
Electronic structure of a many-electron spherical quantum dot with an impurity

Mehmet Șahin*
Faculty of Science and Arts, Physics Department, Selçuk University, Kampus 42031 Konya, Turkey

Mehmet Tomak
Physics Department, Middle East Technical University, İnönü Bulvari 06531 Ankara, Turkey

�Received 12 May 2005; published 15 September 2005; publisher error corrected 20 September 2005�

We investigate the electronic structure of a many-electron spherical quantum dot with and without hydro-
genic impurity. The number of electrons is taken as N=18. The density functional theory is used within local
density approximation. Total energy, chemical potential, addition energy spectra, and the shell structure are
determined and the results obtained are compared for cases with and without impurity. It is observed that the
capacitive energy with the impurity increases in the 1s shell with respect to the case without the impurity.
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I. INTRODUCTION

The recent developments in the fabrication technology
have given an opportunity to confine the electrons in two-,
one-, and zero-dimensional semiconductor structures.1,2 The
zero-dimensional quantum dot �QD� is also called an artifi-
cial atom because it exhibits atomic properties. It is impor-
tant to understand the electronic structure of QD for techno-
logical applications, such as single electron transistor,
quantum dot infrared photodetector. Therefore, these are ex-
tensively studied in condensed matter physics both theoreti-
cally and experimentally.3,4

The number of electrons in the QD is very important for
many physical properties of these structures, since with in-
creasing number of electrons the electron-electron interaction
becomes important. A number of studies have been per-
formed on many-electron effects in semiconductor QDs.3,5–10

An extensive review on electronic structure of QDs is re-
ported by Reimann and Manninen.10 Nowadays, powerful
single-electron capacitance spectroscopy techniques,3,11–13

infrared absorption,14,15 and conductance measurements11,12

have made available investigation of the discrete level struc-
ture, electron addition spectra, which is also known as ca-
pacitive energy, and many-body effects in electronic struc-
ture of single and coupled quantum dots. The Coulomb
blockade effects are extensively studied for different physical
conditions.3,10,16 In device applications, especially for single-
electron devices, the Coulomb blockade effect is very
important.3 This mechanism is used in quantum dot and/or
tunnel junction systems to improve the current control in
single-electron devices.17

The electronic properties of hydrogenic donor states, on
the other hand, have also been studied widely as a function
of dot radius, donor position, dielectric constant, tempera-
ture, etc.18–21 for one and two electron QDs with an impurity
which are called D0 and D− centers. The electronic structure
of a many-electron two-dimensional QD with a hydrogenic
impurity has been studied by Lee et al.22 for a harmonic
potential. They have investigated the spin-polarization
changes, binding energies and capacitive energies as func-
tions of impurity position and the number of electrons.
DiVincenzo23 and Kane24 have proposed that the electronic

structure of donors in a QD plays an important role in the
quantum computation.

The many-body effects on impurity states in a different
system are considered in Refs. 25 and 26.

Many different calculational techniques are used for de-
termining electron-electron interaction effects on the elec-
tronic structure of many-electron quantum dots, such as ma-
trix diagonalization, configuration interaction, Hartree
approximation, and Hartree-Fock techniques.27–29

The hydrogenic impurity problem in a spherical QD is
studied by many authors. These studies are limited only to
impurities containing one or two electrons. Although, the
electronic structure of a many-electron QD with the impurity
for harmonic confinement was studied by Lee et al.,22 the
case of a many-electron spherical QD with a hydrogenic im-
purity is not investigated so far. The main goal of this paper
is to investigate the electronic structure of a many-electron
spherical QD in the presence of a hydrogenic impurity. For
this purpose, density functional theory �DFT� has been used
in the Kohn-Sham30 scheme with local density approxima-
tion �LDA�. The total energy, chemical potential, addition
energy spectra, and shell structure are determined with and
without the impurity. It is seen that the capacitive energy
increases by presence of the impurity in the 1s shell espe-
cially. Although, the similar behavior has been reported for a
two-dimensional QD in Ref. 22, this effect is reported for the
first time in this study for a spherical QD.

This paper is organized as follows. In the next section, we
present our model and the formulation of the problem. Re-
sults and discussion are presented in Sec. III. In the last
section, a conclusion is given.

II. THE MODEL

In our model, we consider a spherically symmetric quan-
tum dot with radius Rdot which is embedded in a bulk semi-
conductor. We use effective mass approximation and
BenDaniel-Duke boundary conditions for the self-consistent
calculations. In the effective mass approximation, for a
spherically symmetric N-electron quantum dot with radius
Rdot single-particle Kohn-Sham equation is given as
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Here, m* is the position-dependent electron’s effective mass,
Z is the charge of the impurity, � is the angular momentum
quantum number, �e-e is the Hartree potential between elec-
trons, Vb is the confining potential and Vxc is the exchange-
correlation potential. The Hartree potential is determined
from the Poisson equation,

�2�e−e =
ene�r�
��r�

, �2�

where ne�r� is the electron density and ��r� is the dielectric
constant of the structure. The electron density is
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where 2�2�+1� is the spin and magnetic degeneracies, p, and
np are the angular momentum quantum number and prin-
ciple quantum number of the fully occupied states, respec-
tively, q is the number of remaining electrons in the last
state, nq, and �q are the principle quantum number and an-
gular momentum quantum number of the last state, respec-
tively. We have employed Perdew and Zunger32 expression
for the exchange-correlation energy and potential which is
the parametrization of the Monte Carlo result of Ceperley
and Alder.31

In order to determine the single particle energy levels,
Eqs. �1�–�3� are solved self-consistently in the local density
approximation and then we calculate total energy of the sys-
tem using

E = �
i=1

N

�i −
e

2
	 �e−en�r�d3r + Exc
n�r��

−	 Vxc
n�r��n�r�d3r . �4�

We employ matrix diagonalization technique for the de-
termination of single particle energies. For this purpose, the
Hamiltonian operator is discretized on a uniform radial mesh
in 1D using the finite differences, then Eq. �1� can be re-
duced to a matrix eigenvalue equation. Eigenvalues and
eigenvectors of this matrix equation are determined by EIS-
PACK subroutine. These eigenvectors are used in Eq. �3� for
determining the charge density. The charge density in turn is
used in exchange-correlation potential and Poisson equation,
Eq. �2�, and thus the Hartree potential �e-e is calculated. The
finite difference technique with Gauss elimination method is
used for calculation of the Hartree potential. In order to per-
form a self-consistent calculation, Hartree and exchange-
correlation potential are substituted into Eq. �1� and this pro-
cess is continued until convergence is obtained.

We have calculated the self-consistent total energy E�N�
for the N-electron spherical QD. The chemical potential,
��N�, is the energy required to add an electron to the system
having �N−1� electron and is defined as total energy differ-
ence between the cases of N electrons and the �N−1� elec-
trons, namely,

��N� = E�N� − E�N − 1� . �5�

The capacitance of the QD can be derived from the chemical
potential33,34 as

C�N� =
e2

��N + 1� − ��N�
. �6�

The capacitive or addition energy, �A�N�=e2 /C�N�, for the
N-electron system is defined as

�A�N� = ��N + 1� − ��N� = E�N + 1� + E�N − 1� − 2E�N� .

�7�

The capacitive energy in the DFT is equal to the energy gap
between the lowest unoccupied and highest occupied states
for an N-electron QD.33

III. RESULTS AND DISCUSSION

Following theoretical studies on spherical quantum dots,
we use the material parameters of GaAs for the well region
and that of AlGaAs for the barrier region,19,35,36 because their
basic physical properties such as band mismatch, effective
masses, and dielectric constants are better known.37 The pa-
rameters of more realistic structures can easily be used in the
present calculation.

We have used atomic units throughout our calculations.
Effective Bohr radius is a0

*=100 Å and effective Rydberg
energy is Ry

*=5.5 meV. We take mGaAs=0.067m0, mAlGaAs
=0.092m0, Vb=228 meV, �GaAs=13.1, �AlGaAs=12.2 as ma-
terial parameters. We denote the effective masses of elec-
trons inside GaAs and AlGaAs as m1

* and m2
*, and similarly

the dielectric constants as �1 and �2, respectively. The
position-dependent effective mass and the dielectric constant
may be defined as follows:19

m*�r� = �1, r 	 Rdot,

m2
*

m1
* , r 
 Rdot, 

��r� = �1, r 	 Rdot,

�2

�1
, r 
 Rdot.  �8�

Figure 1 shows an effective potential ��−Ze2 /r�+ 
���
+1��2 /2mr2�� including the effects of both the Coulomb po-
tential due to impurity and the angular momentum. As seen
from the figure, while the potential for �=0 is attractive, it is
repulsive for �
0 at the center of the QD. The influence of
the repulsive potential decreases with the impurity in com-
parison to the case without the impurity. The Coulomb po-
tential has a singularity at r=0. In order to avoid the numeri-
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cal singularity of the impurity potential at the origin we use
the cusp condition,38 which modifies the eigenfunction as to
take into account the effect of the singularity.

If the radius of the dot with a hydrogenic impurity is large
enough, one electron in the dot is bound to this hydrogenic
impurity to create a neutral entity �D0�.35,36 A second elec-
tron also can bind to this single impurity as a result of po-
larization if the radius becomes larger. In this case, the struc-
ture is called a D− center.20,21,39 The binding energy of a
neutral donor impurity is the difference between the total
energies with and without impurity,35,36 namely,

Eb�D0� = E0 − E�D0� . �9�

Here, E0 is the ground state of single electron without impu-
rity in the QD and E�D0� is the lowest level of neutral donor.
The binding energy of a D− center is defined as

Eb�D−� = E0 + E�D0� − E�D−� , �10�

where E�D−� is the lowest level of D− center.21,39 Figure 2
shows the variation of the binding energy of D0 and D−

center as a function of the dot radius.
The results are in a good agreement with previous

studies.36,40 Although it is not possible to bind more than two
electrons to a single impurity, this impurity affects the elec-
tronic structure of the many-electron QD. It should be also
noted that, if the charge of impurity in the QD increases �Z
=2,3 . . . �, the number of electrons binding to the impurity
increases.

In Fig. 3, the variation of differences between total ener-
gies with and without impurity per electron with the dot
radius is seen for various electron numbers. In this figure, the
variation at N=1 is equal to binding energy of D0 seen in the
preceding figure. As seen from the figure, these differences
between total energies per electron decrease while the num-
ber of electrons increase. This result shows that the influence
of impurity is weaker at higher energy levels as the electron
numbers increase.

The chemical potential, which is calculated by Eq. �5�, is
plotted in Figs. 4�a� and 4�b� for Z=0 and Z=1, respectively.
Three groups have been observed in both figures. These
groups correspond to three different orbitals, 1s, 1p, and 1d.
This is the well-known shell structure of a spherical quantum
dot for bound states. The chemical potentials drop as the dot
radius increases in both cases. As seen from Fig. 4�a�, the
chemical potential goes to zero when the dot radius becomes
large especially for the 1s orbital. The total energy goes to
zero for the ground state as the dot radius is increased. This
total energy approaches the binding energy, which is nega-
tive for the large dot radius, and Z=1. Consequently, the
chemical potential gains a negative value in the 1s orbital.

Figure 5 shows the variation of the capacitive energy with
the number of electrons for Z=0 and Z=1 at Rdot=1.4a0

*. The
result presented is for Rdot=1.4a0

* since 18 electrons can be

FIG. 1. Effective potential for different � and Z values. FIG. 2. Binding energy of D0 and D− center.

FIG. 3. Difference between the total energies per an electron
with and without the impurity.
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confined at this dot radius. However, similar trend is also
obtained for the other dot radii. The peaks are observed when
the shells are fully occupied and the numbers corresponding
to these peaks are called magic numbers. The addition or
capacitive energy is very high at the magic numbers for both
Z=0 and Z=1 cases, due to the fully occupied shells. This
reflects the fact that the addition of one electron to the sys-
tem is very difficult at these magic numbers. But, it is very
easy for open shells.

Another important result seen from the figure is that the
addition energy is greater for the Z=1 than for the Z=0 case.
This is an unexpected result. The expected result is that the
addition energy is lower at the Z=1 than for the Z=0 case
because of the attractive Coulomb potential of the impurity
at the 1s orbital. Similar result is found for eight electrons at
the 1p orbital but it is not very dominant. In other words,
when the number of electrons increases, the effect of the
impurity decreases. The electron distribution function is use-

ful to explain these results. The distribution function of elec-
tron gas with and without impurity is seen in Fig. 6 for N
=2 and R=1.4a0

*. It is seen that the distribution function
shows a uniform broadening at the absence of the impurity,
Z=0. In this case, distance between electrons is large and the
repulsive Coulomb potential is relatively small. Hence, the
addition of second electrons to the QD is relatively easier.
Although similar distribution is observed at the inclusion of
the impurity, Z=1, it shifts towards to quantum dot center.
Consequently, distance between electrons is smaller and the
repulsive Coulomb potential becomes more effective. There-
fore, addition of a second electron requires more energy than
the Z=0 case.

Figure 7 is the same as Fig. 6 except that the number of
electrons is 8. As seen from the figure, the electron distribu-

FIG. 4. Variation of the chemical potential with the dot radius
�a� for Z=0, �b� for Z=1.

FIG. 5. Variation of capacitive energy with number of electrons
for the Z=0 and Z=1 cases.

FIG. 6. Electron density probability distribution for the N=2,
Z=0, and Z=1 cases. The inset shows the density distribution with-
out the r2 factor.
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tion functions are very similar for Z=0 and Z=1 cases. In-
creasing the number of electrons in the QD increases the
screening of the impurity and decreases the attractive prop-
erties of the Coulomb potential due to the impurity. Hence,
the energy required for addition of the eighth electron to the
QD is approximately equal, with and without the impurity as
seen in Fig. 5.

Even though the addition energy is enhanced by the hy-
drogenic impurity, the electron numbers confined in the QD
go up in the presence of the impurity. This case is demon-
strated in Fig. 8. As seen from the figure, only one electron
can be confined for Rdot=0.25a0

* and 18 electrons confined
for Rdot=1.4a0

* at the Z=0 case. Nevertheless, two electrons
can be confined at Rdot=0.25a0

* and 18 electrons confined for
Rdot=1.2a0

* at Z=1 case.
In Fig. 9, we plot the variation of the capacitive energy

with the dot radii for N=2 and 8 electrons and Z=0 and Z
=1 cases. The difference between the capacitive energies

with and without the impurity for the same electron numbers
is shown in this figure. As seen from Fig. 9�a�, the capacitive
energies drop as the dot radius increases. In addition, the
capacitive energy for N=2 is lower than for N=8 in the Z
=0 case at small dot radii and it becomes equal for N=2 and
8 at larger dot radii. However, as seen in Fig. 9�b�, while the
capacitive energies are equal for N=2 and 8 at small dot
radii, it becomes lower for N=8 than for N=2 at larger dot
radii in the Z=1 case. As seen, the impurity inverts the char-
acter of capacitive energy structure of spherical QD at the
Z=0 case. Figure 9�c� shows the difference between the ad-
dition energies with and without the impurity. As seen from
the figure, the impurity effect is more apparent at s shell,
N=2 case and at small dot radii for N=2 and 8 and this
effect decreases while the dot radius increases for both elec-
tron numbers. Furthermore, influence of the impurity goes to
zero for N=8 at large dot radii.

IV. CONCLUSION

We have calculated the electronic structure of a many-
electron spherical quantum dot as a function of the number
of electrons and dot radius with and without the impurity.
Here, the electron numbers have been taken as maximum 18.
We have used density functional theory within local density
approximation to take into account the many-body effects.
Although only two electrons bind to impurity, it is seen that
the impurity affects the electronic structure of a many-

FIG. 7. Same as Fig. 6 but for N=8.

FIG. 8. Confinement electron numbers in QD with different dot
radii for Z=0 and Z=1 cases.

FIG. 9. The capacitive energies as a function of the dot radius
�a� for Z=0 and �b� for Z=1. �c� shows the difference of the addi-
tion energies between �b� and �a�.
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electron QD. These effects are considerable on the physical
quantity corresponds to the 1s orbital such as chemical po-
tentials, capacitive energies, density distributions, etc. We do
not observe any change in the shell structure of the QD with
the introduction of an impurity. The surprising effect of im-
purity is observed at the addition energy of the second elec-
tron. As the energy required is much more for adding a sec-
ond electron to QD for the Z=1 case, this energy is much
less for the Z=0 case. This property can be used for design-
ing devices. Also, important changes in the electronic prop-

erties of a many-electron quantum dot can be made by in-
creasing the charge of the impurity �helium like Z=2, lithium
like Z=3, etc.� and these changes may be very useful and
important for various device applications.
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