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Percolation and spatial correlations in a two-dimensional continuum deposition model
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We introduce a two-dimensional continuum deposition model of spatially extended objects, with an effective
repulsive contact interaction between them represented by a paranwetge 0. For =0, the deposited
network is uniformly random, while fog=1 particles are not allowed to overlap. ForQ<1, we carry out
extensive simulations on fibers, needles, and disks to study the dependence of the percolation threghold on
We derive expressions for the threshold ngar0 andg=1 and find good qualitative agreement with the
simulations. The deposited networks produced by the model display nontrivial density correlations near per-
colation threshold. These are reflected in the appropriate spatial correlation functions. We study such functions
close toq=1 and derive an approximate expression for the pair distribution function.

PACS numbef): 64.60.Ak, 02.70-c, 61.43.Hv

[. INTRODUCTION have been extensively studied in the context of continuum
percolation theory13—2§. These models have included uni-
There are various deposition phenomena in nature wher@rmly random networks of various objects as well as hard-
transport mechanisms bring patrticles to a surface. These irnd soft-core interactions between the constituent particles.
clude deposition of colloidal, polymer, and fiber particles The quantity of central importance in these studies is the
[1-7]. In some cases, such deposition phenomena involveercolation threshold or critical particle density which for
particles whose size is large compared to their mutual interP€rmeable objects can be related to the excluded volume of
action range, and so the main deposition mechanism is due tbe particled19]. This quantity depends on the geometrical
particle exclusion. Among the most studied in this class aréhape of the deposited particles as well as on interactions
the random and cooperative sequential adsorption modefRetween them in a nontrivial way.
[1,2]. There particles are deposited on a surface and either In this paper, we present a study of the percolation prop-
stick or are rejected according to certain exclusion rules, witterties and spatial correlations in networks formed by a
a maximum Coveragehe “jamming limit”) less than unity_ simple 2D deposition model. In the model, there is an effec-
These types of models should be contrasted with the case §¥e contact repulsion between the deposited particles, which
multilayer surface growttil,6—8, where the main focus is can be tuned from no repulsiofuniformly random net-
on the asymptotic behavior of the growing surface in theworks) to a strict nonoverlap casghe random sequential
continuum limit[9]. adsorption limif. This model is complementary to the re-
A particularly interesting example involving particle cently introduced “flocculation model,” where there is en-
deposition can occur in the case of colloidal suspensions. Fdtanced clustering of deposited objel@%—30. We study the
some such systems, the interparticle repulsion is strongercolation thresholds of widthless needles, fibers of finite
enough to prevent multilayer growfB]. However, the exis- Width, and disks. We derive analytic approximations for the
tence of dispersion forces can change this repulsion so th#resholds in the appropriate limits. Furthermore, we study
even particle aggregation and subsequent precipitation out §Patial correlations in the model through the appropriate cor-
the suspension may occiit,10]. For larger particles or clus- relation functions, and derive an expression for the pair dis-
ters of particles, gravity must also be taken into account anéfibution function.
can in part help to overcome interparticle repulsion. Experi-
ments reveal that, e.g., seqlimentati_on produces nontrivial Il. DEEINITION OF THE MODEL
spatial structurefl1]. A full microscopic treatment of many
deposition processes such as sedimentation is a formidable The model studied here, called the “rejection model”
task [12]. Because of this, phenomenological deposition(RM), was originally introduced by Astro [29]. In the RM,
models may be useful in studying how various effective in-spatially extended objects are sequentially deposited on a 2D
teractions influence the mass density distributions of the corplane in continuum. Both the orientation of the object and its
sequent deposits. spatial coordinates are chosen from a uniformly random dis-
In addition to their practical applications, two- tribution. If a deposited object lands on empty space, the
dimensional(2D) random deposition models have been theattempt is always accepted. However, if it lands on another
topic of intense study in their own right. In particular, they object already on the surface, the attempt is rejected with a
given probability 6=q=<1. Thus, the parameters that char-
acterize the model are the rejection probabitjfjthe dimen-
* Author to whom correspondence should be addressed. Electrongions of the deposited objects, the linear dimensiaf the
address: Joonas.Asikainen@hut.fi surface, and the number of deposited objects Reite., the
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FIG. 1. Snapshot of networks of needles of lenyth1 close to the percolation thresholtd £ 20), for (a) g=0.9 (N=2648),(b) q
=0.99 (N=3616), and(c) q=0.999 (N=6332).

number of accepted attempts >w), and disks of radiusy. In each case, the system con-
In the limit =0 the model reduces to the extensively tains an inner box of length and an outer box of length
studied case of a uniformly random networld, 13—  +L’, with free boundary conditions. The size of the outer

17,23,27,28,3]L However, forg>0 there is an effective box is chosen so that the average density across the system is
contact repulsion between the particles that tends to preve@bnstant within the inner boj84]. The centers of the objects
overlaps. In particular, for the extreme casegefl, a strict  are distributed within the outer box. However, only objects
nonoverlap condition is imposed. This is the well-known partially or completely within the inner box are allowed to
limit of random sequential adsorptidRSA) models[1]. In  pelong to the connected clusters. To keep track of the clus-
this case, percolation with connectivity defined through parigrs we have employed the cluster multiple labeling tech-
ticle overlaps is not possible, and deposition typically termi-nique[35] applied in the continuum case where any number
nates to a finite density called the “jamming limit.” of intersecting neighbors is allowed. In our final analysis,
Motivation for the model arises in part from deposition of onjy one-sided percolation data were used.
particles such as large charged molecules on surfaces which The critical densities;.(q) were obtained by depositing a
tend to repel each other. Changing the parantgglows the  fixed number of objectN for a given system sizé and
tuning of the effective contact repulsion between such pargnecking for percolation. This was repeated for increasing
ticles. The RM is complementary to the flocculation modely5jyes of N in the proper range of the particle density
(FM), where the tendency of deposited particles to overlap is- N/|L2. |n this way, the whole curve of spanning probabili-
enhancedby a parameter 8p=1 [27,28,32. For p=0, e was obtained for each system sizeThe point where
only a single connected cluster grows in the FM, while they,o such curves for any different system sizes interget
rejection and flocculation models become equivalent to thgyqq poin} gives an approximate value fof,=N,/L2. We

uniformly random case fop=1 andq=0, respectively. obtained these points by fitting the curves to error functions.
The estimates thus obtained were extrapolated and the final
Ill. PERCOLATION PROPERTIES OF THE MODEL values of :(q) obtained using the standard Monte Carlo

) L . _renormalization groufMCRG) method[21,3€], with the

When enough particles are deposited in a finite system, it§mjest system studied being the reference system. For com-
edges become connected and percolation takes place in gy eness; we also evaluated the correlation length exponent
model. The properties of the correspondTmntinuum per- ¢, o, model from the MCRG procedure. In all cases
colation transitionare of particular interegt19,33. Indeed, gy gied here, we find that it is consistent with the universal
continuum percolation of 2D rectanglgs3,16,27,28 disks | o .e of 4/3. as in lattice percolatidd9,33
[13,14,16,18,19,21,22,26-p8and needles[13,15-17,23, ’ o
27,28,31 among other geometric objects has been exten- 1. Needles

sively studied, and the corresponding critical densities deter- ) ) )
mined numerically. In this section, we present results of nu- 1YPical configurations generated by the model are shown

merical and analytic calculations of the percolationn Figs. 1a-1(c) for needles of unit length at the percolation
properties of the RM for &q<1 and compare the uni- threshold for various values of Employing the MCRG pro-
formly random limit g=0 with the existing studies C€dure for 100-500 ensembles and for system slzes
[23,27,28. = 10,20,30,40_,60, W|th_0.s@_q<0.999 we obtaln the yalues
for 5.(q) as displayed in Fig. 2. The curve displays interest-
_ ing behavior in the two limitg}—0 andq— 1. First, .(q)
A. Numerical results approaches the limi—0 approximately linearly. Second,
We first present results of extensive numerical simulathe expected divergence gf(q) in the limitg—1 is clearly
tions of the critical densities of percolatiof.(q) as a func-  visible. Our best estimate foj.(0)=5.59+ 0.05 agrees well
tion of q for three different types of objects: needles of with other numerical studies reported in the literature for the
length \, fibers (rectangles of length A and width w (A uniformly random casésee, e.g., Ref$23,27]). In addition
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FIG. 4. The percolation thresholg.(q) vs g for a network of
FIG. 2. The percolation thresholg(q) vs g for a network of  fibers of aspect ratia/w=4.

needles of length=1. Inset shows the behavior negs 1.

. ) ] ber densitynerﬁle. Using the MCRG procedure as ex-
to the numerical estimates,(0) can be approximately de- plained above for system sizés=10,20,40,60,80,100 and
termined by using the excluded volume arguments of Refaveraging over 10000 ensembles, we obtain #h@)’s as
[16], where 7;(0)(A)=const=3.57, and the excluded vol- ghown in Fig. 6. Our best estimate faz,(0)=0.36+0.01
ume(A)=0.637[37], which givesz(0)~5.61. agrees within the errors with other numerical studies reported
> Fibers in the literature(see, e.g., Ref§21,27).

In the case of fibers, we have used objects with an aspect B. Analytic theory for percolation thresholds
ratio of A\/w=4/1. Typical networks generated are shown in
Figs. 3a)—3(c) at the threshold for various values @f Fol-
lowing the procedure employed for needles for system sizes We can qualitatively understand the behavior of the per-
L=10,20,40,80, and 0s6g=<0.999 we obtain thez.(q) colation thresholds for the two limits wherg—0 and g
curve as shown in Fig. 4. These results have been obtained 1 by using mean-field type arguments, similar to Ref.
by averaging over 100-500 ensembles. In this case, there [i27]. First, let us discuss the limg—0. To this end, let us
no divergence ofp(q) in the limit g— 1. We shall discuss definer as the probability of a given object intersecting any
this later in Sec. Il B. other object in a uniformly random networlky€0). This

Our best estimate for thg=0 limit is 7,(0)=2.74  quantity depends on the dimensions of the object and the
+0.03. This agrees well with the value reported by Provatasystem sizeL. For example, in the case of fibdi38],
et al. [27].

1. The small g limit

20+t w)? 2\w

3. Disk r= + . (1)
ISKS 7TL2 LZ

Typical networks of disks of radiusy=1/2 for various
values of q at corresponding critical concentrations are Define P™) to be the probability that théNth particle
shown in Figs. 88)-5(c). For disks we use the reduced num- sticks on to the plane but not on any of tNe- 1 previously

FIG. 3. Snapshot of networks of fibers with an aspect rafi@=4 close to the percolation threshold € 20), for (a) q=0.9 (N
=1148),(b) g=0.99 (N=1252), and(c) q=0.999 N=1280).
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FIG. 5. Snapshot of networks of disks of radiys=1/2 close to the percolation threshold = 20), for (a) g=0.8 (N=580), (b) q
=0.9 (N=584), and(c) q=0.99 (N=590).

deposited particles. The probability that the first object sticks For the critical density we thus obtain

on the 2D plane i$")=1. The probability that the sea:%())nd

object sticks on to the plane but not on the first on@} - (No) -
=(1—r)NClontinuing this forN particles, we find thaP™) 7e, (8= 76, (0)+ AP e, (O)=Ag+B, @
=(1-r)"" -

(Cons)ider next the uniformly random network of sizat where A and B are constants. Therefore, we can conclude
its percolation threshold withl,=N(0) objects. The num- that 7., (q) increases linearly witlj. This is also visible in
ber of nonintersecting objects will be, on the averalye, ©Our numer_|cal data for the percolatpn Fhresholds. We can
=P(NJN, . This estimate is accurate in the low density limit, Show that in the.— o limit the slope is given by
but at high densities it overestimates the tNiedue to over-
laps. The effect of>0 is to increase the number of nonin- 2( )2
tersecting objects due to repulsion, but the backbone of the A= nc(O)ex;{ - ﬂc(o)(WﬂLZ)\w)
percolation cluster itself may be assumed to stay constant for
g<<1. This implies that the percolation threshold increases.

Since, on the average, a fractiqrof the attempts to deposit We have estimated the slope from numerical data and find
an object are rejected, we estimate that the number of pathat for needlesA=0.44 while the lower bound of Ed4)
ticles that can be added in such a way that they do not ove@ivesA=0.16.

lap with the percolation cluster is given approximatelydy

times the number of objects not belonging to the percolation 2. The divergence of the threshold for needles

cluster, to which a lower bound igNg. Therefore, at the
percolation threshold fog<<1 we have

)

The divergence of the percolation threshold for needles is
to be expected since they have no area associated with them.
Because of this they can be packed arbitrarily close to each
other. From our data we find that the percolation threshold
7.(q) diverges in theq—1 limit as (1—q) Y, with y
~0.20+0.05.

We can analytically estimate the divergence by using the
results of Ziff and Vigil[39] in the RSA limit. They find by
numerical simulations that the number of accepted attempts
per unit area scales with the normalized number of adsorp-
tion attempts asi(t)«t*, with x~0.32, wheren=N\/L?
andt=T\/L? [40]. Here,N is the total number of accepted
attempts and is the total number of attempts.

E 7 If we consider the deposition process closeqte 1, a

T total number of attemptd,1/(1—q) is needed before
0.36 4 E . . . .
deposition of a singl®verlappingneedle occurs. Using the
results of Ref[39], during this time approximatelps~ T}
nonoverlapping needles are adsorbed. Assumingrttrah
and using the fact that=# (herex=1), gives, close to
percolation and in the limig—1,

Ne(9)=Nc(0)+aNs=Nc(0) +qPMNIN(0).  (2)

0.37

0.365 - B

n.a)
AN

0.355 . . . .
0 0.2 0.4 0.6 0.8 1

q

FIG. 6. The percolation thresholg.(q) vs q for a network of 7:(q) = L

—_— . (5)
disks of radiug 4= 1/2. (1-q)*
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This result is in reasonably good agreement with our numeriwhere we have assumed that the system is isotropic and thus

cal da.ta, although it is evident that we would need more dat@ depends omE|)_()| On|y_ The angu]ar brackets denote con-
points closer to the limij=1 to more accurately obtain the figuration averaging. Taking the continuum limit where

scaling exponent. nem=limaa_o(ANcy/AA), we obtain
In the cases of disks and fibers, the deposited objects havecwI A0 M

a finite area associated with them. In these cases, there is no
divergence ofp.(q). This is due to the finite jamming limit

n; in the RSA model, where the deposition process termi-

nates since objects are not allowed to overlap. When more
objects than this limit are deposited, the nonoverlap condi-

tion is violated, and thus there will eventually be spanning in

the system. In fact, an upper bound for the percolatiorHence,
threshold for objects of finite area can be estimated by

7¢(Q) = 7c(0) + 7; for all q.

_ 2 2 v
Q(r)dr—m< fAd Xomem(Xo)

X nCM(i0+>Z)AA(>ZO+>Z)> . 9)

2
Q(r)dr= mJAdZXOGCM(rO,r)AA(xo+x),

IV. SPATIAL CORRELATION FUNCTIONS (10

In recent studies of the FM, nontrivial spatial correlationswhere
were found in the networks formed by deposition below and - N
in the vicinity of the percolation thresho[@7,28,32. They Gem(ro, M =(ncm(Xo) 7ecm(Xo+X)).
manifest themselves in the radial pair distribution and mass

density correlation functions. In this section, we present nu- _In Ref. [27), itis ghowr) tha'; for a ur_nformly raf‘dom set of
merical and analytic results for spatial correlations in the RIleomts with translational invariance this expression equals the

(11)

for various values of}, and close taj=1 in particular.

A. Pair distribution function

1. Needles

exact pair distribution functiof), for a uniformly random
network previously derived by Ghogh,41] as

Qq(r,L)

for O=r<L

(4r/LY(wL212—2rL +r?/2)

(4r/LYH{ L2 arcsir(L/r)—arcco$L/r)]

+2Lr2—L2-3(r2+2L%)} for L<r=<+>2L.
(12)

Consider the distribution of centers of mass of needles of _
unit length. The pair distribution functiof(r) is defined
through

Q(r)dr

" In Fig. 7(a) we show this function together with our numeri-

cal results of the pair distribution function of E@) for

various values of]. The remarkable result is that within the

numerical errors there is no dependencegohis can be

explained as follows. Fog>0, objects are rejected during

. the deposition process, but the center-of-mass coordinates of

where the averaging is over all configurations. Acy(X;)  the objects that will stay in the final configuration are still

be the number of centers of mass within the area elementken from a uniformly random distribution. Since needles

AA(x;) around the position vector, . The number of pairs have no width associated with them and they can be packed

included in two different area elements is then given by thearbitrarily close to each other, the distribution of pairs of

product ANy(X) ANy (X). Further, the total number of £ESE & ORSas s T e the M, where a
. -, . . . . | ult 1s 1 , W

pairs separated by vectarin a given configuration is double-peak type of structure {d develops when clustering

of fibers is enhanced in the limjt— 0 [27].

B Number of pairs of centers in a shéfl,r +dr)
B Total number of pairs of centers in system’

(6)

Z ANCM()ZO)ANCM()ZO"_)Z)-

X0

7
@ 2. Disks
The behavior of the pair distribution function must de-
Dividing this by N(N—1)/2 we obtain the probability of pend onq for objects with finite area. To illustrate this, we
finding a pair of centers of mass separated by the vector consider here.the case of di.SkS of radiys In the RSA limit .
a given configuration. Multiplying and dividing by area ele- (4=1), all objects are restricted not to be closer than twice

ments yields the disk radiug 4. Thus, we can write the RSA approxima-
tion Q¢ in this limit as
Q(rdr= ANow(Xo) ANeulo+ x) Q1) =COr—r) Qq(r), (13
NIN=1)\ = AA(Xe)  AA(Xo+X)

where 6(r) is the step function, an@ a normalization con-
stant. In Fig. Tb) we show our numerical data fér(r), with

xAA(io)AA(£0+>Z)> , (8) q=0.9,0.99, 0.999, and 0.999, and also the funcfiafr).
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log(r)
0.02 0r
-10 .
0 10 20 30
r
0
0 10 20 30 . . . .
( FIG. 8. The pair correlation functio(r) for a discrete ap-
proximation of fibers X/w=20/2) vsN for q=0.999. The inset
04 shows the initial power law type of decay &f(r) for short dis-
® a-09 tancesr <\ /2.

In Fig. 8 we show a series of the functions fipe=0.999.
As N increases towartll;~ 200, there is an increasing anti-
correlation inG(r) just beyond the fiber widtlw=2. This
reflects the effective repulsion and local alignment of aniso-
tropic particles present in the model. Moreover, we find that
G(r) can be approximated by

G(r)oer ~«NA for 0<r<A(N,q), (15)

whereA is an effective cutoff for the power law form. Fig-

8 ure 9 shows the effective exponent$N,q) vs N for the
model for different values of]. For q=0, «(N,0)~1 as

FIG. 7. Pair distribution functions fofa) needles of lengthn ~ expected27]. The cutoff here is of the order df~\/2 for
=1 and(b) disks of radius y=1/2. See text for details. all values ofN [4,27]. Whenq is close to unity«(N,q) goes
through a maximum a8l increases. Moreover\ attains a

In the limit of q—1, a cutoff inQ(r) develops ar.=2r minimum where« is maximum. This is again in contras.t to

corresponding to the nonoverlap condition. Following this,tN€ case of the FM, where the range of the approximate

there is a sharp peak 84(r) just beyond ., where the disks POWer law form was fOL_md to have a maximum close to the

are packed very closely together. We note that the approxthreshold, when clustering was enhan¢2d]. We note that

mation of Eq.(13) is unable to reproduce this peak, since the® N>Nc the mass density of the networks again ap-

excess mass density cut off by the step function is uniformiyProaches the uniform distribution for amy<1 [27].

distributed when)¢(r) is properly normalized.

3

—90=00
- = 8g=09

B. The two-point mass density correlation function —+0-099
A—aA g=0.999

The two-point mass density fluctuation correlation func- 25t
tion is defined as

GO)=([m(x")—(mI[mx'+x)—(m)]), (14

a(N.q)
N

Wherem(f) is the mass density at and(m) is the average
mass density. This correlation function is a measure of the 15}
mass distribution in the network. We calculat&{r) nu-
merically by discretizing fibers on lattice points. The lattice
model was solved with periodic boundary conditions and . ‘ . ‘
with the aspect ratie:\:L=2:20:150, which is quite close 0 200 400 600 800 1000
to the needle limit. The lattice size was checked to be large N

enough so that finite size effects do not affect the correlation FIG. 9. The effective exponents 65(r) vs N for various values
function in the range of interest. of g. See text for details.

.
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V. CONCLUSIONS AND DISCUSSION objects(diskg. The effective repulsion and local ordering for
anisotropic objects are also reflected in the mass density cor-
"elation function, which shows anticorrelation for densities

deposition model, where there is a tunable interparticle corr?—1ear and below the critical density. Finally, we hope that the
P . ’ : : P 'present results can be used in experimental studies of depos-
tact repulsion. When this repulsion becomes strong, there ag

dramatic changes in the properties of the deposited networksF.S of particles with repulsive interactions.
In particular, through a combination of numerical data and
analytic arguments we have shpwn hoyv fpr .W[dthless ACKNOWLEDGMENTS

needles the percolation threshold diverges in this limit. How-

ever, for objects with finite area there is just an increasing We wish to thank M. Alava, M. Haataja, S. Majaniemi,
trend in the critical density. Interestingly enough, in the sameand N. Provatas for technical assistance and useful discus-
limit the spatial pair distribution function shows no changesions. This work has been supported in part by the Academy
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In this work, we have presented a study of the percolatio
properties and spatial correlations in a simple 2D continuu
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