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Tunneling and Nonuniversality in Continuum Percolation Systems

C. Grimaldi1,2 and I. Balberg3

1LPM, Ecole Polytechnique Fédérale de Lausanne, Station 17, CH-1015 Lausanne, Switzerland
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The values obtained experimentally for the conductivity critical exponent in numerous percolation
systems, in which the interparticle conduction is by tunneling, were found to be in the range of t0 and
about t0 � 10, where t0 is the universal conductivity exponent. These latter values are, however,
considerably smaller than those predicted by the available ‘‘one-dimensional’’-like theory of tunneling
percolation. In this Letter, we show that this long-standing discrepancy can be resolved by considering the
more realistic ‘‘three-dimensional’’ model and the limited proximity to the percolation threshold in all the
many available experimental studies.
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While the existence of nonuniversality in physical prop-
erties of percolation systems has been established some
18 years ago [1,2], the discrepancy between the numerous
experimental results and the corresponding available theo-
ries is still an unresolved issue [3,4]. In particular, the
values of the critical exponent of the electrical conductivity
t, reported in hundreds of works [4–9] on various compos-
ite materials in the past 20 years, are not quantitatively
accounted for by those theories. The major difficulty in the
comparison of the theoretical predictions with the experi-
mental results appears to be the lack of the experimental
geometrical-structural information that is expected to yield
the diverging (but normalizable) distributions of the local
conductances. The latter is the well known [1–3] prereq-
uisite for the nonuniversal behavior [10]. The essence of
the nonuniversal behavior is that the global resultant re-
sistance of a percolation system that is given by

Rt / �p� pc��t (1)

is determined by

Rt / hRi�p� pc�
�t0 ; (2)

where hRi is the average value of the ‘‘bond’’ (inter-near-
est-neighbor conducting particles) resistance in the system,
p is the bond occupation probability, pc is the threshold of
the system’s electrical connectivity, t is the conductivity
exponent, and t0 is the ‘‘universal’’ critical exponent that is
determined solely by this connectivity. Since in a random
system there is no correlation between the geometrical
position of a bond and its resistance, any random subsys-
tem of pc bonds for a given p will provide a connected-
conducting network. In particular, if the latter network is
chosen by the descending values of the bond conductance
g, the value of hRi will be an average that is determined by
gc, the smallest value of g in that subnetwork [10]. In the
case where the distribution of the g values h�g� diverges as
g! 0, the value of gc will diminish as p approaches pc,
yielding a diverging behavior of hRi. This behavior has
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been demonstrated by Kogut and Straley (KS) [10] for the
distribution:

�1� ��g��; (3)

yielding that hRi � ��1� ��=���g��c � 1�. Hence, for the
nondiverging case (�< 0), hRi is finite while, for (0<
�< 1) the diverging (but normalizable) case, one finds
that [10]: hRi / �p� pc��tn , where, for the distribution
given in Eq. (3), tn � �=�1� ��. Hence, the nonuniversal
contribution to the conductivity exponent (tn � t� t0) is
determined only by hRi, and, thus, we are able to limit our
discussion here to the evaluation of this quantity.

Turning to the problem at hand, i.e., the large quantita-
tive discrepancy between the theoretical predictions and
the experimental observations, we note that, in both sys-
tems for which theories were advanced, the porous media
[1] and the tunneling-percolation problem [2] (see below),
the conductors distribution was mapped onto the KS [10]
distribution [Eq. (3)] yielding specific predictions as to the
values of tn. However, the experimental results were found
to be, in general, larger than expected in the first class of
systems [3] and smaller or much smaller [2,4–9] than
expected in the second class of systems [2,4,11]. One of
us has explained [3] the first observation by applying
phenomenologically a modified h�g� distribution that still
retains the KS dependence [Eq. (3)]. That approach yielded
new limits to the theoretical predictions that seem to
accommodate all relevant experimental data [3].

In this Letter, we seek a general understanding of the
nonuniversal behavior of the second class of systems; i.e.,
in systems in which the conducting particles are embedded
in an insulating matrix and the transport between the
particles is by tunneling [2,4,5,11]. While some qualitative
explanations [4,9,11,12] were proposed for the above-
mentioned discrepancy in those systems, they were unable
to account systematically for it [9,13]. Moreover, only
qualitative specific explanations have been given [14,15]
to the fact that in some conducting composites the critical
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behavior of the transport has been found [6,14,16,17] to be
composed of a few ‘‘nonuniversal’’ regimes. We note in
passing here that the dominant network that contributes to
Rt is that of the nearest neighbors’ network that yields in
practice a bona fide percolation system [4,18]. This is, of
course, because of the exponential decay of the tunneling
probability with the interparticle distance r. Correspond-
ingly, the possible divergence of the average bond resist-
ance hRi is determined by the largest r’s of the nearest
neighbors. The corresponding distribution of the nearest
neighbors distance in the continuum P�r� that was con-
sidered previously [2,11] in order to evaluate the origin of
the nonuniversality of the tunneling-percolation model
within the framework of the KS model, was the ‘‘one-
dimensional’’ (1D) Hertz distribution [19,20]:

1

a� b
exp

�
�
r� b
a� b

�
: (4)

Here r is the distance between the centers of two nearest-
neighbor spherical conducting particle, b is their diameter,
and a is the average nearest-neighbor interparticle (three-
dimensional) distance that can be estimated from Refs. [2–
4]: 4�

3 �a=2�3N � 1, where N is the density of the conduct-
ing particles. Combining this 1D distribution with the
simple (normalized, 0 � g � 1) tunneling dependence of
the interparticle conductance on r [2,4,11], g�r� �
exp���r� b�=d�, where d is the typical tunneling decay
parameter, one obtains an h�g� distribution of the form
given in Eq. (3) but with [2,4,11]:

� � 1�
d

a� b
: (5)

While this 1D-like theory, leading to the simple analytic
prediction of Eq. (5), appeared to capture the essence of the
problem and yielded the very simple and convenient physi-
cal parameter d=�a� b� for the description of the physical
system, it yields t values that were much larger than the
very many values of t found experimentally. For example,
the �a� b�=d values in many composites [5–9] are ex-
pected [4,6,11], according to the 1D-like phenomenologi-
cal model, to be of the order of 50 (d 	 1 nm,
a� b 	 50 nm), but the highest observed [5,7] values of
t in corresponding composites was about 10. Another
related phenomenon, noticed by us, following the compi-
lation of many experimental data [4,5], is the general trend
of the decrease of t with the increase of the critical volume
fraction of the conducting phase vc as well as the scatter of
the observed t values within the t0 and (about) t0 � 10
interval for a priori similar systems [6,8,11]. On the theo-
retical end, while the above-mentioned simplified model
was, for the sake of simplicity [2], a 1D-like model, no
trials were made to test the consequences of this 1D-like
simplification, both conceptually and mathematically, and
the findings of one of us [21] concerning the dependence of
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h�g� on the dimensionality has not been translated to a
prediction of t.

In the present Letter, we show that the consideration of
the effect of dimensionality beyond the 1D simplification
yields even a qualitatively different behavior. In particular,
the corresponding new predictions of the higher-dimension
model enables one to account for the above-mentioned
collection of experimentally observed phenomena. In
fact, we have realized already [2] upon the introduction
of the 1D-like model that the probability of finding a
nearest neighbor should decrease slower than the decrease
of g with increasing r in order to enable a diverging
distribution of h�g�. This is since if this is not the case
(i.e., a < d or �< 0) a nondiverging h�g� and thus a
universal behavior of Rt will be obtained. In the 3D case,
the leading term in the P�r� distribution [19,20] is of the
form of exp���r3 � b3�=�a� b�3� (see below), and, cor-
respondingly, for any values of �a� b� and d, for large
enough r, P�r� decreases faster than g�r� yielding a non-
diverging h�g� as g! 0, and, thus, the asymptotic p! pc
critical behavior is expected to be universal. On the other
hand, this situation cannot be mapped onto a simple KS-
like result for tn, and another framework is needed in order
to evaluate the t values that are to be compared with the
experimental observations. However, since � encloses the
physical information of the tunneling-percolation system,
we keep using it for the system characterization in all
dimensions.

The approach we have chosen is the effective medium
approximation (EMA) [22]. This choice is justified follow-
ing its validity in general [23] and for the determination of
hRi in composite systems [24] in particular, as well as our
above realization that the contribution tn comes only from
the average hRi. Hence, the fact that the universal conduc-
tivity EMA exponent t0 is 1 and that pc is 1=3 in the cubic
lattice, rather than the values expected from percolation
theory (
2 and 
0:25, respectively), simply means that
the t0 value acts as a reference for the tn value that we are
examining (see below). This yields that, considering the
t0 	 2 value for the universal 3D percolation system [1–4],
the ‘‘correct’’ value of t will be larger than the t value
derived from our EMA calculations just by a unity.

Turning to the EMA calculation, we consider a bond
percolation model for a cubic lattice with a bond conduc-
tance distribution function of the form: ��g� � ph�g� �
�1� p���g�, where the nonzero conductance values are
distributed according to h�g�. Assuming that the nearest-
neighbor interparticle distances r are distributed according
to a given distribution function P�r�, h�g� reduces to
h�g� �

R
1
0 drP�r���g� g�r��, yielding [10] the EMA av-

erage bond conductance G as the solution of the following
integral equation:

Z 1
0
dr

P�r�
g�r� � 2G

�
p� pc

2Gp
: (6)
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For a 3D homogeneous dispersion of impenetrable spheres
of diameter b, P�r� is well approximated by [20]:

P�r� �
24v��1x2 � �2x� �3�

b
exp��8v�1�x

3 � 1�

� 12v�2�x2 � 1� � 24v�3�x� 1����x� 1�; (7)

where x � r=b, 0< v< 1 is a dimensionless parameter
(coinciding with the volume fraction of the conducting
inclusions), � is the unit step function, and

�1 �
1� v

�1� v�3
; �2 � �

v
2

3� v

�1� v�3
;

�3 �
1

2

v2

�1� v�3
:

(8)

The parameter v controls the value of the mean nearest-
neighbor interparticle distance a [that we used in solving
Eq. (6)] through the relation a �

R
1
0 drrP�r�. From

Eqs. (6) and (7), it is clear that the effective medium
conductance G is governed by the parameter a=b that
characterizes P�r� and by the tunneling parameter d. A
numerical solution of the integral equation given in Eq. (6)
is plotted in Fig. 1 for the case of ‘‘dot’’ particles (b � 0,
left panel) and for hard-core spheres with the typical [4]
d=b � 0:15 value (right panel). The different plots ofG are
shown for different values of the characteristic parameter �
[see Eq. (5)]. In order to better appreciate the behavior ofG
as p! pc, the ‘‘local’’ transport exponent defined as

t�p� �
d ln�G�

d ln�p� pc�
(9)

is plotted in Fig. 2 for the data exhibited in Fig. 1. It is clear
that for small values of � the local exponent is only weakly
dependent on p and it is very close to t � 1, i.e., to the
universal value of the EMA. For larger � values, t�p�
acquires a stronger p� pc dependence which would cor-
FIG. 1. Left panel: Our calculated EMA conductance G as a
function of p� pc for dot particles (b � 0) with a nearest-
neighbor distribution that is given by Eq. (7). The different cases
refer to different values of the parameter � � 1� d=�a� b�.
Right panel: The same as for the left panel but for hard-core
spheres with diameter b > 0. The cases shown have the same �
values as those in the left panel.

06660
respond to an apparent nonuniversality when p is not too
close to pc. However, as p! pc, the local exponent
asymptotically reduces to the universal value of t0 � 1.

We have seen that our predicted t values depend on the
proximity p� pc to the percolation threshold pc, and,
thus, as we turn to the discussion of the experimental
observations, we have to compare the parameters that are
commonly used to quantify this proximity in the contin-
uum with the above, lattice, p� pc parameter. We note, in
particular, that in the latter case pc is of the order of unity
(0.247 in bond percolation, or 1=3 in EMA, on the cubic
lattice). On the other hand, in the continuum one com-
monly [5,6] considers the fractional volume (weight) con-
tent of the conducting phase v (w) and its critical value vc
(wc). However, the latter critical values can be vanishingly
small [3,5,14,25], and, thus, while the absolute values of
v� vc (or w� wc) may be very small compared to unity,
they do not correspond to a close proximity to vc or wc.
Hence, in general, the proximity in both cases is better
described [26] in the present context by �p� pc�=pc
and �v� vc�=vc or �w� wc�=wc. Since we noted that
�p� pc�=pc 
 �p� pc�, the comparison of the t values
obtained in the theory and the experiment has to be
made for the same values of p� pc and �v� vc�=vc or
�w� wc�=wc. Moreover, to appreciate the experimental
‘‘resolution’’ limits of �v� vc� or �w� wc� that are
achievable thus far in composites, in general, and in sys-
tems in which the percolation-tunneling model applies, in
particular, let us consider the cosputtered granular metals
[4,18,27]. For these systems, one can typically achieve a
fiftyfold division of the sample with values of v that vary
from (ideally) 0 to 1. Hence, for the typical [27] vc 
 0:5,
the smallest v� vc interval that can be examined, away
from vc, is 0:02vc, yielding that the closest proximity of
p� pc (pc 
 0:25, see above) is not smaller than about
0.01. As far as we know this is about the closest proximity
achieved thus far in the study of experimental systems, and,
thus, all the available experimental data correspond to the
lattice percolation range of, at most, 1 * p� pc * 0:01.

Examining our above EMA results (Fig. 2) in light of the
above considerations, we see that, over the above widest
FIG. 2. The local transport exponent t�p�, Eq. (9), as derived
from the calculated data shown in Fig. 1.
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experimentally achievable p� pc range, the value of t
may be taken as a constant with a deviation of not more
than�20%. Hence, it is not surprising that the common fit
done in the literature for experimental results is taken as
representing a single t value over the accessible (less than
2 orders of magnitude) p� pc range, while in fact a
variable t is present over that range. Indeed, as we noted
above, indications for the variation of the measured trans-
port exponents over the above p� pc range can be found
in the literature [6,14,16,17]. Also, the fact that the ‘‘mea-
sured’’ t values are scattered and vary between very similar
composites [6,8,14], but within the limits of t0 and t of the
order of t0 � 10, as suggested here, indicates that these
observations follow a combination of the small variation in
internal system parameters (a; b; d) and the limited p� pc
intervals that are considered. On the other hand, if higher
experimental resolutions will be achieved (in the prepara-
tion of series of samples), a more detailed verification of
our present EMA predictions, concerning the p� pc de-
pendence of t, is expected to be realized.

As we saw in Fig. 2, the peak in the t values shifts to
smaller p� pc values with the increase of �a� b�=d; i.e.,
higher t values will be observed the larger the value of
�a� b�=d (or �), for the accessible p� pc range. For this
range, this is qualitatively similar to the behavior to be
expected from the 1D-like model, but it is by far more
moderate in this range. However, the most important find-
ing is that the t values predicted here are of the order of
those observed experimentally for the a, b, and d parame-
ters that characterize the studied composites. In fact, our
present findings that yield relatively low [compared to the
1D-like prediction t0 � �a� b�=d� 1] t values confirm
our above conjecture that it is the (diverging 1D and the
nondiverging 3D) h�g� distributions that are responsible
for the different behavior of the 1D-like and the higher-
dimension percolation-tunneling systems. The other gen-
eral trend of the many experimental results is that the
smaller the vc (or wc) values (diminishing [21] even below
0.01), the larger the t value. This is well explained now by
the above-mentioned fact that the v� vc values in these
composites are much smaller than the (proper) lattice-p�
pc values, and, thus, their farther proximity to the threshold
in these composites yields, as seen in Fig. 2, larger t values.

In conclusion, we have shown that the values expected to
be measured for the conductivity exponent t, in tunneling-
percolation systems in the continuum, are between 2 and
the order of 10 for typical ratios of the tunneling decay
constant and the size of the conducting particles. The
dependence of t on the proximity to the percolation thresh-
old accounts for the many reported experimental values
and for their scatter between the above values, as well as
for the increase of the t values with the diminishing perco-
lation threshold when it is characterized, as is usually the
case, by the fractional volume or fractional weight of the
conducting phase in the system.
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