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In conventional frequency conversion based on ��2�-induced nonlinear optical effects, a number of phase-
matching techniques have been deployed to resolve the phase mismatch between the interacting waves. In this
work, we report that in the quasi-phase-matching scheme, the accumulation of the phase mismatch can induce
a quasi-phase-mismatch effect. And on the contrary, instead of eliminating the phase mismatch, modulating the
quasi-phase-mismatch effect can lead to bandwidth enhancement and multiple-wavelength conversion. Both of
these are essential factors for applications in nonlinear frequency conversion. As examples, designs with
reset-periodic and cascaded-periodic optical superlattices based on such modulation are presented.
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I. INTRODUCTION

One of the most striking events in condensed-matter phys-
ics in recent years is the investigation of the interactions
between wave vectors of classical waves and reciprocal vec-
tors of artificial optical superlattices. In the quasi-phase-
matching �QPM� scheme of nonlinear optics, the interactions
have led to laser frequency generation and conversion with
periodically poled �1� ferroelectric crystals such as LiNbO3
�2�, LiTaO3 �3�, and KTiOPO4 �4�. These laser frequency
generations and conversions are attractive sources of coher-
ent radiation for applications where laser sources were hith-
erto unavailable or a wide bandwidth and tunable range was
needed. In the past ten years, QPM was introduced into non-
linear optics as an alternative technique to birefringence
phase matching �BPM�. QPM has advantages over BPM due
to its higher gain, no “walk-off,” greater allowance for non-
critical phase matching of interactions within the transpar-
ency range, lower sensitivity to photorefractive effects �5�,
and extended ir transmission �6�.

In the periodic optical superlattice �POSL�, QPM is
achieved by offsetting the wave vector mismatch between
the interacting waves via the reciprocal vectors of the super-
lattice. However, phase mismatch is a ubiquitous effect since
any experimental uncertainty, such as the nonideal nature of
the domain inversion, a variation of the superlattice length
during the poling process, the fluctuation of the cavity and
the pump source, will result in an additional phase mismatch
in the superlattice. On the other hand, this additional phase
mismatch is an essential factor related to the requirement of
wide bandwidth and tuning, as well as the cascaded nonlin-
ear interactions �7,8�. The accumulation of this additional
phase mismatch in the POSL will induce a quasi-phase-
mismatch �QPMM� effect. Until now, much effort has been
devoted to developing the QPM technique in various optical
superlattices �9–15�, whereas the study of the QPMM effect
has so far been overlooked. In this paper, the QPMM effect
in ferroelectric optical superlattices is investigated. Effective
modulations of QPMM by microstructural designs can result
in bandwidth enhancement and multiple-wavelength output

in ��2�-induced frequency conversion processes. Accordingly,
this paper is organized as follows. In Sec. II, the QPMM
effect in the conventional periodic superlattice is discussed.
In Sec. III, the bandwidth enhancement by the modulation of
the QPMM effect in a reset-periodic optical superlattice
�RPOSL� is presented. In Sec. IV, the multiple-wavelength
conversion by the modulation of the QPMM effect in the
cascaded-periodic optical superlattice �CPOSL� is presented.
Finally, in Sec. V, the conclusions are presented.

II. QPMM EFFECT IN THE CONVENTIONAL POSL

A. First-order QPM condition in POSL

Normally, only the first-order QPM condition �9� is em-
ployed to compensate the wave vector mismatch for the de-
signed wavelength. For example, consider the nonlinear dif-
ference frequency mixing �DFM� process. Under the first-
order QPM condition, the wave vector mismatch of the
pump, input signal, and converted output beams is compen-
sated by the reciprocal vector of the superlattice defined by
2� /�0, where �0 is the period of the first-order QPM super-
lattice. Under the plane wave approximation and the slowly
varying envelope approximation, the coupling equations are
given by

dEp�x�
dx

=
− i�pdefff�x�

npc
Es�x�Eout�x�exp�i�kx� ,

dEs�x�
dx

=
− i�sdefff�x�

nsc
Ep�x�Eout

*�x�exp�− i�kx� ,

dEout�x�
dx

=
− i�outdefff�x�

noutc
Ep�x�Es

*�x�exp�− i�kx� , �1�

where np ,ns ,nout ,�p ,�s, and �out represent the refractive in-
dex and angular frequency of the pump, signal, and output
beams, respectively. c is the speed of light in vacuum, and
deff is the effective second-order nonlinearity. f�x� is the spa-
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tial function that modulates the sign of deff in the superlattice
and is defined by

f�x� = 1 − 2int� 2x

�0
� + 4int� x

�0
� �2�

where int�x� takes the value of the largest integer �x. The
spatial function f�x� only takes the values +1 or −1 that
represent the two inverse polarization directions in ferroelec-
tric materials.

In our discussion, pump depletion is taken into account in
order to keep a universal appeal and the coupling equations
are numerically solved. As shown in Fig. 1�a�, when the
first-order QPM condition is satisfied, the direction of spon-
taneous polarization flips over at every coherence length lc0
=� /�k0, i.e., the distance over which the relative phase of
the three waves changes by �. Likewise the intensity of the
output beam increases stepwise at every coherent length.

B. QPMM effect in POSL

When there is additional phase mismatch, the QPM con-
dition will be disturbed by a factor of ��k, which is defined
by

��k = kp − ks − kout − �k0 = �k − �k0 = �k −
2�

�0
. �3�

As shown in Fig. 1�b�, the flip over of the spontaneous po-
larization in the original superlattice fails to match to the
new coherence length lc=� /�k=� / ���k+�k0�. This will re-
duce the efficiency compared to the situation of perfect QPM
condition. However, the output intensity still increases step-
wise until ��k accumulates to � as shown in Fig. 1�c�. Thus
we can define a coherence length appropriately named the
QPMM coherence length lc

QPMM, to account for this addi-
tional phase mismatch ��k:

lc
QPMM = �/���k� . �4�

lc
QPMM thus determines a part of the crystal in which the

interacting waves with ��k can be still efficiently quasi-
phase-matched and the output intensity increases stepwise
until the wave has traveled a distance of lc

QPMM.
Based on the QPMM effect, there are two types of domain

structural modulation that can be introduced: one for band-
width widening with a RPOSL, and the other for multiple-
wavelength conversion with a CPOSL. The details of the
modulations are described in the following sections.

III. MODULATION OF QPMM IN RPOSL

A. Reset and bandwidth enhancement

One of the most important technologies of nonlinear op-
tical wavelength mixing is the ability to enhance the band-
width. In this part, we present an effective bandwidth en-
hancement in the light of modulating the QPMM effect in a
RPOSL. Due to the QPMM effect, the output intensity

begins to decrease when ��k has accumulated to � after a
distance lc

QPMM. However, as in QPM, it is possible for the
intensity to continue to increase further if the accumulated
phase mismatch � at lc

QPMM can be reset. The reset action,
which is equivalent to superimposing an additional domain
reversal on the original POSL �Fig. 2�a��, will modify the
structure of it and cause each of the subsequent domains to
reverse its original polarization direction as shown in Fig.
2�b�. Not only will this reset action cause the continuous
increase of the spectral component of ��k, but it will further
affect all the other spectral components, causing those spec-
tral components with phase mismatches smaller than ��k

�larger lc
QPMM� to lower output intensities while those with

phase mismatches larger than ��k �smaller lc
QPMM� increase

their output intensities. The net effect of intensity redistribu-
tion therefore results in an enhancement of bandwidth.

We consider the bandwidth enhancement in the nonlinear
DFM process. The wavelengths of the pump, input signal,
and converted output beams are chosen to be 	p=775 nm,
	s=1545 nm, and 	out=1555 nm to fit the optical communi-
cation window. A 15-mm-long LiNbO3 crystal is taken as an
example. The first-order QPM period is calculated to be �0

=16.92 
m based on the Sellmeier coefficients �16� at room
temperature, and the wave vector mismatch of the designed
wavelengths is �k0=2� /�0=0.3713 
m−1.

B. Reset position

The most important factor in designing the RPOSL is the
determination of the reset position �denoted by Lreset� to ef-
fectively modulate all the spectral components for a given
bandwidth requirement. Normally, the proper Lreset can be
determined via analytically solving the coupling equations to
obtain the relationship between power and the variables Lreset

and ��k. But this approach requires the small signal approxi-
mation, which is no longer tenable in our discussion. And
since a transcendental equation is obtained �see the Appen-
dix�, the final determination of the proper reset position will
depend on a numerical balancing process similar to that dis-
cussed here. Considering the fact that the Fourier spectrum is
similar to the power spectrum of the frequency difference
output, a Fourier analysis is adopted in our calculation. First
the Fourier transform of the domain sequence is performed.
Then the proper value of Lreset is obtained through a numeri-
cal balancing process, resulting in a wideband Fourier spec-
trum. Finally, the Fourier spectrum is converted to the power
spectrum via the coupling equations.

To perform the Fourier analysis, we define first the spatial
function that describes the domain sequence of the RPOSL in
real space. As described above, when a reset is superim-
posed, the part in front of the reset �denoted by L1 in Fig.
2�b�� retains its original domain orientations, whereas the
rear part �denoted by L2 in Fig. 2�b�� has its polarization
directions completely reversed. Thus the spatial function is
discontinuous. For example, for the RPOSL with one reset
superimposed, the spatial function is given by
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f1�x� = 1 − 2int� 2x

�0
� + 4int� x

�0
�, x � �0,L1� ,

f2�x� = �− 1��1 − 2int� 2x

�0
� + 4int� x

�0
�	, x � �L1,Lsup� ,

�5�

where Lsup is the entire length of the RPOSL. Applying the
Fourier transform

F��k� =
1

Lsup



0

Lsup

f�x�exp�− i�kx�dx

=
1

Lsup
�


0

L1

f1�x�exp�− i�kx�dx

+ 

L1

Lsup

f2�x�exp�− i�kx�dx	 , �6�

one can obtain the expression of F��k� in terms of ��k.

F��k� =
1

Lsup
� �

m=0

L1/�0−1 

2m�0/2

�2m+1��0/2

exp�− i�k0x�

�exp�− i��kx�dx − �
m=0

L1/�0−1 

�2m+1��0/2

�2m+2��0/2

exp�− i�k0x�

�exp�− i��kx�dx − �
m=L1/�0

Lsup/�0−1 

�2m��0/2

�2m+1��0/2

exp�− i�k0x�

�exp�− i��kx�dx + �
m=L1/�0

Lsup/�0−1 

�2m+1��0/2

�2m+2��0/2

exp�− i�k0x�

�exp�− i��kx�dx	 . �7�

After a series of deductions where 2L1 /�0�1 and
2Lsup/�0�1, we obtain

F��k� =
2

i�kLsup�0
�exp�− i��k

�0

2
� + 1	

��

0

L1

exp�− i��kx�dx − 

L1

Lsup

exp�− i��kx�dx	 .

�8�

The integration is carried out with ��k�k0. The spectrum
intensity, i.e., the Fourier coefficient, is given approximately
by

FIG. 1. �a� Effect of QPM on the growth of intensity with dis-
tance in a POSL. The direction of spontaneous polarization flips
every coherence length. Solid curve for first-order QPM; dashed
curve for non-phase-matched interaction. �b� Effect of the addi-
tional phase mismatch ��k in the POSL. Solid curve for first-order
QPM; dashed curve for spectral component with ��k. It is seen that
the flip over of the spontaneous polarization in the POSL fails to
match the new coherence length lc. �c� Within lc

QPMM, the spectral
component with ��k can be still efficiently quasi-phase-matched,
i.e., the output intensity retains a stepwise increase until it reaches
the coherence length lc

QPMM.
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�F��k�� �
4

�k��k�0Lsup
�2 sin2���kL1

2
�

+ 2 sin2���k�Lsup − L1�
2

� − sin2���kLsup

2
�	1/2

.

�9�

It is clear that the combination of several sinusoidal terms
with different widths and amplitudes will result in an en-
larged bandwidth. However, Eq. �9� is a transcendental equa-
tion where the two variables ��k and L1 are coupled to each
other in sinusoidal functions. The determination of the reset
position L1 �i.e., Lset� is seen to be a balancing act of three
competing factors: the full width at half maximum �FWHM�
of the Fourier spectrum �related to bandwidth�, the spectrum
intensity of the central spectral component �related to con-
version efficiency�, and the smoothness of the spectrum
around the central spectral component �k0 �related to effec-
tivity�. As shown in Fig. 3�a�, the FWHM of the spectrum is
not necessarily wide if the spectrum intensity is overvalued.
Equally important is the smoothness of the spectrum around
the central spectral component. As shown in Fig. 3�b�, the
spectrum is so uneven around �k0 that it renders the RPOSL
unsuitable for practical applications.

All the three factors are considered in the following se-
quence. First, all the possible combinations are scanned, i.e.,
L1 changes from 0 to Lsup and L2=Lsup−L1. Then for each
combination, the Fourier spectrum is obtained from Eq. �9�
by scanning ��k over a wide range of values and the value at
half maximum is computed to ensure the desired output con-
version efficiency �normally �0.15�. Simultaneously, the
smoothness of the spectrum around the central spectral com-

ponent is controlled by adjusting the difference between the
value of the Fourier coefficients at the point ��k=0 and the
global maximum value. Our numerical interation process
shows that the optimized reset position is 12.3 mm for a
15-mm-long superlattice, as shown in Fig. 3�c�. Furthermore,
on converting the Fourier spectrum into the power spectrum,
it is seen that the bandwidth of the RPOSL �dotted curve in
Fig. 4� becomes wider compared to that of the POSL �solid
curve in Fig. 4�. The FWHM of the dotted curve is more than
twice larger than that of the solid curve.

In adopting the method of Fourier analysis, we have
avoided solving the complex coupling equations. It provides
a more general approach to effectively achieve bandwidth
enhancement with or without small signal approximation.
Furthermore, for the RPOSL with two resets superimposed
as shown in Fig. 2�c�, the spectrum intensity shows a com-
bination of more sinusoidal terms as expressed by

FIG. 2. �a� Schematic diagram of a POSL. �b� Schematic dia-
gram of a RPOSL with one reset. �c� Schematic diagram of a
RPOSL with two resets. The arrows show the directions of sponta-
neous polarization of ferroelectric materials.

FIG. 3. Fourier spectrum of a RPOSL with one reset. �a� The
spectrum intensity of the central spectral component is overvalued
during the numerical balance process. Thus the enhancement of the
spectrum bandwidth is not necessarily efficient. �b� The spectrum
around the central spectral component varies sharply. It renders the
RPOSL unsuitable for practical applications. �c� After balancing the
three factors, the FWHM of the Fourier spectrum, the spectrum
intensity of the central spectral component, and the smoothness of
the spectrum around the central spectral component, effective band-
width enhancement of the Fourier spectrum is achieved.
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�F��k�� �
4

�k��k�0Lsup
�2 sin2���kL1

2
� + 4 sin2���kL2

2
�

+ 2 sin2���k�Lsup − L1 − L2�
2

�
− 2 sin2���k�L1 + L2�

2
� − 2 sin2���k�Lsup − L1�

2
�

+ sin2���kLsup

2
�	1/2

. �10�

The two reset positions �L1 and L2� for effective bandwidth
enhancement are around 1.8 and 11.55 mm, respectively, af-
ter a similar numerical computation. Comparing the solid
curve with the dotted curve and the dashed curve in Fig. 4, it
is seen that when more resets are superimposed, a wider
bandwidth with lower efficiency is obtained. It is easy to
understand from the point of view of the Fourier theorem:
Perturbing the periodic structure will naturally result in a
broadened spectrum. However, the Fourier coefficients of the
reciprocal vector 2� /�0 will be reduced due to the inevitable
trade-off that exists between bandwidth and conversion effi-
ciency.

IV. MODULATION OF QPMM IN CPOSL

A. Cascaded modulations for conversion of even number
of wavelengths

Besides the bandwidth enhancement, multiple-wavelength
conversion is another important aspect in nonlinear optical
mixing. It is essential for many applications such as environ-
mental sensing, gas detection, wavelength-division-
multiplexes optical communication networks, and signal pro-
cessing in time-division-multiplexed systems. Here we
present an approach for efficient multiple-wavelength opera-
tion by modulating the QPMM in a CPOSL.

In analogy to the QPM where the period for the QPM is
given by �0=2lc0

, the modulation period �=2lc
QPMM is simi-

larly defined for the QPMM effect. Furthermore, multiple-
wavelength conversion can be realized if a number of modu-
lation periods are defined and combined in a CPOSL design.
For simplicity, a CPOSL �Fig. 5�a�� is described by consid-
ering the following case. A POSL with period �0 as deter-
mined by the central wavelength and total length Lsup is di-
vided into N equal segments. On each segment, a new
periodic structure with a different modulation period ��mn

=2lc���kn�
QPMM, n� �1,N�� is superimposed. Thus a spectral com-

ponent with a phase mismatch ��k �determined by the re-
quirement of the output wavelength� can be efficiently gen-
erated at each of the segmented superlattices. As seen from
Eq. �4�, ��k= ±� / lc

QPMM; thus N different modulation periods
can modulate a total of 2N additional phase mismatches
which denote by ±��k1

, ±��k2
, ±��k3

,… , ±��kN
. As each

segmented superlattice has equal length, all 2N wavelengths
distributed symmetrically around the central wavelength will
have roughly the same efficiency.

The spatial function for the entire CPOSL can be ex-
pressed discontinuously. In each segmented superlattice, the
spatial distribution of the effective nonlinearity is described
by combining the two spatial terms �Eq. �2�� for �m and �0.
Thus in the entire length of the superlattice, we obtain

FIG. 4. Comparison of the tuning curve between the POSL
�solid curve� and the RPOSL with one �dotted curve� and two resets
�dashed curve�. The conversion efficiency is the relative conversion
efficiency and is normalized to the peak efficiency. It is seen that
more resets are superimposed, wider bandwidth and smaller effi-
ciency are obtained. That is, an inevitable trade-off exists between
bandwidth and conversion efficiency.

FIG. 5. �a� Schematic illustration of a CPOSL superimposed by
N modulation periods, where n1 ,… ,nN are integers. �b� Schematic
diagram of a CPOSL superimposed by one modulation period. The
duty cycles of the original period �0 and the modulation period �m

can be adjusted. The arrows show the directions of spontaneous
polarization of ferroelectric materials.
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f1�x� = �1 − 2int� 2x

�m1
� + 4int� x

�m1
�	�1 − 2int� 2x

�0
� + 4int� x

�0
�	 , x � �0,L1� ,

f2�x� = �1 − 2int� 2x

�m2
� + 4int� x

�m2
�	�1 − 2int� 2x

�0
� + 4int� x

�0
�	 , x � �L1,L1 + L2� ,

�11�


fN�x� = �1 − 2int� 2x

�mN
� + 4int� x

�mN
�	�1 − 2int� 2x

�0
� + 4int� x

�0
�	 , x � �L1 + ¯ + LN−1,Lsup� .

For example, our simulation of a 20-mm-long superlattice
with �0=16.92 
m is divided into two equal segmented su-
perlattices. Two modulation periods �m1=676.8 
m and
�m2=1692 
m are superimposed on the two segmented su-
perlattices. According to the analysis above, there are four
peaks with almost equal height in the Fourier spectrum �Fig.
6�a�� and power spectrum �Fig. 6�b��. Similarly, multiwave-
length operation with more channels and different channel
spacing can also be achieved by adopting this design.

B. Duty cycle of the modulation period for conversion of odd
number of wavelengths

It is seen in the aforementioned modulation of the QPMM
effect that the central wavelength is always absent and thus
we can only obtain an even number of wavelength outputs.
In this section, this phenomenon is discussed from a more
general perspective in which both duty cycles �0 and �m can
be adjusted.

For simplicity, we consider the case in which only one
modulation periodicity is superimposed on a POSL, as
shown in Fig. 5�b�. The original POSL with period �0 is
chosen to compose of length Lsup with duty cycle D0. Thus
the entire superlattice consists of two types of domains: the a

domain with a width of a=�0D0 and a b domain with a
width of b=�0−�0D0. A modulation period �m �defined by
�m=2lc

QPMM=2� /��K� is superimposed on the POSL. The
duty cycle of �m is denoted by Dm, and thus the entire su-
perlattice consists of two types of segments: the A segment
with a length of A=�mDm and a B segment with a length of
B=�m−�mDm.

F��k� consists of contributions from both the a domain
and the b domain, i.e.,

F��k� = Fa��k� + Fb��k� . �12�

Considering the fact that the a and b domains can be in
different segments �A or B segment�, Eq. �12� can be further
expressed by

F��k� = Fa��k� + Fb��k� = Fa
A��k� + Fa

B��k� + Fb
A��k�

+ Fb
B��k� . �13�

For simplicity, we assume that the quotients of
Lsup/�0 ,Lsup/�m ,�m /�0 ,A /�0, and B /�0 are integers. Thus
the four terms Fa

A��k� ,Fa
B��k� ,Fb

A��k�, and Fb
B��k� in Eq.

�13� can be analytically expressed by applying the Fourier
transform:

Fa,b
A ��k� =

S

− i�kLsup
�exp�− i�k�� − 1�exp�− i��ka�

1 − exp�− i�kA��1 − exp�− i�kj�mod��
1 − exp�− i�k�0��1 − exp�− i�k�mod��

,

Fa,b
B ��k� =

S

i�kLsup
�exp�− i�k�� − 1�exp�− i��ka�

�1 − exp�− i�kB��exp�− i�kA��1 − exp�− i�kj�mod��
1 − exp�− i�k�0��1 − exp�− i�k�mod��

. �14�

For the a domain, �=a, �=0, S=1, and for the b domain, �=b, �=1, S=−1, where A ,B, and �m are defined by A= p�0, B
=q�0, and Lsup= j�m= j�p+q��0 �p ,q, and j are integers�. The spectrum intensity of the central spectral component ��F��k0���
can finally be written as

� lim
�k→�k0

F��k�� = �4 sin��k0a/2�
�

Dm −
2 sin��k0a/2�

�
� . �15�
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It is seen that when the duty cycle Dm of the modulation
period is set to be 50%, �F��k0��=0 and the central wave-
length will disappear. Equation �15� shows that the variation
of spectrum intensity of �k0 with the duty cycle Dm is linear.
As the duty cycle Dm increases from 0 to 100%, �F��k0��
decreases linearly from 2 sin��k0a /2� /� �at Dm=0� to zero
�at Dm=50%�, and then increases linearly from zero to
2 sin��k0a /2� /� �at Dm=100%� as depicted by the dash-
dotted curve in Fig. 7�a�. It is also seen that although
�F��k0�� will vary with the duty cycle D0, the extinction of
central wavelength is not dependent on it, except two ex-
treme conditions D0=0 �i.e., a=0� and 1 �i.e., a=�0�. It is
seen that when Dm=0 or Dm=100%, a CPOSL degenerates
to a POSL. And from Eq. �15�, the spectrum intensity of the
central spectral component �k0 can be expressed by
�2 sin��k0a /2� /��= �2 sin��D0� /��. It is obvious that in the
conventional first-order QPM structure, the spectral intensity
of �k0 varies with D0 according to a sinusoid function. It

FIG. 6. �a� Four-channel Fourier spectrum of a CPOSL with two
modulation periods superimposed. �b� Conversion efficiency plot of
�a�. The conversion efficiency is relative to the peak efficiency of a
conventional POSL �one-channel� device. �c� Three-channel Fourier
spectrum of a CPOSL with one modulation period superimposed.
�d� Conversion efficiency plot of �c�. The conversion efficiency is
relative to the peak efficiency of a conventional POSL �one-
channel� device.

FIG. 7. �a� Distributions of �F��k0�� , �F��k1��, and �F��k2�� as
functions of Dm; dash-dotted curve for �F��k0��, solid curve for
�F��k1��, and dashed curve for �F��k2��. �F��k1�� and �F��k2�� can
be equalized at a series of discrete values of Dm as indicated by the
black circles in the inset. �b�,�c� When the values of Dm are around
0.262, 0.275, and 0.287 or �1−0.262� , �1−0.275�, and �1−0.287�,
�F��k0�� , �F��k1��, and �F��k2�� can be roughly equalized at the
maximum value. Here, �m=676.8 
m and �0=16.92 
m.
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means that as D0 changes, the spectrum intensity of �k0 in
the first-order POSL can be smaller than that in the higher-
order POSL �spectrum intensity �k0 in POSL can be ex-
pressed by 2/m�, where m denotes the mth-order QPM con-
dition�. Only for D0=50% can we obtain the maximum value
of � /2 for a conventional POSL.

The spectrum intensities of the spectral components �k1
=�k0+��k and �k2=�k0−��k ��F��k1�� and �F��k2��� can be
expressed by

� lim
�k→�k1

F��k�� =
8

�k1�m
� sin��k1a/2�

sin��k1�0/2�
sin��k1�mDm/2�� ,

�16�

� lim
�k→�k2

F��k�� =
8

�k2�m
� sin��k2a/2�

sin��k2�0/2�
sin��k2�mDm/2�� .

�17�

Distributions of �F��k1�� and �F��k2�� as a function of Dm are
depicted by the solid and dashed curves in Fig. 7�a�, respec-
tively. From Eqs. �16� and �17�, it is seen that the variations
of �F��k1�� and �F��k2�� depend not only on Dm, but also on
�m. In the entire duty cycle range, both �F��k1�� and �F��k2��
beat with roughly equal amplitude �for ��k

�k0� but differ-
ent phases, and the beating frequency is proportional to �m.
Thus �F��k1�� and �F��k2�� can be equalized at a series of
discrete values of Dm as indicated by the black circles in the
inset of Fig. 7�a�.

From Fig. 7, when Dm deviates from the 50% point, the
central wavelength will not disappear and the spectrum in-
tensities of �k0 ,�k1, and �k2 will vary as Dm. Thus one can
further adjust all the spectral components to have equal in-
tensities. However, instead of equating Eqs. �15�, �16�, and
�17� directly, we use numerical iteration. �F��k0�� , �F��k1��,
and �F��k2�� can be roughly equalized at the maximum value
around Dm=0.262, 0.275, 0.287 �Fig. 7�b��, or Dm= �1
−0.262�, �1−0.275�, and �1−0.287� �Fig. 7�c��. Figure 6�c�
shows a three-channel Fourier spectrum with almost equal
spectrum intensities and Fig. 6�d� is a counterpart of Fig.
6�c� in the power spectrum. In brief, one can realize
multiple-wavelength conversion with an arbitrary number of
wavelength outputs by superimposing N different modula-
tion periods with Dm�50% on N equal segments.

V. CONCLUSIONS

In summary, we have systematically investigated the
QPMM effect in the optical superlattices POSL, RPOSL, and
CPOSL. Effective bandwidth enhancement is achieved by
modulating the QPMM via the reset action in a RPOSL.
Fourier analysis is adopted as an alternative approach for
which small signal approximation is unavailable, and it is
verified to be more general. Multiple-wavelength conversion
is realized by modulating the QPMM via the cascaded action
in a CPOSL. By studying the duty cycle of the modulation
period, the CPOSL can be used to generate arbitrary numbers
of wavelengths, even or odd numbers, rendering the CPOSL
more suitable for practical applications.
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APPENDIX: DETERMINING THE PROPER POSITION OF
THE RESET UNDER SMALL SIGNAL APPROXIMATION

Under the small signal approximation �dEp /dx=0�, the
coupling equations can be analytically solved by a standard
differential equation technique. The amplitude of the con-
verted output is

Eout�Lsup� = 

0

Lsup i�outEpEs
*�x = 0�deff

2noutc
f�x�exp�i�kx�dx .

�A1�

For example, for the RPOSL with only one reset superim-
posed, the integration in Eq. �A1� can be converted into the
sum of integration of each single domain:

Eout
+ �Lsup� = ��


0

�0/2

deff exp�i�kx�dx + ¯

+ 

�Lsup/��0/2�−2�/�0/2

�Lsup/��0/2�−1��0/2

deff exp�i�kx�dx	
= � �

m=0

Lsup/�0−1 

2m�0/2

�2m+1��0/2

deff exp�i�kx�dx ,

Eout
− �Lsup� = ��


�0/2

�0

�− deff�exp�i�kx�dx + ¯

+ 

�Lsup/��0/2�−1��0/2

�Lsup/��0/2���0/2

�− deff�exp�i�kx�dx	
= � �

m=0

Lsup/�0−1 

�2m+1��0/2

�2m+2��0/2

�− deff�exp�i�kx�dx ,

�A2�

where �= i�outEpEs
*�x=0� /2noutc is a constant. “+” and “−”

represent the nonlinear contributions from the positive and
negative domains, respectively. It should be noted that the
deduction above is based on the approximation that the non-
linear contribution from the domain that contains the reset is
neglected and the entire superlattice is treated as a combina-
tion of two POSLs. This approximation is tenable since both
L1 and L2 are much larger than the width of a single domain.
Then including the additional phase mismatch ��k, the rela-
tionship between the output amplitude and the position of the
reset can be expressed by

Eout = Eout
+ + Eout

−

= �deff� �
m=0

L1/�0−1 

2m�0/2

�2m+1��0/2

exp�i�k0x�exp�i��kx�dx

− �
m=0

L1/�0−1 

�2m+1��0/2

�2m+2��0/2

exp�i�k0x�exp�i��kx�dx
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+ �
m=L1/�0

Lsup/�0−1 

�2m��0/2

�2m+1��0/2

exp�i�k0x�exp�i��kx�dx

− �
m=L1/�0

Lsup/�0−1 

�2m+1��0/2

�2m+2��0/2

exp�i�k0x�exp�i��kx�dx	 .

�A3�

After a series of deductions, we obtain

Eout =
i�deff

�k
�exp�i��k

�0

2
� + 1	� �

m=0

2L1/�0−1

exp�i��km
�0

2
�

− �
m=2L1/�0

2Lsup/�0−1

exp�i��km
�0

2
�	

=
i�deff

�k�0/2
�exp�i��k

�0

2
� + 1	�


0

L1

exp�i��kx�dx

− 

L1

Lsup

exp�i��kx�dx	 . �A4�

After integration and applying Pout��Eout�2, we finally obtain

Pout �
64�2deff

2 cos2���k�0/4�
���k�k�0�2 �2 sin2���kL1

2
�

+ 2 sin2���k�Lsup − L1�
2

� − sin2���kLsup

2
�	 .

�A5�

The decision of the proper position of the reset also has to
depend on the same numerical balance process as discussed
in Sec. III. Comparing Eqs. �9� and �A5�, it is seen that the
Fourier spectrum is similar to the power spectrum, verifying
the validity of adopting the Fourier analysis as an effective
and general approach to studying the bandwidth problem in
��2�-induced frequency conversion processes.
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