq.~3.9! that the energy shiftDEl in-
duced by the electric field of the charged wire depends on
ratio of the radii of the QR. With increasing ratiob/a the
shift uDElu increases. Note that, in principle, the elect
field allows us to influence the binding energyEb . It dis-
places the maximum of the electron density with respec
the position of the impurity center that leads to a change
the binding energy. This effect becomes more pronounce
the presence of sufficiently strong electric fields, implyi
the necessity of a numerically exact solution to the probl
of the electron in the QR subjected to an axially symme
electric field.

C. QD regime, strong magnetic field

The expression for the binding energyEb possesses th
form ~2.9! where W(N,m) is the longitudinal energy of the
impurity electron in the presence of a strong magnetic fi
calculated in Sec. IV. If the impurity center is shifted towar
the external surfacer05b or displaces from the midplan
z050, the binding energy decreases. If the magnetic fi
strengthB increases, the binding energy increases also. T
coincides with the results obtained by the variational pro
dure for the impurities in the QW’s~Ref. 17! and QWW’s
~Ref. 18!. The dependences of the correction to the bind
energyDEb on the displacementz0 for different heightsd
.a0 are qualitatively the same as those depicted in Fig. 1~a!.
The corrections to the binding energyDEb as functions of
the shiftz0 and radial displacementr0 for different magnetic
field strengthsB are shown in Figs. 3~a! and 3~b! respec-
tively. The contour plots of the binding energy determined
the conditionEb(r0 ,z0)5const are given in Fig. 4.

As expected, the radial confinement as well as a w
electric field has minor effects on the binding energyEb .
However, the total energyE in Eq. ~2.8! depends on both the
radii of the QR and the linear electrical densityl. If the
internal~external! radiusa ~b! decreases~increases!, the cor-
rections to the energyDEa in Eq. ~4.5! @DEb in Eq. ~4.6!#
decrease and vice versa. It follows from Eq.~4.8! that a
decrease of the internal radiusa leads to an increase of th
energy shiftuElu induced by the electric field. For a neg
tively charged wire (l,0) and for the special caseDEa

1DEb2uElu50 the energy shifts associated with the co
finement and the electric field cancel. If the electric fie
effects become equally important as the magnetic field
fects, it is natural that the binding energy will show a
equally strong dependence on both field strengths. In orde
study the corresponding dependencies a numerically e
04520
e
d

it

l

e

o
f
in

c

d

d
is
-

g

y

k

-

f-

to
ct

solution to the problem of the electron in the QR in t
presence of magnetic and crossed radially directed ele
fields is desirable.

D. QWW regime, QR of small radius

The binding energyEb is given by Eq.~2.9! whereW(N,m)

is the longitudinal energy of the impurity electron in the th
(d!a,b) QR calculated in Sec. V A. If the impurity center
shifted from the midplane (z050) of the QR, the binding
energy decreases. The binding energy increases for a
crease of the radiusb of the QR. For the high QR, the
smaller the radiusb, the less is the effect induced by th

FIG. 3. CorrectionDEb /NRy to the impurity binding energy
(NRy is the impurity Rydberg constant! as a function of~a! the
longitudinal displacementz0 of the impurity from the midpoint of
the QRz050 for r0

2/2aB
250.5; d/a052.0 and 21/2aB /a050.4 ~1!,

0.6 ~2!, 0.8 ~3!; ~b! the radial displacement of the impurityr0 from
the internal boundaryr05a towards the external boundaryr05b
for z050; d/a052.5 and 21/2aB /a050.4 ~1!, 0.6 ~2!, 0.8 ~3!. Case:
QD regime of high QR, strong magnetic field.
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IMPURITY CENTER IN A SEMICONDUCTOR QUANTUM . . . PHYSICAL REVIEW B67, 045203 ~2003!
displacementz0 . The dependence of the correctionDEb on
the displacementz0 for different heightsd are qualitatively
the same as those shown in Fig. 1~a!. Also, the shiftsDEb as
a function ofz0 for different radiib look qualitatively similar
to those depicted in Fig. 1~b!.

E. QWW regime, QR of large radius

For a high QR (d.a0) the binding energyEb is deter-
mined by Eq.~2.9! where the energyW(N,m) for the ground
longitudinal state possesses the form~5.12!. If the radiusb of
the QR increases, the binding energy decreases. For a
QR (d,a0) the binding energyEb of the ground state@see
Eq. ~2.10!# coincides apart from the sign with the correctio
to the size-quantized energyDW0 in Eq. ~5.14!. With in-
creasing radiusb of the QR the binding energy decrease
The binding energy increases for a decreasing heightd of the
QR. If the impurity center moves from the midplane (z0
50) towards the bottom (z052d/2) or top (z051d/2) of
the QR, then the binding energy decreases~see Fig. 5!.

The QWW regime is favorable to demonstrate the
proximately periodic oscillations of the ground levelE, Eq.
~2.8!, as a function of the fluxF with period F0 that is a
manifestation of the magnetostatic Aharonov-Bohm effe
The total energyE in Eq. ~2.8! is the oscillating lateral leve
E'N,m in Eq. ~5.3! shifted towards lower energies by th
amountW(N,m). The impurity potentialVN,m in Eq. ~5.5! and
consequently the binding energyEb do not depend on the
magnetic field strengthB. Thus in the case being considere
here the impurities do not effect the dependence of the t
energy on the magnetic field and do not change the persis
current. Following Ref. 2 in which the above circumstan
was revealed first in the framework of a variational approa

FIG. 4. Impurity binding energy contour plots as a function
the impurity position (r0 ,z0) for the parameters (d/a0

52.0, 21/2aB /a050.8; Eb54.90NRy) ~1!; (d/a052.5, 21/2aB /a0

5 0.6; Eb 5 4.80NRy) ~2!; (d/a0 5 3.5, 21/2aB /a0 5 0.3; Eb

55.57NRy) ~3!. Case: QD regime of high QR, strong magne
field.
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the influence of the impurities on the Aharonov-Bohm effe
can be described by a modified trial function. From our
vestigation it is clear that the reason for the missing effec
an impurity in the QWW regime under the conditiond!aB
is that the confinement dominates the influence of the m
netic field on the longitudinal states. Therefore, the ene
W(N,m) is unaffected by the magnetic field. As the magne
field strengthB and the widthd of the QR increase, the effec
of the impurities on the Aharonov-Bohm oscillations b
comes more pronounced. In this case the dependence o
lateral energyE'N,m on the magnetic field strength is con
tained in higher-order terms in the expansion ford50.

Barticevicet al.6 calculated the lateral energyE'm of the
electron in the QR of widthd550 Å, 100 Å as a function of
the mean radiusr̄ of the QR and a strength of the magne
field up to B516 T. They reported that forB50 and m
50 and in the regionr̄.d the lateral energy does not de
pend on the radiusr̄ and obeys the dependenceE'0;1/d2.
Also, it was found that for magnetic quantum numbersm
Þ0 the lateral energyE'm increases with increasingumu and
rapidly decreases with increase of the radiusr̄. ForBÞ0 the
degeneracy of the states with the positive (1m) and nega-
tive (2m) quantum numbers is lifted and the state w
negativem,0 becomes the ground state. The correction
the lateral energy of the statem50 induced by the magnetic
field shows the dependenceDE'0;B2. All listed results ob-
tained numerically in Ref. 6 are in complete accordance w
those resulting from the analytical expression for the late
energyE'N,m in Eq. ~5.3!.

In order to estimate the values to be expected in an
periment we take the parameters for the GaAs materiam
50.067m0 , «512.5, a0598.7 Å, and NRy55.83 meV.
Also, we take the realistic sizes of the QR’s typically used
the theoretical papers and prepared in experiments.2–7 For
the QD regime of the QR of radiia550 Å, b5500 Å sub-

FIG. 5. CorrectionDEb /NRy to the impurity binding energy
(NRy is the impurity Rydberg constant! induced by the longitudinal
displacement of the impurityz0 from the midpoint of the QR for
b/a053, 4, 5. Case: QWW regime of low QR of large radius.
3-13
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jected to a weak magnetic field the blueshiftDE0,1
a , Eq.

~3.5!, induced by the nonzero internal radiusa can be bal-
anced by the redshiftDE0,1

l , Eq. ~3.9!, produced by the elec
tric field of the effective linear charge densityl5
20.7 pC m21. This density corresponds to a linear electr
density ne50.433105 cm21. For the same regime and
strong magnetic fieldB55.4 T the total blueshift of the
ground Landau level (N5m50) caused by the nonzero ra
dius a550 Å, Eq. ~4.5!, and finite radiusb5275 Å, Eq.
~4.6!, is DE0,0

a 1DE0,0
b 59.4 meV. This shift is balanced b

the effective electric field corresponding to a linear cha
densityl523.2 pC m21 (ne52.03105 cm21). For a low
QR of heightd540 Å and of radiia'b5300 Å ~QWW
regime! the correction to the binding energyDEb(z0)5
2DW0 , Eq. ~5.14!, associated with the displacement of t
impurity by z0515 Å is DEb521.45 meV and can there
fore be detected experimentally. Note that the lateral ene
E'0,0, Eq. ~5.3!, of the electron in the GaAs QR of widt
d550 Å and radiusb5100 Å in the absence of the extern
fields is E'0,05222.5 meV, i.e., very close to the valu
E'0,05210 meV calculated in Ref. 6. An experimental stu
of QR’s requires substantial efforts. In particular, the ri
topology is hardly provided by the QD regime of the QR’s
small radii2 less than the impurity radius~see Sec. III!. Also,
the application of a radially directed electric field to the
QR’s calls for further experimental effort. Nevertheless,
believe that recent advances in the fabrication of semic
ductor nanostructures and corresponding experimental t
niques for their investigation provide the basis for studies
the topological effects for the different regimes of the QR
subjected to external fields.

VII. CONCLUSION

In summary, we have performed a comprehensive ana
cal investigation of the problem of an impurity electron a
s
00

J.

.

n

04520
e

y

n-
h-
f

ti-

bitrarily located in a QR in the presence of crossed homo
neous magnetic and radially directed electric fields. T
QWW and QD regimes and weak and strong magnetic fie
as well as low and high QR’s are under consideration. T
dependences of the total and binding energies of the impu
electron on the strengths of the external fields, the parame
of the QR, and the position of the impurity center within th
QR are derived explicitly. It is shown that if the QR confin
ment and/or the magnetic field strength increase, the bind
energy also increases. The binding energy reaches a m
mum for the impurity center positioned at the midplane
the QR. For the QD regime the binding energy decreases
a shift of the impurity from the symmetry axis towards th
outer part of the ring. It is found that the effects of the co
finement and the magnetic field can be energetically canc
by those caused through the axially symmetric electric fie
We demonstrate that for a relatively narrow QR the impur
influences only insignificantly the oscillations of the grou
electronic level as a function of the magnetic field~magne-
tostatic Aharonov-Bohm effect!. Estimates of the linear elec
tron densities needed to bring in balance the blue ene
shifts caused by the ring confinement and magnetic fie
and changes of the binding energy induced by the displa
ment of the impurity are made for the parameters of a Ga
QR. In view of the increasing interest on optoelectronic a
transport properties of nanostructured systems subjecte
external fields the present analytical approach can be con
ered as a basis for the further understanding of the physic
such systems as well as precise numerical calculations.
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