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Theory of the Shubnikov–de Haas effect in quasi-two-dimensional metals
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The Shubnikov–de Haas effect in quasi-two-dimensional normal metals is studied. The interlayer conduc-
tivity is calculated using the Kubo formula. The electron scattering on short-range impurities is considered in
the self-consistent Born approximation. The result obtained is given in the analytical form, that allows an easy
comparison with experimental data. It differs from the result derived using the Boltzmann transport equation.
This difference is shown to be a general feature of conductivity in magnetic field. A detailed description of the
field-dependent phase shift of beats and of the slow oscillations of conductivity is provided. The obtained
results are applicable to strongly anisotropic organic metals and to other quasi-two-dimensional compounds.
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I. INTRODUCTION

Magnetic quantum oscillations were discovered long a
and were frequently used as a powerful tool for studying
geometry of Fermi surfaces and other electronic propertie
various metals.1 In recent years, quasi-two-dimension
~quasi-2D! materials~as, e.g. organic metals,2 heterostruc-
tures, intercalated compounds, highTC superconductors!
have attracted a great deal of interest. Magnetic quan
oscillations in quasi-2D organic metals were reviewed,
example, in Ref. 3.

A theory of quantum magnetization oscillations
quasi-2D compounds was recently provided in a numbe
theoretical papers.4–6 It gives a rather good agreement wi
experiment. Attempts to make a theoretical description of
quasi-2D Shubnikov-de Haas~SdH! effect were not as suc
cessful, although some work in this direction appeared.5,7–10

The existing theory of the de Haas–van Alphen effect r
ably allows us to determine the Fermi surface structure fr
the experimental data on different quasi-2D compounds~see,
e.g., Refs. 11, 12, and Ref. 3!. However, two qualitative ef-
fects peculiar to the quasi-2D magnetotransport~namely, the
phase shift of beats and the slow oscillations of magnet
sistance! were observed in a number of quasi-2D orga
metals.14–19 An explanation for and a brief qualitative de
scription of the phase shift of beats~based on the Boltzman
transport equation! were proposed only very recently20 to-
gether with a comparative experimental study of this effe
However, a quantitative agreement between theory and
periment has not been achieved in this paper. The idea
slow oscillations may arise as an entanglement of differ
rapidly oscillating contributing factors in conductivity whic
have slowly oscillating amplitudes due to beats was also
cently suggested in Ref. 21, and proved by presenting exp
mental results on temperature and angular dependenc
slow oscillations. The theoretical description of the slow o
cillations was also based on the Boltzmann equation, that
be used only for a qualitative description. In this paper
give a more accurate quantitative description of the quasi
SdH effect, based on the Kubo formalism.

In Sec. II the general formula for the interlayer condu
tivity @Eq. ~10!# is derived. A simple explicit formula for
0163-1829/2003/67~14!/144401~8!/$20.00 67 1444
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interlayer conductivity is obtained in the self-consistent Bo
approximation in Sec. III. A discussion of the results o
tained and the comparison with experimental data are gi
in Sec. IV. In Sec. V the results are briefly summarized.

II. GENERAL FORMULA FOR INTERLAYER
CONDUCTIVITY

We consider a quasi-2D metal in a magnetic field perp
dicular to the conducting layers:BW izW ~a generalization for
arbitrary tilt angle of magnetic field is discussed in Sec. IV!.
The electron spectrum of a quasi-2D electron gas in a m
netic field is then given by

e~n,kz!5\vc~n11/2!22t cos~kzd!, ~1!

where t is the interlayer transfer integral,kz is the wave
vector perpendicular to the layers,d is the interlayer dis-
tance, andvc5eB/m* c is the cyclotron frequency. Both
\vc and t are assumed to be much smaller than the Fe
energy.

To calculate the conductivity we use the Kubo formula22

The procedure is similar to that in three-dimensional me
without a magnetic field~Ref. 22, Sec. 7.1.2!. In a magnetic
field only the set of quantum numbersm[$n,kz ,ky% should
be used instead of the momentumpW and the alternative dis
persion relation@Eq. ~1!#. We consider only the perpendicu
lar layer componentszz of the electric conductivity, since
this component is simpler both for measurements and fo
theoretical description. An evaluation of the Kubo formu
without vertex corrections gives

szz5
e2\

V (
m

vz
2~m!E de

2p
@2 ImGR~m,e!#2@2nF8 ~e!#,

~2!

where the volumeV normalizes the sum over quantum num
bersm, e is the electron charge,vz is the electron velocity,
the limits of the integration overe are (2`;`), nF8 (e) is the
derivative of the Fermi distribution function,

2nF8 ~e!51/$4T cosh2@~e2m!/2T#%, ~3!

and the electron Green’s functionGR(m,e) is related to the
retarded self-energy partSR(m,e) by
©2003 The American Physical Society01-1
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Im GR~m,e!5
Im SR~m,e!

@e2e~m!2ReSR~m,e!#21@ Im SR~m,e!#2
.

~4!

The self-energy partSR(m,e) arises from the electron sca
tering. The main contribution to the resistance comes fr
the short-range impurity scattering. We approximate
short-range impurities by pointlike ones. We also disreg
the diagrams with intersections of impurity lines in the se
energy~the contribution of these diagrams in the 3D case
negligible, and if we consider the caset@TD this contribu-
tion is also negligibly small!. Then the electron self-energ
part depends only on the electron energy and not on
electron quantum numbers:SR(m,e)5SR(e). This fact
greatly simplifies the calculations because the sum over
quantum numbersm in formula ~2! can be now computed
analytically.

In the real part ReSR(e) of the electron self-energy on
can only keep a small oscillating part ReS̃R(e). The remain-
ing weakly dependent term of ReSR(e) produces only a
constant shift of the chemical potential. This does not infl
ence the physical effects and, hence, is omitted in the su
quent calculations. The small oscillating part ReS̃R(e) al-
ways come in the combinatione* [e2ReS̃R(e). The
imaginary part of the self-energy ImSR(e) describes the mo
mentum relaxation of electrons and, therefore, is very imp
tant for conductivity.

Performing the summation overky in Eq. ~2! and chang-
ing the integration overkz by an integration over energye8
[e(n,kz) we obtain

szz5e2NLLdE de8

p (
n

uvz~e8,n!u E de

2p
4@ Im GR~e8,e!#2

3@2nF8 ~e!#, ~5!

whereNLL[B/F0d is the electron density on one Landa
level, F052p\c/e is the magnetic flux quantum, and th
electron velocityvz(e,n) is given by Eq.~A2!. To go further
we have to transform the sum over Landau levels~LLs! to a
sum over harmonics. This can be done using the Pois
summation formula~Appendix A!. Substituting Eq.~A3! into
Eq. ~5!, we obtain

szz5e2NLL (
k52`

`

~21!k
2td2

\k
J1S 4pkt

\vc
D E de

2p

3~2nF8 ~e!!I z~e,k!, ~6!

where one should use the expansionJ1(kx)/k5x/2 for the
zeroth harmonick50, and the integralI z(e,k) over e8 can
be easily evaluated with Green’s function~4!,

I z~e,k![E de8

2p
4@ Im GR~e8,e!#2 expS 2p ike8

\vc
D ~7!

5expS 2p ike*

\vc
D S 1

uIm SR~e!u
1

2pk

\vc
D RD~k,e!, ~8!
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wheree* [e2ReS̃R(e), and

RD~k,e!5exp~22pukuuIm SR~e!u/\vc! ~9!

has a form similar to that of the usual Dingle factorRD(k)
5exp(22p2kkBTD /\vc). Collecting formulas~6! and ~8! we
obtain

szz5e2NLLE de

2p
~2nF8 ~e!! (

k52`

`
~21!k2td2

\k
J1S 4pkt

\vc
D

3expS 2p ike*

\vc
D S 1

uIm SR~e!u
1

2pk

\vc
D RD~k,e!. ~10!

Note that this expression has an additional term 2pk/\vc
near the standard 1/uIm SR(e)u term in round brackets in the
second line. This term cannot be obtained from the Bo
mann transport equation~compare, for example, with the re
sults of Refs. 20 and 21!. Let us reveal the origin of this
term. The function@2 ImGR(e8,e)#25GA

21GR
222GAGR in

Eq. ~7! has one first-order pole and one second-order pol
each complex half-plane. The first-order poles appears f
the last term22GAGR while the second order poles com
from GA

21GR
2 . In the standard theory only the first-orde

poles are taken into account. In the 3D case the contribu
from the second-order poles is small by a factor of\vc/2t
'\vc /eF!1, and can be neglected. However, in t
quasi-2D case~where \vc/2t;1) the contribution of
second-order poles becomes important. As one can see
formula ~18! this contribution;pTD /t and is, probably,
only a first-order term in the expansion overpTD /t. The
case pTD /t.1 corresponds to the so-called incohere
limit,8 which we do not consider here. To go further, we ne
an explicit form of the electron self-energy which enters fo
mula ~10!. It is calculated in the next section.

III. CONDUCTIVITY IN THE SELF-CONSISTENT BORN
APPROXIMATION

We consider electron scattering only by short-range im
rities because these impurities make the main contributio
the relaxation of electron momentum. To calculate the el
tron self-energy we use the self-consistent Born approxim
tion. A graphical representation of the Dyson equation for
irreducible self-energy part in the self-consistent Born a
proximation is shown in Fig. 1. By such an approximati
we neglect the multiple scattering of an electron on one
purity ~no more than two dashed lines go to one impuri
denoted by a cross in Fig. 1!. The single dashed line in Fig

FIG. 1. The Dyson equation for the irreducible self-energy
the self-consistent Born approximation. The double solid line sy
bolizes the exact electron Green’s function.
1-2



on
m

ts

n

he
g

r
er

e

i-

a

on
.

t
te

n
rn

pl

r
p-
ter
nt

wly

ap-
lf-
om
tor
ay
in
ny

ent

THEORY OF THE SHUBNIKOV–de HAAS EFFECT IN . . . PHYSICAL REVIEW B67, 144401 ~2003!
1 corresponding to the first-order term leads only to a c
stant shift of the chemical potential and, hence, can be o
ted.

The corresponding analytical expression is

SR~m,e!5K (
i

U2G~r i ,r i ,E!L 5CiU
2E d3rG~r ,r ,E!,

~11!

where ( i is a sum over all impurities and the bracke
^•••& denote an averaging over impurity positions;Ci is the
concentration of impurities which are assumed to be u
formly distributed.24 The electron Green’s functionG(r ,r ,E)
in formula ~11! contains the self-energy determined by t
same formula~11!. The Green’s function is uniform alon
the conducting planes. Hence one can write

G~r ,r ,E!5uf~z!u2G~E!. ~12!

The electron wave functionf(z) alongz axis does not ente
the final result because it disappears after integration ovz
in Eq. ~11!, and

G~E!5
2NLL

\vc
H A~E!1 ipF112

3 (
k51

`

~21!kJ0S 4pkt

\vc
DexpS 2p ik

E2S~E!

\vc
D G J .

~13!

A(E) is a slowly varying function of energy which can b
taken at the Fermi energy:A(E)'A(EF). The value of
A(EF) is not important for conductivity in the Born approx
mation.

Formulas~12! and ~13! can be derived by performing
summation over the electron quantum numbersm
[$n,kz ,kx% in the definition of the Green’s function:

G~r ,r ,E!5 (
n,kz ,kx

Cn,kz ,kx
* ~r !Cn,kz ,kx

~r !

E2e~n,kz!2S~E!
. ~14!

The electron wave functionCn,kz ,kx
(r ) in the Landau gauge

is approximately given by

Cn,kz ,kx
~r !5

ei (kxx1kzz)

ALxLz

xn~y2y0!f~z!,

where y052c\kx /eB, and the normalization condition
*2`

` uxn(y)u2dy51 should be used to perform the integrati
overkx in Eq. ~14!. The further calculation of the sum in Eq
~14! is similar to that in Eq.~2!.

The Born approximation@formula~11!# takes into accoun
only the first term of the expansion in the small parame
pUNLL /\vc5p f /d, wheref is the scattering amplitude o
impurities. The imaginary part of the self-energy in the Bo
approximation is proportional to the density of states.25 The
mean value of the imaginary part of the self-energy is sim
14440
-
it-

i-

r

y

related to the average Dingle temperatureTD :
^uIm SR(m,e)u&5pkBTD . From formulas~11!–~13! we ob-
tain

uIm SR~m,e!u5pkBTDF112(
k51

`

~21!kJ0S 4pkt

\vc
D

3cosS 2pke*

\vc
DRD~k,e!G . ~15!

Together with Eq.~9! this gives a nonlinear equation fo
Im SR(m,e). We can solve it in the strong harmonic dam
ing limit by making an expansion in the small parame
RDA\vc/2p2t ~that is the ratio of oscillating and consta
parts of the density of states!. To treat the slow oscillation
accurately one also has to pick up all second-order slo
oscillating terms. We obtain

uIm SR~e!u'pkBTDH 122J0S 4pt

\vc
D cosS 2pe

\vc
DR0DJ ,

~16!

whereR0D5exp(22p2kBTD /\vc). There is no slowly oscil-
lating second-order term in the self-energy in the Born
proximation. At this point the real part of the electron se
energy is important because it cancels the contribution fr
the entanglement with the oscillations of the Dingle fac
@Eq. ~9!#. Disregard of the real part of the self-energy m
incorrectly lead to an additional slowly oscillating term
conductivity.26 In the second order in damping factors a
combination of the form

cosS 2p~e2ReS̃R~e!!

\vc
D expS 22puIm SR~e!u

\vc
D

5cosS 2pe

\vc
DR0D ~17!

does not produce a slowly oscillating term. This statem
can be easily checked by substituting Eq.~11! with Eq. ~13!
into Eq. ~17!.

Substituting Eqs.~16! and ~17! into Eq. ~10!, we obtain
the following expression for the conductivity:

szz5s0E de@2nF8 ~e!#

3H 12
\vc

pt
J1S 4pt

\vc
D cosS 2pe*

\vc
DRD~e!

F122J0S 4pt

\vc
D cosS 2pe*

\vc
DRD~e!G

2
2pkBTD

t
J1S 4pt

\vc
D cosS 2pe*

\vc
DRD~e!J , ~18!

where the nonoscillating part of the conductivity iss0
'(e2NLL2t2d2)/(\2vcpkBTD).
1-3
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P. D. GRIGORIEV PHYSICAL REVIEW B67, 144401 ~2003!
If the transfer integral is large enough (4pt.\vc) one
can use an expansions of the Bessel function at a large v
of the argument:

J0~x!'A2/px cos~x2p/4!, x@1,

J1~x!'A2/px sin~x2p/4!, x@1.

Then, again performing an expansion in the small param
(RDA\vc/2p2t) and making use of the standard trigonom
ric formulas we obtain

szz5s0H 112A\vc~11a2!

2p2t
cosS 2pm

\vc
D

3cosS 4pt

\vc
2

p

4
1fbDRD

totRT

1
\vc

2p2t
RD

2 A11aS
2 cosF2S 4pt

\vc
2

p

4
1fSD G J ,

~19!

where the phase shift of the beats is

fb5arctan~a!, a5
\vc

2pt S 11
2p2kBTD

\vc
D , ~20!

and the phase of slow oscillations is

fS5arctan~aS!/2 where aS5\vc/2pt. ~21!

The temperature smearing factor is given by the us
Lifshitz–Kosevich~LK ! expression:

RT5
2p2kBT/\vc

sinh~2p2kBT/\vc!
.

It appears in the fast Shubnikov oscillations after the integ
tion of a rapidly oscillating function of energy with the Ferm
distribution function. The slowly oscillating term depen
only on the transfer integralt and is independent of energ
Hence it does not acquire any temperature smearing.27

The superscript ‘‘tot’’ after the Dingle-type damping fac
tor RD

tot of the fast quantum oscillations means that t
damping factor comes not only from the short-range impu
ties ~like RD of slow oscillations21! but from all crystal im-
perfections such as macroscopic sample inhomogeneities
other long-range defects.

Phase shift~20! obtained from the Kubo formula is large
than that of Ref. 20, formula~9!, obtained using the Boltz
mann transport equation by a factor (112p2kBTD /\vc).
This difference originates from the additional term 2pk/\vc
near 1/uIm SR(e)u in round brackets in the second line of E
~10! that comes from the fast energy dependence of the e
tron mean square velocity@see the discussion after formu
~10!#. The slowly oscillating term in Eq.~19! does not differ
from that in @Ref. 21, formula~4!#, though the present deri
vation is more rigorous.
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IV. DISCUSSION OF THE RESULTS

Above we performed a detailed calculation of the inte
layer magnetotransport in quasi-2D normal metals. The s
cific features of quasi-two-dimensionality and strong ma
netic field result in several qualitative effects. The stand
formula for conductivity~derived for 3D metals but tradi
tionally used also for quasi-2D compounds!

szz
3D5s0H 112A \vc

2p2t
cosS 4pt

\vc
2

p

4 DRD
totRT cosS 2pm

\vc
D J

~22!

describes neither the phase shift of beats nor the slow o
lations.

In Fig. 2 I plot a general view of the conductivity as
function of the magnetic field using the formula~19! ~a! and
the standard 3D formula@Eq. ~22!# ~b!. The difference be-
tween the LK prediction and the new formula is clearly v
ible. For example, the outer beat node is shifted fromBnode

LK

526.7 T to Bnode553 T. Practically, this means that th
outer beat node~expected at 26.7 T! may disappear becaus
the field of 53 T is reachable only in pulsed magnets at
present time. The parameters in Fig. 2 are taken to be c
to that of real experiments onb-(BEDT-TTF)2IBr2; in other

FIG. 2. Interlayer conductivity given by formula~19! ~a! and by
the standard LK formula~b! at the same parameters. The differen
between the L-K formula and the new formula is very pronounc
The parameters are taken to be relevant to the SdH effec
b-(BEDT-TTF)2IBr2 in a tilted magnetic field. The parameters a
TD50.4 K, TD

tot51.0 K, T51.2 K, andFb510 T, that correspond
to the tilt angleu'26° or 212°.
1-4
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compounds or at higher tilt angle~where the interlayer trans
fer integral is less several times! Fig. 2 is scaled along the
x-axis by the same factor. The next node at lower fields
shifted much weaker: from 11.5 to 13.5 T. If one uses th
two node positions to determine the beat frequencyFb ac-
cording to the LK formula@Eq. ~22!#, which gives

Bnode
LK /2Fb54/~4n21!, n51,2,3. . . , ~23!

one obtainsFb59 T instead of the correct answerFb
510 T. One will obtain a much larger error if one tries
determine the beat frequency using only one beat node
formula ~23!. For example, for the outer node (n51) at B
553 T one would getFb'20 T instead ofFb510 T. The
beats of magnetoresistance oscillations in layered c
pounds are used for estimating the interlayer transfer inte
2t5Fb(\vc/B) that determines the electronic properties
strongly anisotropic compounds. The field-dependent ph
shift of beats may lead to the errors in this estimate. T
modification of formula~23! is

Bnode/2Fb54/~4n2124fb /p!, n51,2,3. . . ,
~24!

wherefb is given by Eq.~20!.
The field dependence of the phase shiftfb was studied

experimentally in Ref. 20, and the result was compared w
the prediction of the Boltzmann transport equation~Fig. 4 of
Ref. 20!. It was noted there that the slope of the fit line to t
experimental points according to the Boltzmann equat
corresponds to the value of the transfer integralt
'0.48 meV or the ratioDF/F'1/230, which is 2.3 times
less than the valueDF/F51/96 obtained directly from the
ratio between the beat and the fundamental frequencies.
discrepancy was attributed to the approximate characte
the theoretical model, based on the Boltzmann trans
equation. The present theoretical model is more rigorous

In Fig. 3 a comparison of the different theoretical mod

FIG. 3. A comparison of the results of different theoretical mo
els with the experimental data from Ref. 20 on the field depende
of the phase shift of beats. The standard 3D theory givesfb50.
The dashed line is the prediction of the Boltzmann transport eq
tion while the solid line is the result of the present theory~see the
text!.
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with the experimental data on the field dependence of
phase shift of beatsfb(B) is shown. The experimental point
are taken from Ref. 20. The standard 3D magnetotrans
theory givesfb50. The dashed line is the prediction of th
Boltzmann transport equation with the value oft taken from
the beat frequency. This line cannot fit the experimen
points properly. The solid line is the result of the prese
theory, based on the Kubo formula. It gives a much be
agreement with the experimental points. However, the
experimental point at the highest fieldB515.7 T is not in
accord with the theoretical line. This is because at rather h
magnetic field the Born approximation fails~due to a strong
degeneracy of the LLs! and result~20! becomes only a first-
order term in the expansion overpkBTD /t and\vc /t.

The slopes of the solid and dashed lines in Fig. 3 are
same ~they are determined by the ratio\vc /2pt). The
phase shift in our approach increases by a cons
pkBTD /t. This augmentation containsTD , which is the part
of the Dingle temperature arising only from the short-ran
impurities. Approximately the same Dingle temperature e
ters the slow oscillations. In Fig. 3 the value ofTD
'0.15 K is taken from the Dingle plot of the slow
oscillations21 ~the measurements in Ref. 21 were done on
same sample as in Ref. 20!.

The slow oscillations in formula~19! do not have a tem-
perature damping factor. Hence, although the amplitude
the slow oscillations contains the square of the Dingle fac
~they are a second-order effect!, it can be larger than the
amplitude of the fast SdH oscillations atT;TD . The ampli-
tude of slow oscillations diminishes only at much high
temperatures because the oscillations of the density of e
tron states~DoS! are damped by the electron-phonon a
electron-electron interactions. In normal 3D metals13 the
electron-electron (e-e) scattering rate 1/tee;(kBT)2/\m
while the electron-phonon scattering rate 1/tph
;(kBT/\)(kBT/\vD)2. One can estimate the effect of the
scattering processes on the DoS oscillations by introduc
the additional damping factor

RTD'exp@2p~1/vctee11/vctph!#, ~25!

analogous to the usual Dingle factor. This factor ent
squared in the amplitude of slow oscillations. The tempe
ture TSO at which the slow oscillations become damped
this factor is much higher than the characteristic tempera
of the damping of fast quantum oscillations. It is appro
mately given byp@1/vctee(TSO)11/vctph(TSO)#'1. In
the experiment21 the slow oscillations were damped at tem
perature'9 K.

The present analysis is made when the magnetic fiel
perpendicular to the conducting layers. A finite tilt angleu
of the magnetic field with respect to the normal to t
conducting planes may approximately be taken into acco
by a rescaling of the Landau level separation,vc
→vc cosu, and of the warping of the Fermi surface,28 t(u)
5t(0)J0(kFd tanu), wherekF is the in-plane Fermi momen
tum. This result is based on the semiclassical approximat
and the assumption that the Fermi surface remains the s
The quantum mechanical calculation of the dispersion re

-
ce

a-
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P. D. GRIGORIEV PHYSICAL REVIEW B67, 144401 ~2003!
tion in a tilted magnetic field in the first order of the transf
integral gives29 t(u)/t(0)5exp(2g2/4)Ln

0(g2/2), where g
[d tanu/aH , aH5A\c/eBz is the magnetic length, an
Ln

0(x) is Laguerre polynomial. In the limitn→` the above
two results coincide.

In the above calculations we omit the spin splitting. Sin
the impurity scattering is spin independent, one can take
spin splitting into account by the replacement in the fin
answer, szz(m)→@szz(m2DB)1szz(m1DB)#/2, where
DB5e\B/mec is the shift of the Fermi level due to the sp
splitting @the conductivity given by formulas~2! and ~19!
already has a factor 2 due to two spin orientation#.

The entanglement with the oscillations of chemical pot
tial contributes an additional temperature-dependent term
the slow oscillations of conductivity. This term can be eas
obtained by substituting Eq.~B2! into Eq. ~19!. However,
this term has additional small factorsRT

2 and (RD
tot/RD)2

compared to the main slowly oscillating term.
Slow oscillations do not appear in the magnetization

cause there is no suitable entanglement of different osci
ing quantities in the magnetization. The magnetization, be
a thermodynamic quantity, is completely determined by
electron density of states that does not have slowly osci
ing terms. The mixing with the oscillations of the chemic
potential, or with those of the Dingle factor and of ReSR(e),
also does not lead to slow oscillations of magnetization~see
Appendix B!.

The above analysis does not take into account the ve
corrections. In our case~of pointlike impurity scattering! this
is justified because, according to the Ward identity, the ve
GW (m,E)5pW 1me¹WpSR(m,E). Hence, if the retarded self
energy depends only on the energy, the vertex corrections
zero. The fact thatSR(m,e) is approximately a function o
energye only is a consequence of the short-range~or point-
like! impurity potential. In the three-dimensional case wit
out a magnetic field the vertex corrections produce an a
tional factor (12cosa) in the transport scattering relaxatio
time (a is the scattering angle!. But the scattering probability
is independent of the scattering angle in the case of point
impurities, and the additional term}cosa vanishes after the
integration over angles. Hence the vertex corrections van

V. SUMMARY

In this paper a quantitative theory of the Shubnikov–
Haas effect in quasi-2D metals is developed. The calcula
is based on a Kubo formula that is more accurate than
calculation based on the Boltzmann transport equation,
gives a much better agreement with experiment~see Fig. 3!.
The final result is given in analytical form, that allows
convenient comparison with any experimental data. Form
las ~19!–~21! and ~24! describe the general features
quasi-2D magnetoresistance and are applicable not onl
organic metals, but also to heterostructures, intercala
compounds, and other layered or quasi-2D metals. The p
erty of the slow oscillations to remain at much higher te
peratures than that of the usual quantum oscillations ma
useful for studying the layered high-temperature superc
ductors.
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APPENDIX A: TRANSFORMATION OF SUMS OVER LLS
TO SUMS OVER HARMONICS

To transform the sums over the LL number into harmo
sums we shall apply the Poisson summation formula23

(
n5n0

`

f ~n!5 (
k52`

` E
a

`

e2p iknf ~n!dn, ~A1!

where aP(n021;n0). This formula is valid for arbitrary
function f (n). The electron velocity is determined from dis
persion relation~1! as

vz~e,n![
]e~n,kz!

\]kz
52

2td

\
sin~kzd!

5
d

\
A4t22@e2\vc~n11/2!#2. ~A2!

The sum in Eq.~5! now becomes

(
n

uvz~e,n!u5 (
n50

`
d

\
A4t22Fe2\vcS n1

1

2D G2

5
d

\
\vc (

k52`

` E
0

`

dne2p ik(n2
1
2)

3AS 2t

\vc
D 2

2S e

\vc
2nD 2

5
d

\
\vc (

k52`

`

~21!k expS 2p ike

\vc
D

3E
2`

`

dxe2p ikxAS 2t

\vc
D 2

2x2

5 (
k52`

`
dt

\

~21!k

k
expS 2p ike

\vc
D J1S 4pkt

\vc
D .

~A3!

In this formula for the zeroth harmonick50, one should use
the expansionJ1(kx)/k5x/2.

APPENDIX B: MAGNETIZATION

The first harmonic of the oscillating part of magnetizati
is given by~see Ref. 6, formula 6!
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M̃ ~B!5
2NLL«F

pB
sinS 2p@«F1m̃~B!#

\vc
D

3J0S 4pt

\vc
DRTRSRD~«F!. ~B1!

where the oscillating part of the chemical potential is~Ref. 6,
formula 5!

m̃~B!5
\vc

p@11nR~«F!#

3sinS 2p@«F1m̃~B!#

\vc
D J0S 4pt

\vc
DRTRSRD .

~B2!

The entanglement of magnetization oscillations with the
cillations of the Dingle factor@Eq. ~9!# produces an addi
tional term
ls

.

J

Y

J

, J

14440
-

}sinS 2p«F

\vc
D J0S 4pt

\vc
D3cosS 2p«F

\vc
D J0S 4pt

\vc
D

5
1

2
sinS 4p«F

\vc
D J0

2S 4pt

\vc
D ,

which gives rise to the second harmonic but makes zero c
tribution to the slow oscillations of magnetization.

The entanglement with the oscillations of the chemi
potential@Eq. ~B2!# produces the term

}sinS 2p@«F1m̃~B!#

\vc
D 2sinS 2p«F

\vc
D5sinS 2p«F

\vc
D

3FcosS 2pm̃~B!

\vc
D 21G

1cosS 2p«F

\vc
D sinS 2p«F

\vc
D J0S 4pt

\vc
D 2RTRD

11nR
,

which also contributes only to the second harmonics~or
higher harmonics! but not to slow oscillations.
.
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