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ANNALS OF MATHEMATICS
Vol. 35, No. 4, October, 1934

SYSTEMS OF TOTAL DIFFERENTIAL EQUATIONS DEFINED OVER
SIMPLY CONNECTED DOMAINS

By Tracy YERkES THOMAS

(Received May 10, 1934)

1. Consider a system of total differential equations

(L) di = DV (2, ) da*, G=1,---, M),
a=1

where the functions ¥ are defined over an open simply connected domain D of n
dimensions, which can be covered by a system of coordinates z=, and for arbi-
trary values of the ¢’s, i.e. for — o < ¢! < 4. All quantities involved are
real. As a matter of convenience we shall refer to the domain D of the vari-
ables z= and the range — « < ¢! < 4 © of the variables ¢!, when considered
simultaneously, as the domain A.

It is assumed that the functions ¥ are continuous and possess continuous first
partial derivatives with respect to the z* and the ¢’. As an additional assump-
tion, the reason for which will be seen immediately, we impose the condition
that the derivatives ¥ ; /30" are bounded in 4, i.e.

1 ov’
A"

(1.2) <N
in A, where N is a sufficiently large positive constant.
The system of equations
0ot i
(1.3) % — Wi (z,)
ox
is completely equivalent to (1.1). Owing to the above assumptions we can
form the conditions of integrability of (1.3), namely

ovi  av} o v}
(1.4) F— 2+ cwp — > Pyl =0
orf oz~ ; gt *# ; dp* ’

the left members of which are defined in A; we assume that (1.4) is satisfied
identically in this domain.

In this note we give a simple straightforward proof of the existence theorem
for the above system. The method used is in the main similar to that em-
ployed by E. Cartan in his book Géométrie des espaces de Riemann, 1928, pp. 54—
57; the system treated by Cartan is, however, less general than the above sys-
tem (1.1) and is considered from a point of view peculiar to his special problem.
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2. Let P and Q be any two distinet points in D with coordinates z§ and z
respectively. Join P and @ by a curve C in D, the curve C being defined by
z= = f=(t), where the functions f are single valued and have continuous first
derivatives; this is possible since D is connected. Suppose f*(0) = z2§ and f*(1)
= 2% so that t has the range 0 < ¢ < 1. From (1.3) we obtain

@ = D WLU0,0) G = )

which we regard as equations for the determination of the functions ¢’ along C.
In consequence of the condition (1.2) and the continuity of the functions vl
and f* we have, for the range 0 < ¢ < 1 and — © < ¢ < + = of the variables ¢
and ¢ respectively, that (a) the functions ¥ are continuous and (b) the deriva-
tives 9¥i/d¢* are bounded. By the theorem of Picard! it therefore follows that
the equations (2.1) have a solution ¢(t) defined uniquely on C by the arbitrary
values ¢¢ = ¢i(0) of these functions at the point P. The values of the func-
tions ¢i(¢) at the point @ are then ¢i(1). This proves that if the system (1.1) has
a solution ¢i(x) defined over D which takes on the arbitrarily given values oo at the
point P it can have at most one such solution. We proceed to prove the exist-
ence of such a solution.

3. Join the above points P and @ by another curve C, defined parametrically
by the equations z= = f{(t) where 0 < ¢ < 1, the functions f{ being single valued
and continuous with continuous first derivatives. We shall show that from
the arbitrarily assigned values ¢ of the functions ¢’ at the point P we shall ob-
tain, by integration of a system of the type (2.1), the same values of the ¢' at
Q regardless of whether the integration is carried out with reference to the
curve C or the curve C,.2

Since D is simply connected the closed curve formed by C and C can be
shrunk to a point. Hence we can pass from C to C: by a continuous one
parameter family F of such curves, which we represent by

xa=Ga(t}p); (0§t§1,0§p§1),

such that z= = z¢ for t = 0 and z= = z$ for ¢t = 1 independently of the param-
eter p. We select functions G= which possess continuous derivatives
oG~ oG 2Ge
at ’ op’ atop ’

1 E. Picard, Traité d’Analyse, Vol. II, 1923, p. 373.

2 [t is sufficient to assume that the curves C and C, have no poinis in common except
their end points P and Q and that these curves define different directions at each of their
end points. In fact if these conditions are not satisfied by C and C, we can take a curve
C’, analogous to C and C}, such that the above conditions are satisfied by the pair C and
€' and also by the pair Cy and C’. Then the result that the values of the ' at the point
Q are the same when determined by integration of (2.1) along C as when determined by
integration along C, will follow from the corresponding result with reference first to the
curves C and C’ and second to the curves C; and C’.



732 TRACY YERKES THOMAS

the second derivatives of the G being independent of the order of the differ-
entiation.
Now consider the system

ng"_ . i BG"
(3.1) =2 v (G ), 0

a=1

along any curve of the family F. Taking o' = ¢ for ¢ = 0, independently of
the parameter p, the equations (3.1) determine a unique set of functions ¢* (p, t)
defined for 0 = t = land 0 = p = 1. These functions ¢*(p, ) are continuous
in the variables p and ¢ and possess continuous derivatives d¢'/dt and d¢*/dp for
all values of the variables for which they are defined. In fact it can be shown
that the derivatives d¢*/0p satisfy the equations?

3 (2) - STV Va0t dGe | 0 S 86
9i\op) ~ &4 &L agf op ot T ap &L ot
Hence the derivatives 6%°/dpat which appear in the left members of these
equations exist and are continuous; likewise the existence and continuity of the
derivatives 8%7/atap result by differentiation of the equations (3.1).

Hence it follows that*

62¢i az¢i

3.2 =
(3.2) apot  otop’

for0 =t =<1and 0 =< p = 1, i.e. these second derivatives are independent of
the order of differentiation.
Now form the equations

aQDi o < BG"‘
- = E :\p i
(33) ot &~ ot
¢ < ; 0G .
4 = + 1
34) o aE- 1: v, —ap + of,

the functions ¢* being defined by these latter equations. Then by differentiation
of (3.3) and (3.4) we obtain

3 See, Frank-v. Mises, Differentialgleichungen der Physik, 2nd Ed., Braumschweig
1930, p. 287, where these results are proved for the case of a single equation. The exten-
sion to a system of equations, such as the above equations (3.1), is immediate.

4 See, for example, E. Goursat, Cours d’Analyse Mathématique, 5th Ed., Paris, 1927,
p. 42.
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Bt [~ ovi g N, oxf
o' o % k 0T
¥ = htadl g Rl k
= (2% (S )

Ko O\ OV o= o
+E atap laxﬂTt—aE’

R ST oV} 9z 928
apot ZZ apat+ + axﬂ ap ot
ot x> 9z
+ Z_; & a¢ Yo op ot

Subtracting corresponding members of these equations leads, on account of
(3.2), to the set of equations

M
dot B‘I/ oz
3.5 = o*,
(3:5) at ;F 3k ot

when use is made of the integrability conditions (1.4).

Since ¢' = ¢¢ and z* = x§ for t = 0, independently of p, we have from (3.4)
that ¢* = 0 for t = 0. Hence from (3.5) it follows that ¢ = 0 along any curve
of parameter p so that, in particular, o = 0 for ¢t = 1. Then from (3.4) the
derivatives d¢°/0p = 0 for £ = 1. Hence the value of ¢’ at the point @Q is inde-
pendent of the curve of integration of the family F by which the point P is
joined to the point Q. In other words there exists a set of functions ¢'(x) defined
throughout the domain D, these functions being uniquely determined by the assign-
ment of their values ¢ at an arbitrary point P and the process of integration of the
system (2.1) along curves of the type C issuing from P.

4. Now consider the values ¢*(Z) of the above functions ¢i(x) at an arbitrary
point P of the domain D. Starting with the point P and the values ¢i(Z) we
can determine by the above process, i.e. by integration of (2.1) along curves C
issuing from P, a set of functions @'(x) analogous to the functions ¢i(x). It is
then evident that the functions @(x) will take the values of the corresponding
functions ¢i(z) at the point P used in the determination of these latter funec-
tions; also to determine the values of the functions @ at any point Q@ of D we
can integrate (2.1) along a curve C which passes through the point P. Hence
the functions @'(x) at which we arrive, when we start with any other point P of the
domain D in the process of the determination of these functions, are identical with
the functions ¢*(x) provided that the values of the functions @i(x) at the point P are
the same as the values of the corresponding functions ¢*(x) at this point.

It remains to observe that the above functions ¢'(z) satisfy the system (1.1).
But this is seen immediately. In fact let @ be any point of the domain D and
take the curve C as the curve of parameter z* passing through . Then, in
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view of the last italicized result, the equations (2.1) are satisfied along this
curve C by the functions ¢i(z); this gives

a¢'(x)
ax~

=¥, (z,¢(2))

at all points of the domain D.

THEOREM. Let D be an open simply connected domain of n dimensions which
can be covered by a system of coordinates x* and denote by A the domain composed
of D and the range — © < ¢! < 4  simultaneously. Suppose that the functions
Vi(x, ¢) defined in A are continuous and possess continuous first partial deriva-
tives in this domain; suppose, furthermore, that the equations (1.4) are satisfied
identically and that the derivatives 9¥./d¢* are bounded in A. Then the system
(1.1) admits a unique solution ¢i(x) defined throughout the domain D such that
the functions ¢'(z) take an arbitrary set of values ¢ at an arbitrary point P of D.

5. In particular the domain D may be homeomorphic to the interior of an n
dimensional Euclidean hypersphere Z; this is the simplest and undoubtedly
most important special case of the above theorem. Going out from this special
case we can extend the Theorem to open or closed simply connected spaces S
each point of which belongs to a neighborhood capable of being put into one
to one reciprocal correspondence with the interior of £.* Such a space S can
therefore be covered by one or more coordinate systems. Assuming the scalar
character of the functions ¢, and the property of differentiability of the coordi-
nate relations throughout portions of S common to two coordinate systems, it
is evident that the above discussion will continue to apply since the equations
involved are invariant under coordinate transformations. In the statement of
the above theorem the domain D can accordingly be replaced by the space S.

PriNCETON UNIVERSITY.

3 For a precise characterization of the space S see E. Cartan, La théorie dzs groupes finis
et continus et '’ Analysis Situs, Mém. des Sciences. Math. No. 42, Gauthier-Villars, 1930,
p. 3. In the postulates for the space S closed neighborhoods are used by Cartan. The
corresponding postulates involving open neighborhoods are given by T. Y. Thomas, The
Differential Invariants of Generalized Spaces, Cambridge University Press, 1934, p. 1.
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