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Percolation and spatial correlations in a two-dimensional continuum deposition model
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We introduce a two-dimensional continuum deposition model of spatially extended objects, with an effective
repulsive contact interaction between them represented by a parameter 0<q<1. For q50, the deposited
network is uniformly random, while forq51 particles are not allowed to overlap. For 0<q,1, we carry out
extensive simulations on fibers, needles, and disks to study the dependence of the percolation threshold onq.
We derive expressions for the threshold nearq50 andq51 and find good qualitative agreement with the
simulations. The deposited networks produced by the model display nontrivial density correlations near per-
colation threshold. These are reflected in the appropriate spatial correlation functions. We study such functions
close toq51 and derive an approximate expression for the pair distribution function.

PACS number~s!: 64.60.Ak, 02.70.2c, 61.43.Hv
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I. INTRODUCTION

There are various deposition phenomena in nature wh
transport mechanisms bring particles to a surface. These
clude deposition of colloidal, polymer, and fiber particl
@1–7#. In some cases, such deposition phenomena inv
particles whose size is large compared to their mutual in
action range, and so the main deposition mechanism is du
particle exclusion. Among the most studied in this class
the random and cooperative sequential adsorption mo
@1,2#. There particles are deposited on a surface and ei
stick or are rejected according to certain exclusion rules, w
a maximum coverage~the ‘‘jamming limit’’ ! less than unity.
These types of models should be contrasted with the cas
multilayer surface growth@1,6–8#, where the main focus is
on the asymptotic behavior of the growing surface in
continuum limit @9#.

A particularly interesting example involving particl
deposition can occur in the case of colloidal suspensions.
some such systems, the interparticle repulsion is str
enough to prevent multilayer growth@3#. However, the exis-
tence of dispersion forces can change this repulsion so
even particle aggregation and subsequent precipitation o
the suspension may occur@7,10#. For larger particles or clus
ters of particles, gravity must also be taken into account
can in part help to overcome interparticle repulsion. Expe
ments reveal that, e.g., sedimentation produces nontr
spatial structures@11#. A full microscopic treatment of many
deposition processes such as sedimentation is a formid
task @12#. Because of this, phenomenological deposit
models may be useful in studying how various effective
teractions influence the mass density distributions of the c
sequent deposits.

In addition to their practical applications, two
dimensional~2D! random deposition models have been t
topic of intense study in their own right. In particular, the
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have been extensively studied in the context of continu
percolation theory@13–28#. These models have included un
formly random networks of various objects as well as ha
and soft-core interactions between the constituent partic
The quantity of central importance in these studies is
percolation threshold or critical particle density which f
permeable objects can be related to the excluded volum
the particles@19#. This quantity depends on the geometric
shape of the deposited particles as well as on interact
between them in a nontrivial way.

In this paper, we present a study of the percolation pr
erties and spatial correlations in networks formed by
simple 2D deposition model. In the model, there is an eff
tive contact repulsion between the deposited particles, wh
can be tuned from no repulsion~uniformly random net-
works! to a strict nonoverlap case~the random sequentia
adsorption limit!. This model is complementary to the re
cently introduced ‘‘flocculation model,’’ where there is en
hanced clustering of deposited objects@27–30#. We study the
percolation thresholds of widthless needles, fibers of fin
width, and disks. We derive analytic approximations for t
thresholds in the appropriate limits. Furthermore, we stu
spatial correlations in the model through the appropriate c
relation functions, and derive an expression for the pair d
tribution function.

II. DEFINITION OF THE MODEL

The model studied here, called the ‘‘rejection mode
~RM!, was originally introduced by Åstro¨m @29#. In the RM,
spatially extended objects are sequentially deposited on a
plane in continuum. Both the orientation of the object and
spatial coordinates are chosen from a uniformly random
tribution. If a deposited object lands on empty space,
attempt is always accepted. However, if it lands on anot
object already on the surface, the attempt is rejected wi
given probability 0<q<1. Thus, the parameters that cha
acterize the model are the rejection probabilityq, the dimen-
sions of the deposited objects, the linear dimensionL of the
surface, and the number of deposited objects kept,N ~i.e., the
ic
5002 ©2000 The American Physical Society
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FIG. 1. Snapshot of networks of needles of lengthl51 close to the percolation threshold (L520), for ~a! q50.9 (N52648), ~b! q
50.99 (N53616), and~c! q50.999 (N56332).
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number of accepted attempts!.
In the limit q50 the model reduces to the extensive

studied case of a uniformly random network@4,13–
17,23,27,28,31#. However, for q.0 there is an effective
contact repulsion between the particles that tends to pre
overlaps. In particular, for the extreme case ofq51, a strict
nonoverlap condition is imposed. This is the well-know
limit of random sequential adsorption~RSA! models@1#. In
this case, percolation with connectivity defined through p
ticle overlaps is not possible, and deposition typically term
nates to a finite density called the ‘‘jamming limit.’’

Motivation for the model arises in part from deposition
particles such as large charged molecules on surfaces w
tend to repel each other. Changing the parameterq allows the
tuning of the effective contact repulsion between such p
ticles. The RM is complementary to the flocculation mod
~FM!, where the tendency of deposited particles to overla
enhancedby a parameter 0<p<1 @27,28,32#. For p50,
only a single connected cluster grows in the FM, while t
rejection and flocculation models become equivalent to
uniformly random case forp51 andq50, respectively.

III. PERCOLATION PROPERTIES OF THE MODEL

When enough particles are deposited in a finite system
edges become connected and percolation takes place i
model. The properties of the correspondingcontinuum per-
colation transitionare of particular interest@19,33#. Indeed,
continuum percolation of 2D rectangles@13,16,27,28#, disks
@13,14,16,18,19,21,22,26–28#, and needles@13,15–17,23,
27,28,31 among other geometric objects has been ex
sively studied, and the corresponding critical densities de
mined numerically. In this section, we present results of
merical and analytic calculations of the percolati
properties of the RM for 0<q,1 and compare the uni
formly random limit q50 with the existing studies
@23,27,28#.

A. Numerical results

We first present results of extensive numerical simu
tions of the critical densities of percolationhc(q) as a func-
tion of q for three different types of objects: needles
length l, fibers ~rectangles! of length l and width v (l
nt

r-
-

ich

r-
l
is

e
e

its
the

n-
r-
-

-

.v), and disks of radiusr d . In each case, the system co
tains an inner box of lengthL and an outer box of lengthL
1L8, with free boundary conditions. The size of the ou
box is chosen so that the average density across the syst
constant within the inner box@34#. The centers of the object
are distributed within the outer box. However, only objec
partially or completely within the inner box are allowed
belong to the connected clusters. To keep track of the c
ters we have employed the cluster multiple labeling te
nique@35# applied in the continuum case where any numb
of intersecting neighbors is allowed. In our final analys
only one-sided percolation data were used.

The critical densitieshc(q) were obtained by depositing
fixed number of objectsN for a given system sizeL and
checking for percolation. This was repeated for increas
values ofN in the proper range of the particle densityh
5N/L2. In this way, the whole curve of spanning probabi
ties was obtained for each system sizeL. The point where
two such curves for any different system sizes intersect~the
fixed point! gives an approximate value forhc5Nc /L2. We
obtained these points by fitting the curves to error functio
The estimates thus obtained were extrapolated and the
values ofhc(q) obtained using the standard Monte Car
renormalization group~MCRG! method @21,36#, with the
smallest system studied being the reference system. For c
pleteness, we also evaluated the correlation length expo
n for our model from the MCRG procedure. In all cas
studied here, we find that it is consistent with the univer
value of 4/3, as in lattice percolation@19,33#.

1. Needles

Typical configurations generated by the model are sho
in Figs. 1~a!–1~c! for needles of unit length at the percolatio
threshold for various values ofq. Employing the MCRG pro-
cedure for 100–500 ensembles and for system sizeL
510,20,30,40,60, with 0.0<q<0.999 we obtain the value
for hc(q) as displayed in Fig. 2. The curve displays intere
ing behavior in the two limitsq→0 andq→1. First,hc(q)
approaches the limitq→0 approximately linearly. Second
the expected divergence ofhc(q) in the limit q→1 is clearly
visible. Our best estimate forhc(0)55.5960.05 agrees well
with other numerical studies reported in the literature for
uniformly random case~see, e.g., Refs.@23,27#!. In addition
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to the numerical estimates,hc(0) can be approximately de
termined by using the excluded volume arguments of R
@16#, wherehc(0)^A&5const'3.57, and the excluded vol
ume ^A&50.637@37#, which giveshc(0)'5.61.

2. Fibers

In the case of fibers, we have used objects with an as
ratio of l/v54/1. Typical networks generated are shown
Figs. 3~a!–3~c! at the threshold for various values ofq. Fol-
lowing the procedure employed for needles for system s
L510,20,40,80, and 0.0<q<0.999 we obtain thehc(q)
curve as shown in Fig. 4. These results have been obta
by averaging over 100–500 ensembles. In this case, the
no divergence ofhc(q) in the limit q→1. We shall discuss
this later in Sec. III B.

Our best estimate for theq50 limit is hc(0)52.74
60.03. This agrees well with the value reported by Prova
et al. @27#.

3. Disks

Typical networks of disks of radiusr d51/2 for various
values of q at corresponding critical concentrations a
shown in Figs. 5~a!–5~c!. For disks we use the reduced num

FIG. 2. The percolation thresholdhc(q) vs q for a network of
needles of lengthl51. Inset shows the behavior nearq51.
f.

ct
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ber densityh5Nrd
2/L2. Using the MCRG procedure as ex

plained above for system sizesL510,20,40,60,80,100 and
averaging over 10000 ensembles, we obtain thehc(q)’s as
shown in Fig. 6. Our best estimate forhc(0)50.3660.01
agrees within the errors with other numerical studies repo
in the literature~see, e.g., Refs.@21,27#!.

B. Analytic theory for percolation thresholds

1. The small q limit

We can qualitatively understand the behavior of the p
colation thresholds for the two limits whereq→0 and q
→1 by using mean-field type arguments, similar to R
@27#. First, let us discuss the limitq→0. To this end, let us
definer as the probability of a given object intersecting a
other object in a uniformly random network (q50). This
quantity depends on the dimensions of the object and
system sizeL. For example, in the case of fibers@38#,

r 5
2~l1v!2

pL2
1

2lv

L2
. ~1!

Define P(N) to be the probability that theNth particle
sticks on to the plane but not on any of theN21 previously

FIG. 4. The percolation thresholdhc(q) vs q for a network of
fibers of aspect ratiol/v54.
FIG. 3. Snapshot of networks of fibers with an aspect ratiol/v54 close to the percolation threshold (L520), for ~a! q50.9 (N
51148),~b! q50.99 (N51252), and~c! q50.999 (N51280).
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FIG. 5. Snapshot of networks of disks of radiusr d51/2 close to the percolation threshold (L520), for ~a! q50.8 (N5580), ~b! q
50.9 (N5584), and~c! q50.99 (N5590).
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deposited particles. The probability that the first object sti
on the 2D plane isP(1)51. The probability that the secon
object sticks on to the plane but not on the first one isP(2)

5(12r ). Continuing this forN particles, we find thatP(N)

5(12r )N21.
Consider next the uniformly random network of sizeL at

its percolation threshold withNc5Nc(0) objects. The num-
ber of nonintersecting objects will be, on the average,Ns
5P(Nc)Nc . This estimate is accurate in the low density lim
but at high densities it overestimates the trueNs due to over-
laps. The effect ofq.0 is to increase the number of nonin
tersecting objects due to repulsion, but the backbone of
percolation cluster itself may be assumed to stay constan
q!1. This implies that the percolation threshold increas
Since, on the average, a fractionq of the attempts to depos
an object are rejected, we estimate that the number of
ticles that can be added in such a way that they do not o
lap with the percolation cluster is given approximately byq
times the number of objects not belonging to the percola
cluster, to which a lower bound isqNs . Therefore, at the
percolation threshold forq!1 we have

Nc~q!*Nc~0!1qNs5Nc~0!1qP(Nc)Nc~0!. ~2!

FIG. 6. The percolation thresholdhc(q) vs q for a network of
disks of radiusr d51/2.
s

e
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For the critical density we thus obtain

hc,L~q!*hc,L~0!1qP(Nc)hc,L~0![Aq1B, ~3!

where A and B are constants. Therefore, we can conclu
that hc,L(q) increases linearly withq. This is also visible in
our numerical data for the percolation thresholds. We c
show that in theL→` limit the slope is given by

A5hc~0!expF2hc~0!S 2~l1v!2

p
12lv D G . ~4!

We have estimated the slope from numerical data and
that for needlesA50.44 while the lower bound of Eq.~4!
givesA50.16.

2. The divergence of the threshold for needles

The divergence of the percolation threshold for needle
to be expected since they have no area associated with t
Because of this they can be packed arbitrarily close to e
other. From our data we find that the percolation thresh
hc(q) diverges in theq→1 limit as (12q)2y, with y
'0.2060.05.

We can analytically estimate the divergence by using
results of Ziff and Vigil@39# in the RSA limit. They find by
numerical simulations that the number of accepted attem
per unit area scales with the normalized number of adso
tion attempts asn(t)}tx, with x'0.32, wheren5Nl/L2

and t5Tl/L2 @40#. Here,N is the total number of accepte
attempts andT is the total number of attempts.

If we consider the deposition process close toq51, a
total number of attemptsT1}1/(12q) is needed before
deposition of a singleoverlappingneedle occurs. Using the
results of Ref.@39#, during this time approximatelyns'T1

x

nonoverlapping needles are adsorbed. Assuming thatns}n
and using the fact thatn5h ~here l51), gives, close to
percolation and in the limitq→1,

hc~q!}
1

~12q!x
. ~5!
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This result is in reasonably good agreement with our nume
cal data, although it is evident that we would need more d
points closer to the limitq51 to more accurately obtain the
scaling exponent.

In the cases of disks and fibers, the deposited objects h
a finite area associated with them. In these cases, there i
divergence ofhc(q). This is due to the finite jamming limit
h j in the RSA model, where the deposition process term
nates since objects are not allowed to overlap. When m
objects than this limit are deposited, the nonoverlap con
tion is violated, and thus there will eventually be spanning
the system. In fact, an upper bound for the percolati
threshold for objects of finite area can be estimated
hc(q)&hc(0)1h j for all q.

IV. SPATIAL CORRELATION FUNCTIONS

In recent studies of the FM, nontrivial spatial correlatio
were found in the networks formed by deposition below a
in the vicinity of the percolation threshold@27,28,32#. They
manifest themselves in the radial pair distribution and ma
density correlation functions. In this section, we present n
merical and analytic results for spatial correlations in the R
for various values ofq, and close toq51 in particular.

A. Pair distribution function

1. Needles

Consider the distribution of centers of mass of needles
unit length. The pair distribution functionV(r ) is defined
through

V~r !dr

5 K Number of pairs of centers in a shell~r ,r 1dr !

Total number of pairs of centers in systemL ,

~6!

where the averaging is over all configurations. LetDNCM(xW i)
be the number of centers of mass within the area elem
DA(xW i) around the position vectorxW i . The number of pairs
included in two different area elements is then given by t
product DNCM(xW i)DNCM(xW j ). Further, the total number of
pairs separated by vectorxW in a given configuration is

(
xW0

DNCM~xW0!DNCM~xW01xW !. ~7!

Dividing this by N(N21)/2 we obtain the probability of
finding a pair of centers of mass separated by the vectorxW in
a given configuration. Multiplying and dividing by area ele
ments yields

V~r !dr5
2

N~N21! K (
xW0

DNCM~xW0!

DA~xW0!

DNCM~xW01xW !

DA~xW01xW !

3DA~xW0!DA~xW01xW !L , ~8!
i-
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where we have assumed that the system is isotropic and
V depends onr[uxW u only. The angular brackets denote co
figuration averaging. Taking the continuum limit whe
hCM5 limDA→0(DNCM /DA), we obtain

V~r !dr5
2

N~N21! K EA
d2x0hCM~xW0!

3hCM~xW01xW !DA~xW01xW !L . ~9!

Hence,

V~r !dr5
2

N~N21!
E

A
d2x0GCM~r 0 ,r !DA~x01x!,

~10!

where

GCM~r 0 ,r ![^hCM~xW0!hCM~xW01xW !&. ~11!

In Ref. @27#, it is shown that for a uniformly random set o
points with translational invariance this expression equals
exact pair distribution functionVa for a uniformly random
network previously derived by Ghosh@4,41# as

Va~r ,L !

5H ~4r /L4!~pL2/222rL 1r 2/2! for 0<r<L

~4r /L4!{ L2@arcsin~L/r !2arccos~L/r !#

12LAr 22L22 1
2 ~r 212L2!} for L<r<A2L.

~12!

In Fig. 7~a! we show this function together with our numer
cal results of the pair distribution function of Eq.~8! for
various values ofq. The remarkable result is that within th
numerical errors there is no dependence onq. This can be
explained as follows. Forq.0, objects are rejected durin
the deposition process, but the center-of-mass coordinate
the objects that will stay in the final configuration are s
taken from a uniformly random distribution. Since need
have no width associated with them and they can be pac
arbitrarily close to each other, the distribution of pairs
centers of masses~i.e., V) remains constant inq. We note
that this result is in marked contrast to the FM, where
double-peak type of structure inV develops when clustering
of fibers is enhanced in the limitp→0 @27#.

2. Disks

The behavior of the pair distribution function must d
pend onq for objects with finite area. To illustrate this, w
consider here the case of disks of radiusr d . In the RSA limit
(q51), all objects are restricted not to be closer than tw
the disk radiusr d . Thus, we can write the RSA approxima
tion V f in this limit as

V f~r !5Cu~r 2r c!Va~r !, ~13!

whereu(r ) is the step function, andC a normalization con-
stant. In Fig. 7~b! we show our numerical data forV(r ), with
q50.9, 0.99, 0.999, and 0.999, and also the functionV f(r ).
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In the limit of q→1, a cutoff inV(r ) develops atr c52r d
corresponding to the nonoverlap condition. Following th
there is a sharp peak atV(r ) just beyondr c , where the disks
are packed very closely together. We note that the appr
mation of Eq.~13! is unable to reproduce this peak, since t
excess mass density cut off by the step function is uniform
distributed whenV f(r ) is properly normalized.

B. The two-point mass density correlation function

The two-point mass density fluctuation correlation fun
tion is defined as

G~xW ![^@m~xW8!2^m&#@m~xW81xW !2^m&#&, ~14!

wherem(xW ) is the mass density atxW , and^m& is the average
mass density. This correlation function is a measure of
mass distribution in the network. We calculatedG(r ) nu-
merically by discretizing fibers on lattice points. The latti
model was solved with periodic boundary conditions a
with the aspect ratiov:l:L52:20:150, which is quite close
to the needle limit. The lattice size was checked to be la
enough so that finite size effects do not affect the correla
function in the range of interest.

FIG. 7. Pair distribution functions for~a! needles of lengthl
51 and~b! disks of radiusr d51/2. See text for details.
,
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In Fig. 8 we show a series of the functions forq50.999.
As N increases towardNc'200, there is an increasing ant
correlation inG(r ) just beyond the fiber widthv52. This
reflects the effective repulsion and local alignment of ani
tropic particles present in the model. Moreover, we find t
G(r ) can be approximated by

G~r !}r 2a(N,q) for 0,r ,L~N,q!, ~15!

whereL is an effective cutoff for the power law form. Fig
ure 9 shows the effective exponentsa(N,q) vs N for the
model for different values ofq. For q50, a(N,0)'1 as
expected@27#. The cutoff here is of the order ofL'l/2 for
all values ofN @4,27#. Whenq is close to unity,a(N,q) goes
through a maximum asN increases. Moreover,L attains a
minimum wherea is maximum. This is again in contrast t
the case of the FM, where the range of the approxim
power law form was found to have a maximum close to
threshold, when clustering was enhanced@27#. We note that
for N@Nc the mass density of the networks again a
proaches the uniform distribution for anyq,1 @27#.

FIG. 8. The pair correlation functionG(r ) for a discrete ap-
proximation of fibers (l/v520/2) vs N for q50.999. The inset
shows the initial power law type of decay ofG(r ) for short dis-
tancesr ,l/2.

FIG. 9. The effective exponents ofG(r ) vs N for various values
of q. See text for details.
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V. CONCLUSIONS AND DISCUSSION

In this work, we have presented a study of the percolat
properties and spatial correlations in a simple 2D continu
deposition model, where there is a tunable interparticle c
tact repulsion. When this repulsion becomes strong, there
dramatic changes in the properties of the deposited netwo
In particular, through a combination of numerical data a
analytic arguments we have shown how for widthle
needles the percolation threshold diverges in this limit. Ho
ever, for objects with finite area there is just an increas
trend in the critical density. Interestingly enough, in the sa
limit the spatial pair distribution function shows no chan
for needles, but develops a finite cutoff radius for finite a
r

.

.

r
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n
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re
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d
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g
e

a

objects~disks!. The effective repulsion and local ordering fo
anisotropic objects are also reflected in the mass density
relation function, which shows anticorrelation for densiti
near and below the critical density. Finally, we hope that
present results can be used in experimental studies of de
its of particles with repulsive interactions.
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