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Theory of the Shubnikov—de Haas effect in quasi-two-dimensional metals

P. D. Grigoriev
L.D. Landau Institute for Theoretical Physics, 142432 Chernogolovka, Russia
and Grenoble High Magnetic Field Laboratory, MPI-FKF and CNRS, Grenoble, France
(Received 4 April 2002; revised manuscript received 24 October 2002; published 2 Aprjl 2003

The Shubnikov—de Haas effect in quasi-two-dimensional normal metals is studied. The interlayer conduc-
tivity is calculated using the Kubo formula. The electron scattering on short-range impurities is considered in
the self-consistent Born approximation. The result obtained is given in the analytical form, that allows an easy
comparison with experimental data. It differs from the result derived using the Boltzmann transport equation.
This difference is shown to be a general feature of conductivity in magnetic field. A detailed description of the
field-dependent phase shift of beats and of the slow oscillations of conductivity is provided. The obtained
results are applicable to strongly anisotropic organic metals and to other quasi-two-dimensional compounds.
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[. INTRODUCTION interlayer conductivity is obtained in the self-consistent Born
approximation in Sec. Ill. A discussion of the results ob-
Magnetic quantum oscillations were discovered long agotained and the comparison with experimental data are given
and were frequently used as a powerful tool for studying thd" Sec. IV. In Sec. V the results are briefly summarized.
geometry of Fermi surfaces and other electronic properties of
various metald. In recent years, quasi-two-dimensional
(quasi-2D materials(as, e.g. organic metatsheterostruc-
tures, intercalated compounds, hidgh superconductojs We consider a quasi-2D metal in a magnetic field perpen-

have attracted a great deal of interest. Magnetic quanturgiicular to the conducting layers||z (a generalization for
oscillations in quasi-2D organic metals were reviewed, forarbitrary tilt angle of magnetic field is discussed in Sed. IV
example, in Ref. 3. The electron spectrum of a quasi-2D electron gas in a mag-
A theory of quantum magnetization oscillations in netic field is then given by
guasi-2D compounds was recently provided in a number of
theoretical papers:® It gives a rather good agreement with e(n,ky) =hwe(n+1/2) -2t cog k,d), (€
experiment. Attempts to make a theoretical description of thgyhere t is the interlayer transfer integrak, is the wave
quasi-2D Shubnikov-de HadSdH) effect were not as suc- vector perpendicular to the layerd,is the interlayer dis-
CeSSfUl, although some work in this direction appeér@do tance' andwC:eB/m*C is the Cyclotron frequency_ Both
The existing theory of the de Haas—van Alphen effect reli-; ,  andt are assumed to be much smaller than the Fermi
ably allows us to determine the Fermi surface structure frongnergy.
the experimental data on different quasi-2D compouses, To calculate the conductivity we use the Kubo formtfia.
e.g., Refs. 11, 12, and Ref). However, two qualitative ef-  The procedure is similar to that in three-dimensional metals
fects peculiar to the quasi-2D magnetotransipoaimely, the  \ithout a magnetic fieldRef. 22, Sec. 7.1)2In a magnetic
phase shift of beats and the slow oscillations of magnetoresg|q only the set of quantum numbars={nk, k,} should

sistancg were observed in a number of quasi-2D Or9aniChq \sed instead of the momenufmand the alternative dis-

metalst*~1° An explanation for and a brief qualitative de- . . . ;
S : persion relatiofEq. (1)]. We consider only the perpendicu-
scription of the phase shift of bedtsased on the Boltzmann lar layer componentr,, of the electric conductivity, since

transport equatignwere proposed only very recerfyto- this component is simpler both for measurements and for a

gether with a comparative experimental study of this eﬁeCttheoreticaI description. An evaluation of the Kubo formula
However, a quantitative agreement between theory and ex

periment has not been achieved in this paper. The idea th)’ﬁ'thom vertex corrections gives

slow oscillations may arise as an entanglement of different 24 5 de ) ,

rapidly oscillating contributing factors in conductivity which  0zz= % vz(m)J 5,12 IMGgr(m,e)]T—ne(e)],

have slowly oscillating amplitudes due to beats was also re- %)

cently suggested in Ref. 21, and proved by presenting experi- )

mental results on temperature and angular dependence Where the volumé&/ normalizes the sum over quantum num-

slow oscillations. The theoretical description of the slow os-bersm, e is the electron charge, is the electron velocity,

cillations was also based on the Boltzmann equation, that calfi€ limits of the integration over are (—%;=), n.(e) is the

be used only for a qualitative description. In this paper wederivative of the Fermi distribution function,

give a more accurate quantitative description of the quasi-2D b

SdH effect, based on the Kubo formalism. —nf(e)=1{4T cosi[(e— w)/2TT}, 3)
In Sec. Il the general formula for the interlayer conduc-and the electron Green’s functidbr(m,€) is related to the

tivity [Eq. (10)] is derived. A simple explicit formula for retarded self-energy pa®®(m,e) by

Il. GENERAL FORMULA FOR INTERLAYER
CONDUCTIVITY
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[0
[e—e(m)—ReSR(m, e)]2+[Im3R(m,e)]? 1? }\

4 I /\
The self-energy paER(m, ) arises from the electron scat- Z — l _.’_ é ;
tering. The main contribution to the resistance comes from
the short-range impurity scattering. We approximate the FIG. 1. The Dyson equation for the irreducible self-energy in
short-range impurities by pointlike ones. We also disregardhe self-consistent Born approximation. The double solid line sym-
the diagrams with intersections of impurity lines in the self- bolizes the exact electron Green’s function.
energy(the contribution of these diagrams in the 3D case is

Im3R(m,e)

Im GR(m,e):

negligible, and if we consider the case Ty this contribu-

tion is also negligibly small Then the electron self-energy
part depends only on the electron energy and not on the

electron quantum numberssR(m,e)=3R(¢€). This fact

greatly simplifies the calculations because the sum over th
quantum numbers in formula (2) can be now computed

analytically.

In the real part RER(€) of the electron self-energy one

can only keep a small oscillating part B8(¢). The remain-
ing weakly dependent term of R&(e) produces only a

constant shift of the chemical potential. This does not influ-
ence the physical effects and, hence, is omitted in the subse-

quent calculations. The small oscillating part ¥&e) al-

ways come in the combinatior* =e—ReSR(¢). The
imaginary part of the self-energy IBf(€) describes the mo-

wheree* =e—ReSR(e), and

Rp(k,e)=exp —27|K||[Im2R(e) |/ we) 9)

gas a form similar to that of the usual Dingle faciy (k)
= exp(—2mkksTp /hw,). Collecting formulag6) and (8) we

obtain

(—1)k2td? [4mkt
hk N fw,

» F{211'ike*) 1 +2’7Tk
ex
hoe ||mER(E)| hoc

Note that this expression has an additional terfik2 w.
near the standard |h SR(¢€)| term in round brackets in the

de -
2= Ny f 7 (TNEe) 2

Ro(k,€). (10)

mentum relaxation of electrons and, therefore, is very imporsecond line. This term cannot be obtained from the Boltz-

tant for conductivity.

Performing the summation ovéy, in Eq. (2) and chang-
ing the integration ovek, by an integration over energy
=¢(n,k,) we obtain

de’ de
Uzz:ezNLLdf ? ; |Uz(€,vn)|f 54[““ GR(Elue)]z

5

X[=ng(e)],

mann transport equaticqicompare, for example, with the re-
sults of Refs. 20 and 21Let us reveal the origin of this
term. The functiof 2 ImGg(e’,€)]2=G4+ G3—2GGR in

Eq. (7) has one first-order pole and one second-order pole in
each complex half-plane. The first-order poles appears from
the last term—2G,Gg while the second order poles come
from G4+ G%. In the standard theory only the first-order
poles are taken into account. In the 3D case the contribution
from the second-order poles is small by a factorhef /2t

where N =B/®.d is the electron density on one Landau ~%@./eéz<1, and can be neglected. However, in the
level, ®,=2whcle is the magnetic flux quantum, and the quasi-2D case(where fiw/2t~1) the contribution of

electron velocity ,(€,n) is given by Eq.(A2). To go further
we have to transform the sum over Landau leyklss) to a

second-order poles becomes important. As one can see from
formula (18) this contribution~#Ty/t and is, probably,

sum over harmonics. This can be done using the Poissopnly a first-order term in the expansion oveilp/t. The

summation formuldAppendix A). Substituting Eq(A3) into
Eq. (5), we obtain

de

2m

k2td2 47kt
ik 1

hwe

Oz~ ezNLLk;x (-1

X(=ng(e)l,(e.k), (6)

where one should use the expansibitkx)/k=x/2 for the
zeroth harmonik=0, and the integral,(e,k) over e’ can
be easily evaluated with Green’s functiof),

de’ , 5 2mike’
IZ(e,k)Ef Z4[|mGR(€ ,€)]°ex P (7)
B ;{ZWike*) 1 2k
=ex oo, ImsRe)] + oo, Rp(k,e), (8)

case wTp/t>1 corresponds to the so-called incoherent
limit,® which we do not consider here. To go further, we need
an explicit form of the electron self-energy which enters for-
mula (10). It is calculated in the next section.

IIl. CONDUCTIVITY IN THE SELF-CONSISTENT BORN
APPROXIMATION

We consider electron scattering only by short-range impu-
rities because these impurities make the main contribution to
the relaxation of electron momentum. To calculate the elec-
tron self-energy we use the self-consistent Born approxima-
tion. A graphical representation of the Dyson equation for the
irreducible self-energy part in the self-consistent Born ap-
proximation is shown in Fig. 1. By such an approximation
we neglect the multiple scattering of an electron on one im-
purity (no more than two dashed lines go to one impurity,
denoted by a cross in Fig).IThe single dashed line in Fig.
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1 corresponding to the first-order term leads only to a conrelated to the average Dingle temperaturép:
stant shift of the chemical potential and, hence, can be omit|Im 3R(m,€)|)=7kgTp . From formulas(11)—(13) we ob-
ted. tain

The corresponding analytical expression is

||m2R(m,E)|:’7TkBTD

47Tkt)

hw

1+2> (-1)4 (
ER(m,e)=<2 UZG(ri,ri,E)>=ciuzf d3G(r,r,E), k=1 °

(D X cos( 2mke ) Rp(k,e€)

where ¥, is a sum over all impurities and the brackets ho
(---) denote an averaging over impurity positio;is the  Together with Eq.(9) this gives a nonlinear equation for
concentration of impurities which are assumed to be uniim3R(m,¢). We can solve it in the strong harmonic damp-
formly distributed?* The electron Green’s functio®(r,r,E)  ing limit by making an expansion in the small parameter
in formula (11) contains the self-energy determined by ther % w /272t (that is the ratio of oscillating and constant
same formula(11). The Green’s function is uniform along parts of the density of statesTo treat the slow oscillation
the conducting planes. Hence one can write accurately one also has to pick up all second-order slowly
oscillating terms. We obtain

. (15

G(r,r,.E)=|¢(2)|*G(E). (12

4t 2me

The electron wave functios(z) alongz axis does not enter [Im=R(e)|~ kaTD{ 1- 230<ﬁ—) cos( —) ROD} ,
) s . : ¢ hog

the final result because it disappears after integration nver (16)

in Eqg. (11), and

whereRgp = exp(—27°ksTp /iwy). There is no slowly oscil-

—N_, lating second-order term in the self-energy in the Born ap-
G(E)= o A(E)+im|1+2 proximation. At this point the real part of the electron self-
¢ energy is important because it cancels the contribution from
o Akt E—-3(E) the entanglement with the oscillations of the Dingle factor
x> (_1)k30( )exp( 27-rik—) ] [Eg. (9)]. Disregard of the real part of the self-energy may
k=1 haoc haoc incorrectly lead to an additional slowly oscillating term in

(13) conductivity?® In the second order in damping factors any
combination of the form
A(E) is a slowly varying function of energy which can be

taken at the Fermi energyA(E)~A(Eg). The value of 2m(e—Re3SR(e)) —2x|[Im2R(e)|
A(Eg) is not important for conductivity in the Born approxi- co frwg exp{ fiog )
mation.
Formulas(12) and (13) can be derived by performing a 2me
summation over the electron quantum numbens :C°S< ﬁ_wc> Rop (17

={n,k,,k,} in the definition of the Green’s function:
does not produce a slowly oscillating term. This statement

W (DW () can be easily checked by substituting Etfl) with Eq. (13)
G(r,r,E)= >, T T T (14)  into Eq.(17).
nigk, E—e(nk,)—2(E) Substituting Eqs(16) and (17) into Eq. (10), we obtain

) ) the following expression for the conductivity:
The electron wave functloﬂfn,kz,kx(r) in the Landau gauge

is approximately given by

Oz7— UOJ dE[—n,/:(e)]

ei(kx><+kzz) .
Wik (1) = ———xa(Y=Y0) ¢(2), _foc, (4mt) [2me
LyL; y ! at J1 hw co hw Roe)
where yo,=—chk,/eB, and the normalization condition 1-23 (ﬂ) cos( ZWf*)R (€)
IZ.lxn(y)|?dy=1 should be used to perform the integration Ot hog | 27|
overk, in Eq. (14). The further calculation of the sum in Eq. |
(14) is similar to that in Eq(2).
The Born approximatiofformula(11)] takes into account _ 2mkgTp 4t 2me* Ro(e) b . (18)
only the first term of the expansion in the small parameter t N, co hog p(e)
7UN | /how.=mfld, wheref is the scattering amplitude on

impurities. The imaginary part of the self-energy in the Born
approximation is proportional to the density of stefté$he  where the nonoscillating part of the conductivity ig,
mean value of the imaginary part of the self-energy is simply~ (€N, 2t?d?)/(h2w mkgTp).
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If the transfer integral is large enough ##>% w.) one 0.2
can use an expansions of the Bessel function at a large value

: 0.1
of the argument: =
Jo(X)=\2/mx cogx—ml4), x>1, ?o'o'_
=04 -
Ji(X)~\2lmx sin(x—w/4), x>1. £
B 02
Then, again performing an expansion in the small parameter 3 !
(Rp VA w/27t) and making use of the standard trigonomet- § -0.3 4
ric formulas we obtain 1
0.4 T T T T T T

0l10l20l30l40l50l60
B hod(l+a?) 27w .
07— 0 1+2 2772t CO h(z)c o.s_.

—
Amt  w ot %0'4-
X CO ﬁ_c%_z+¢b RD RT E 0.2
£ 0.0
hoe > 4wt w 2z ]
+_2772tRD\/1+aSCO 2 ﬁ_a)(:_z+¢s s _%,-0.2-
c 4

(19 Sas]
where the phase shift of the beats is .o.s. ——r—
0 10 20 30 40 50 60
hw 2wk T in Ei
bp=arctaia), a= 27th n th D)7 (20 Magnetic Field [Tesla]
C

FIG. 2. Interlayer conductivity given by formuld9) (a) and by
the standard LK formul#b) at the same parameters. The difference

and the phase of slow oscillations is
between the L-K formula and the new formula is very pronounced.

¢s=arctarfag)/2 where ag=rfw/2mt. (21)

The parameters are taken to be relevant to the SdH effect in
B-(BEDT-TTF),IBr, in a tilted magnetic field. The parameters are

The temperature smearing factor is given by the usualp=0.4 K, T®'=1.0 K, T=1.2 K, andF,=10 T, that correspond

Lifshitz—Kosevich(LK) expression:

to the tilt angle6~26° or —12°.

272K Tl o, IV. DISCUSSION OF THE RESULTS

RT: ) > .
sinh(27kg T/ w.)

Above we performed a detailed calculation of the inter-
layer magnetotransport in quasi-2D normal metals. The spe-
It appears in the fast Shubnikov oscillations after the integraeific features of quasi-two-dimensionality and strong mag-
tion of a rapidly oscillating function of energy with the Fermi netic field result in several qualitative effects. The standard
distribution function. The slowly oscillating term depends formula for conductivity(derived for 3D metals but tradi-
only on the transfer integraland is independent of energy. tionally used also for quasi-2D compounds
Hence it does not acquire any temperature smearing.

The superscript tot” after the Dingle-type damping fac- . hog 4t 27
tor R®' of the fast quantum oscillations means that thisozz =00} 1+2 > COS(ﬁw _Z) Rp Rr COS{ . )
damping factor comes not only from the short-range impuri- 2mt ¢ C22
ties (like Rp of slow oscillationd) but from all crystal im- (22)
perfections such as macroscopic sample inhomogeneities adgscribes neither the phase shift of beats nor the slow oscil-
other long-range defects. lations.

Phase shift20) obtained from the Kubo formula is larger In Fig. 2 | plot a general view of the conductivity as a
than that of Ref. 20, formul#9), obtained using the Boltz- function of the magnetic field using the formufk9) (a) and
mann transport equation by a factor4272kgTp /A w,). the standard 3D formulgEg. (22)] (b). The difference be-
This difference originates from the additional termi2% o,  tween the LK prediction and the new formula is clearly vis-
near 1/im 3R(¢)| in round brackets in the second line of Eq. ible. For example, the outer beat node is shifted fBffye
(10) that comes from the fast energy dependence of the elec=26.7 T to B,,,qe=53 T. Practically, this means that the
tron mean square velocifsee the discussion after formula outer beat nodéexpected at 26.7 )Tmay disappear because
(10)]. The slowly oscillating term in Eq.19) does not differ  the field of 53 T is reachable only in pulsed magnets at the

from that in[Ref. 21, formula(4)], though the present deri- present time. The parameters in Fig. 2 are taken to be close
vation is more rigorous. to that of real experiments q8-(BEDT-TTF),IBr,; in other
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0 with the experimental data on the field dependence of the
phase shift of beatg,(B) is shown. The experimental points
0.6r + 1 are taken from Ref. 20. The standard 3D magnetotransport
051 theory givesg,=0. The dashed line is the prediction of the
Boltzmann transport equation with the valuetaéken from
0.4l ] the beat frequency. This line cannot fit the experimental
s points properly. The solid line is the result of the present
E’ 0.3t 1 theory, based on the Kubo formula. It gives a much better
agreement with the experimental points. However, the last
02r / T experimental point at the highest fieRl=15.7 T is not in
accord with the theoretical line. This is because at rather high
01r magnetic field the Born approximation faildue to a strong
0.0 N degeneracy of the L)sand resul{20) becomes only a first-
0 2 4 6 8 1012 14 16 order term in the expansion oveikg T/t andZ w,/t.
B[T] The slopes of the solid and dashed lines in Fig. 3 are the

) _ _ same (they are determined by the ratibw./27t). The
FIG. 3. A comparison of the results of different theoretical mOd'phase shift in our approach increases by a constant

els with the experimental data from Ref. 20 on the field dependencg;]_ka-l—D /t. This augmentation contairf, , which is the part

of the phase shift of beats. The standard 3D theory gi#¢s0. ot the pingle temperature arising only from the short-range
The dashed line is the prediction of the Boltzmann transport equ"’\’mpurities Approximately the same Dingle temperature en-
tion while the solid line is the result of the present thetsge the ters the .S|0W oscillations. In Fig. 3 the value

text. : : 9. D

ey ~0.15 K is taken from the Dingle plot of the slow
oscillationg! (the measurements in Ref. 21 were done on the

compounds or at higher tilt ang(@here the interlayer trans- .
P g ol y same sample as in Ref. 20

fer integral is less several timeFEig. 2 is scaled along the . !
x-axis by the same factor. The next node at lower fields is The slow oscillations in formulgl9) do not have a tem-

shifted much weaker: from 11.5 to 13.5 T. If one uses thes@€rature damping factor. Hence, although the amplitude of
two node positions to determine the beat frequeRgyac- the slow oscillations contains the square of the Dingle factor

cording to the LK formuldEq. (22)], which gives (they are a second-order effgctt can be larger than the
' amplitude of the fast SdH oscillations &t- T . The ampli-

BLK J2F,=4/(4n—1), n=1,2,3 (23)  tude of slow oscillations diminishes only at much higher
nod b 1 159 sy . . .

_ _ temperatures because the oscillations of the density of elec-
one obtainsF,=9 T instead of the correct answéf, tron states(DoS) are damped by the electron-phonon and
=10 T. One will obtain a much larger error if one tries to electron-electron interactions. In normal 3D metilthe
determine the beat frequency using only one beat node anslectron-electron d-e) scattering rate I~ (kgT)%/%u
formula (23). For example, for the outer node<€1) atB  while the electron-phonon  scattering rate 7.}/
=53 T one would geF,~20 T instead ofF,=10 T. The  ~(kzT/4)(kgT/%wp)?. One can estimate the effect of these

beats of magnetoresistance oscillations in layered comscattering processes on the DoS oscillations by introducing
pounds are used for estimating the interlayer transfer integrahe additional damping factor

2t=F (% w/B) that determines the electronic properties of

strongly anisotropic compounds. The field-dependent phase Rrp~exH — m( Yo, oot Lweor)] (25)
shift of beats may lead to the errors in this estimate. The cee e
modification of formula(23) is analogous to the usual Dingle factor. This factor enters

squared in the amplitude of slow oscillations. The tempera-
Broad2Fp=4/(4n—1-4¢p/m), n=123..., og  lureTsoat which the slow oscillations become damped by
(24 this factor is much higher than the characteristic temperature
where ¢y, is given by Eq.(20). of the damping of fast quantum oscillations. It is approxi-
The field dependence of the phase skiff was studied mately given by n{l/w TedTso) +LwTpn(Tsg)]=1. In
experimentally in Ref. 20, and the result was compared wittihe experimerit the slow oscillations were damped at tem-
the prediction of the Boltzmann transport equatibig. 4 of  perature~9 K.
Ref. 20. It was noted there that the slope of the fit line to the  The present analysis is made when the magnetic field is
experimental points according to the Boltzmann equatiorperpendicular to the conducting layers. A finite tilt angle
corresponds to the value of the transfer integtal of the magnetic field with respect to the normal to the
~0.48 meV or the raticAF/F~1/230, which is 2.3 times conducting planes may approximately be taken into account
less than the valuAF/F=1/96 obtained directly from the by a rescaling of the Landau level separatiom,
ratio between the beat and the fundamental frequencies. This w. cosé, and of the warping of the Fermi surfat®t( 6)
discrepancy was attributed to the approximate character of£t(0)Jy(ked tand), wherekg is the in-plane Fermi momen-
the theoretical model, based on the Boltzmann transpotum. This result is based on the semiclassical approximation,
equation. The present theoretical model is more rigorous. and the assumption that the Fermi surface remains the same.
In Fig. 3 a comparison of the different theoretical modelsThe quantum mechanical calculation of the dispersion rela-
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tion in a tilted magnetic field in the first order of the transfer ACKNOWLEDGMENTS
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In the above calculations we omit the spin splitting. Sinceq7729a and INTAS Contract No. 01-0791.
the impurity scattering is spin independent, one can take the

spin splitting into account by the replacement in the final
answer, o, u)—[o,Amu—Ag)+o,{u+Ag)]/2, where APPENDIX A: TRANSFORMATION OF SUMS OVER LLS
Ag=efiB/mgc is the shift of the Fermi level due to the spin TO SUMS OVER HARMONICS

splitting [the conductivity given by formula&?) and (19) To transform the sums over the LL number into harmonic

already has a factor 2 due to two spin orientation : X
.  SF : sums we shall apply the Poisson summation forffula
The entanglement with the oscillations of chemical poten-

tial contributes an additional temperature-dependent term to

the slow oscillations of conductivity. This term can be easily ” ” ©

obtained by substituting EqB2) into Eq. (19). However, Z f(n)=k2_m e?™kf(n)dn, (A1)
this term has additional small factoR? and RYRp)? o - 2

compared to the main slowly oscillating term. ) . . . .

Slow oscillations do not appear in the magnetization pelvhere ae (no—1:ng). This formula is valid for arbitrary
cause there is no suitable entanglement of different oscillatf-unCF'on f(n): The electron velocity is determined from dis-
ing quantities in the magnetization. The magnetization, beiné’erSIon relatior(1) as
a thermodynamic quantity, is completely determined by the
electron density of states that does not have slowly oscillat- de(n,ky,) 2td
ing terms. The mixing with the oscillations of the chemical vo€n)=—m — =~ —sin(k,d)
potential, or with those of the Dingle factor and of R&(¢), ‘
also does not lead to slow oscillations of magnetizatsee
Appendix B.

The above analysis does not take into account the vertex
_co_rrec_t_ions. In our cas@®f pqintlike impurity _scatt_eringthis The sum in Eq(5) now becomes
is justified because, according to the Ward identity, the vertex
I'(m,E)=p+meV,2R(m,E). Hence, if the retarded self- .
energy depends only on the energy, the vertex corrections ae> 1, (en))= 9\/4t2—
zero. The fact thakR(m, €) is approximately a function of TR n=oh
energye only is a consequence of the short-rarige point-

:;L\/4t2—[e—ﬁwc(n+ 1/2)]2. (A2)

2

1
E_ﬁwc n+ E

like) impurity potential. In the three-dimensional case with- d 7 i “d 2mik(n— E
out a magnetic field the vertex corrections produce an addi- Th “’Ckz,w 0 n g
tional factor (1-cosa) in the transport scattering relaxation

time (« is the scattering angleBut the scattering probability \/ 2t \? € 2

is independent of the scattering angle in the case of pointlike X ﬁ_wc - ﬁ_wc —-n

impurities, and the additional termcos« vanishes after the
integration over angles. Hence the vertex corrections vanish. d 27rike)

= hog Ew (—1)kexp( ”

C

V. SUMMARY
0 2
In this paper a quantitative theory of the Shubnikov—de xf dxe?mikx ( 2t ) —x?

Haas effect in quasi-2D metals is developed. The calculation - haog

is based on a Kubo formula that is more accurate than the o K )

calculation based on the Boltzmann transport equation, and _ dt(-1) ;{277”(5) (47Tkt)
gives a much better agreement with experimeee Fig. 3. k=== h Kk hoe |7 hog |
The final result is given in analytical form, that allows a (A3)

convenient comparison with any experimental data. Formu-
las (199—(21) and (24) describe the general features of _
quasi-2D magnetoresistance and are applicable not only this formglaforthe zeroth harmonic=0, one should use
organic metals, but also to heterostructures, intercalateti'® €xpansiody(kx)/k=x/2.

compounds, and other layered or quasi-2D metals. The prop-
erty of the slow oscillations to remain at much higher tem-
peratures than that of the usual quantum oscillations may be
useful for studying the layered high-temperature supercon- The first harmonic of the oscillating part of magnetization
ductors. is given by(see Ref. 6, formula)é

APPENDIX B: MAGNETIZATION
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THEORY OF THE SHUBNIKOV-de HAAS EFFECT IN.. ..

2m[ep+1(B)]

2N &g
sin hro

M(B)= s

4t

_) RrRsRo(eF).

*Jo ho
Cc

(B1)

where the oscillating part of the chemical potentialRef. 6,
formula 5

~(B)= hw.
T L ne(er)]
[ 2m[ep+m(B)] At
Xsin ﬁ—wc Jo ﬁ_wc RtRsRp .

(B2)

The entanglement of magnetization oscillations with the os-

cillations of the Dingle factofEq. (9)] produces an addi-
tional term
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[ 2meg 3 4t y 2meE 3 477'[)
oC _— _
sin hoe |\ o, o hoe | "\ o,
1  [4mep)| ,[4mt
s )i %)

which gives rise to the second harmonic but makes zero con-
tribution to the slow oscillations of magnetization.

The entanglement with the oscillations of the chemical
potential[Eq. (B2)] produces the term

(2a[ep+u(B)]| _ [2mee .(2wsF
oC — =
SN ﬁwc SN ﬁwc Sl ﬁwc
2mu(B
hwe
N 2meg\ | [ 2meg ] 47t\ 2R{Rp
o hog sin hoe |\ hw. 1+ng’

which also contributes only to the second harmonics
higher harmonicsbut not to slow oscillations.
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