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ence effects is obtained by allowing the geometrical rays to transport Wigner function instead of simply
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1. Introduction

Phase-space methods exemplified by the Wigner-function for-
malism are a powerful tool to solve problems both in quantum
mechanics, quantum optics, and classical optics [1–17]. The Wig-
ner function was originally introduced in the quantum domain
but afterwards it has found a lot of applications in classical optics
after being introduced to generalize the idea of radiance to par-
tially coherent light sources [4–6]. Thus, a key feature of this ap-
proach is that it provides a useful unification of the simplicity of
geometrical optics and the completeness of wave optics.

This is achieved by allowing the geometrical rays to transport
Wigner function instead of just specific intensity. In particular this
provides exceedingly simple propagation formulas in the paraxial
domain. The Wigner function cannot represent always specific
intensity, since it can take negative as well as positive values. Neg-
ative values are crucial to the completeness of the theory since
they contain the coherence features [5–17]. In the Appendix we re-
call the basic ingredients of this formalism.

In this work we apply the Wigner-function formalism to one-
dimensional gratings, both perfect and less than perfect, illumi-
ll rights reserved.
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nated by plane and Gaussian waves. More specifically, the main
contributions of this analysis are:

(i) We provide an intuitive and complete ray picture of diffrac-
tion gratings. This kind of formulation has already proven its
usefulness in other interferometric problems [13,18–20].

(ii) We show that this formalism can be extended to imperfect
gratings. As deviations from perfection we consider random
microscopic irregularities causing partial lack of statistical
correlation between grating points [21–24].

(iii) This analysis is also extended to partially coherent illumi-
nating waves.

(iv) We show that the Wigner formulation of gratings recalls the
quantum angle-number Wigner function previously intro-
duced to represent angle and angular momentum in quan-
tum mechanics [25,26].

As recalled in (A.6) and (A.7), the effect of the grating on the in-
put field is fully described within the geometrical picture by the
Wigner function of the grating WTðx; pÞ

WTðx;pÞ ¼
k

2p

Z 1

�1
dx0hTðx� x0=2ÞT�ðxþ x0=2Þi expðikpx0Þ; ð1Þ

where TðxÞ is the amplitude transmission coefficient, the brackets
represent ensemble averages, x and x0 are Cartesian coordinates
orthogonal to the main propagation direction along axis z, p is the

mailto:alluis@fis.ucm.es
mailto:optbrea@fis.ucm.es
http://www.ucm.es/info/gioq/alfredo.html
http://www.ucm.es/info/aocg/personal/sanchezbrea/sanchezbrea.htm
http://www.ucm.es/info/aocg/personal/sanchezbrea/sanchezbrea.htm
http://www.sciencedirect.com/science/journal/00304018
http://www.elsevier.com/locate/optcom


2010 A. Luis, L.M. Sanchez-Brea / Optics Communications 282 (2009) 2009–2015
angular variable representing the local direction of propagation, and
k is the wavenumber in vacuum.

A key feature of this formalism is that it includes the possibility
of randomness in the diffraction process requiring statistical aver-
ages of the properties of the grating, as revealed by the averages in
(1). In order to exploit this property we can decompose TðxÞ into
the product of two factors TðxÞ ¼ sðxÞtðxÞ, where tðxÞ is a periodic,
deterministic, ideal grating, while sðxÞ represents either the pres-
ence of defects or the stochastic character of a real grating. In such
a case we have

WTðx;pÞ ¼
Z 1

�1
dp0Wtðx;p� p0ÞWsðx;p0Þ: ð2Þ

Throughout we will consider paraxial approximation so that
Wðx;pÞ ’ 0 for p outside the paraxial domain. Thus, for computa-
tional purposes the limits of the p integrals can be safely extended
to �1 without including evanescent nonpropagating components.

When we take into account the illumination, the Wigner func-
tion for the field immediately after the plane of the diffraction ob-
ject at z ¼ 0 is

WTUðx;pÞ ¼
Z 1

�1
dp0WTðx;p� p0ÞWUðx; p0Þ; ð3Þ

where WUðx;pÞ is the Wigner function of the illuminating light
beam at z ¼ 0. As illuminating field we will consider firstly a fully
coherent, normally incident, scalar, and plane wave with Wigner
function WUðx; pÞ / dðpÞ. Then we will consider also Gaussian input
wave with beam waist placed at the grating, UðxÞ ¼ exp½�ðx=x0Þ2�,
with Wigner function

WUðx;pÞ ¼
kx0ffiffiffiffiffiffiffi

2p
p exp �2

x
x0

� �2
" #

exp �1
2
ðkpx0Þ2

� �
: ð4Þ

Paraxial evolution within this formalism is simply given by the con-
stancy of WTU along geometrical-optics rays. In free space for in-
stance, the Wigner function at a plane z > 0 is

Wzðx;pÞ ¼WTUðx� zp;pÞ; ð5Þ

so that the irradiance at point x of the observation plane z > 0 can
be related with the Wigner function at the grating as (see (A.3))

IzðxÞ ¼
Z 1

�1
dpWzðx; pÞ ¼

Z 1

�1
dpWTUðx� zp;pÞ: ð6Þ
Fig. 1. The firsts three diffraction rays from a generic point of an ideal diffraction
grating.
2. Ideal grating and the angle-number Wigner function

In this section we consider in the first place a general approach
to the ray picture of diffraction gratings. This is then applied to
three particular examples. To begin with, let us consider ideal, per-
fectly periodic gratings illuminated by a normally incident, scalar
plane wave, so that

sðxÞ ¼ 1; Wsðx; pÞ ¼ dðpÞ; WUðx;pÞ ¼ dðpÞ; ð7Þ

and

WTUðx;pÞ ¼WTðx;pÞ ¼Wtðx; pÞ: ð8Þ

In order to compute Wtðx; pÞ for periodic tðxÞ with spatial period
2p=q, i.e., tðxþ 2p=qÞ ¼ tðxÞ, we can use its Fourier expansion

tðxÞ ¼
X

m

tm expðiqmxÞ; ð9Þ

where m are integers, leading to

Wtðx;pÞ ¼
X
m;‘

dðp� p‘þmÞ exp½iqxð‘�mÞ�t�mt‘; ð10Þ
where

p‘þm ¼ ð‘þmÞ q
2k
: ð11Þ

By introducing in Eq. (10) the unit as 1 ¼
P

NdN;‘þm where N are inte-
gers we get

Wtðx;pÞ ¼
X
m;‘

X
N

dN;‘þmdðp� p‘þmÞ exp½iqxð‘�mÞ�t�mt‘: ð12Þ

Since dN;‘þmdðp� p‘þmÞ ¼ dN;‘þmdðp� pNÞ we can exchange the order
of sums and extract the term dðp� pNÞ out of the ‘;m sum leading to

Wtðx;pÞ ¼
X

N

dðp� pNÞ
X
m;‘

dN;‘þm exp½iqxð‘�mÞ�t�mt‘; ð13Þ

which can be finally expressed as

Wtðx;pÞ ¼
X

N

dðp� pNÞfW tðqx;NÞ; ð14Þ

withfW tðh;NÞ ¼
X
m;‘

t�mt‘ exp½ihð‘�mÞ�dN;‘þm; ð15Þ

which can be expressed as a Wigner function as

fW tðh;NÞ ¼
1

2p

Z
2p

d/ expðiN/Þ~tðh� /Þ~t�ðhþ /Þ; ð16Þ

~tðhÞ being the 2p-periodic function

~tðhÞ ¼ tðh=qÞ ¼
X

m

tm expðimhÞ: ð17Þ

Eq. (14) implies that from each point x with fW tðqx; pÞ–0 emerges a
numerable set of rays ðx;pNÞwith transversal components of the ray
propagation direction given by pN in (11), where the integers N rep-
resent the ray counterpart of diffraction orders (see Fig. 1) [31,32].

In Eq. (14) we can appreciate that fW tðh;NÞ has essentially the
same meaning than the standard definition of Wigner function
(1). The only difference between them is that (16) embodies two
distinctive features of ideal gratings: (i) the periodicity of the grat-
ing, represented by the replacement of the Cartesian variable x by
the periodic variable h, and (ii) the discreteness of diffraction or-
ders, represented the replacement of the continuous variable p
by the integer variable N.

It is worth noting that fW tðh;NÞ is quite similar to the angle-
number Wigner function previously introduced in quantum
mechanics to jointly represent angle and angular momentum in
the plane [25,26]. However, the equivalence is not exact since
the / integration in (16) extends to a 2p range, while in the quan-
tum case it extends to a p range. (Because of this we have avoided
in (16) the change of variable /! /=2 leading to a formula more
similar to (1), since it would extend the / integration to a rather
unnatural 4p range.) This slight difference has some consequences.
For example we have a different behavior for the h integration of
the odd and even diffraction ordersZ

2p
dhfW tðh;2mÞ ¼ jtmj2;

Z
2p

dhfW tðh;2mþ 1Þ ¼ 0: ð18Þ



Fig. 3. fW tðh;NÞ in (23) and (24) as a function of h for N ¼ 1 (solid line), N ¼ 2
(dashed line), N ¼ 3 (dotted line), and N ¼ 4 (dashed-dotted line) for r ¼ 1:05 rad.

Fig. 4. fW tðh;NÞ in (23) and (24) as a function of N for h ¼ 0 (dashed line) and
h ¼ 0:5 (solid line) for r ¼ 1:05 rad.
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In the formal context of Wigner functions this recalls the phase-
space enlargement of finite-dimensional spaces with odd dimen-
sion demanded for mathematical subtleties [27–30]. Nevertheless,
in our classical-optics case (18) represents a genuine property of
classical fields.

From (16) we have that negative values for the Wigner function
are unavoidable for deterministic nonrandom gratings sincefW tðhþ p;NÞ ¼ ð�1ÞNfW tðh;NÞ: ð19Þ

Negative values for the Wigner function are required for the com-
pleteness of this geometrical theory, since they embody the coher-
ence properties of the field [12–14].

From (5), (6), and (14) we get a very simple expression for the
irradiance at a point x of the plane z > 0, namely,

IzðxÞ ¼
X

N

fW tðqxN;NÞ; ð20Þ

where xN ¼ x� zpN . This means that each observation point x is
reached by a single ray from each point xN at the grating (see
Fig. 2) with weights fW tðqxN;NÞ. This provides a simple geometrical
explanation of the Talbot planes zM given by condition

zM ¼ 4p k
q2 M; zMpN ¼ MN

2p
q
; ð21Þ

for any integer M. Self-imaging arises in the planes zM because the
corresponding source points xN are homologous to x0 ¼ x (see
Fig. 2), i.e., tðxNÞ ¼ tðxÞ, so that fW tðqxN;NÞ ¼ fW tðqx;NÞ and

IzðxÞ ¼
X

N

fW tðqxN;NÞ ¼
X

N

fW tðqx;NÞ ¼ I0ðxÞ: ð22Þ

Then, the irradiance at zM reproduces the radiance at z ¼ 0. As
shown in Refs. [32,33] the Wigner-function formalism can be also
applied to analyze the fractional Talbot effects arising at distances
zf ¼ ð4pk=q2Þb=a, where a and b are integer values [34].

2.1. Binary-amplitude grating with plane-wave coherent illumination

For the sake of illustration let us compute fW tðh;NÞ for an ideal
amplitude grating made of transparent slits of width dx with
dx ¼ 2r=q and 2r < p in an otherwise opaque plane. Restricting
h to the interval p P h P �p, we have

fW tðh;NÞ ¼
1

pN
sin½Nðr� jhjÞ�; fW tðh;0Þ ¼

1
p
ðr� jhjÞ; ð23Þ

for jhj 6 r, while for p P jhjP p� r,

fW tðh;NÞ ¼
1

pN
sin½Nðrþ jhjÞ�; fW tðh;0Þ ¼

1
p
ðrþ jhj � pÞ; ð24Þ

and fW tðh;NÞ ¼ 0 otherwise. In Fig. 3 we have represented fW tðh;NÞ
for r ¼ 1:05 rad as a function of h for N ¼ 1;2;3;4. In Fig. 4 we have
represented fW tðh;NÞ as a function of N for h ¼ 0 and h ¼ 0:5, again
for the same r. In both figures we can appreciate the appearance of
negative values for fW tðh;NÞ, in agreement with (19).
Fig. 2. Illustration of the contribution of three source points at plane z ¼ 0 to the
diffracted field at point x at plane z > 0.
2.2. Sinusoidal grating with plane-wave coherent illumination

For the case of an ideal amplitude sinusoidal grating with trans-
mission coefficient tðxÞ ¼ cos2ðqx=2Þ the only not-null Fourier coef-
ficients are t0 ¼ 1=2 and t�1 ¼ 1=4: In such a case, the Wigner
function is

Wtðx;pÞ ¼
1

16

n
½4þ 2 cosð2qxÞ�dðpÞ þ 4 cosðqxÞ d p� q

2k

� �h
þ d pþ q

2k

� �i
þ d p� q

k

� �
þ d pþ q

k

� �o
: ð25Þ

This means that each point emits five rays with the following
weights

fW tðh; 0Þ ¼
1
4
þ 1

8
cosð2hÞ;

fW tðh;�1Þ ¼ 1
4

cos h;

fW tðh;�2Þ ¼ 1
16

: ð26Þ

According with (20) the irradiance at point x of the plane z > 0 is
given by a suitable sum of these weights, leading to

IzðxÞ ¼
3
8
þ 1

2
cosðqxÞ cos

q2z
2k

� �
þ 1

8
cosð2qxÞ: ð27Þ

This equation accounts for the Talbot effect in agreement with (21)
because of the z-periodicity.

2.3. Sinusoidal grating with Gaussian coherent illumination

It is also simple to determine the light distribution diffracted by
sinusoidal gratings when illuminated by Gaussian beam with Wig-
ner function WUðx; pÞ in (4). From (3), (4), and (25), we get that the
Wigner function after the grating is

WTUðx;pÞ ¼WUðx;pÞ
1
8
½2þ g2ðpÞ þ 4g1ðpÞ cosðqxÞ

þ cosð2qxÞ�; ð28Þ



Fig. 6. Effective rays with weights depending on an area DxN around the source
points.
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where

gmðpÞ ¼ exp �1
8
ðmqx0Þ2

� �
cosh

m
2

qkpx2
0

� �
: ð29Þ

After (6) the irradiance at z > 0 results

IzðxÞ ¼
x0

16xGðzÞ
f4h0ðx; zÞ þ h2ðx; zÞ þ h�2ðx; zÞ

þ 4h1ðx; zÞf1ðzÞ cos½qX1ðx; zÞ� þ 4h�1ðx; zÞf1ðzÞ
� cos½qX�1ðx; zÞ� þ 2h0ðx; zÞf2ðzÞ cos½2qX0ðx; zÞ�g; ð30Þ

where

X‘ðx; zÞ ¼
x2

0

x2
GðzÞ

x� ‘ qz
2k

� �
; xGðzÞ ¼ x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z

z0

� �2
s

; ð31Þ

z0 ¼ kx2
0=2, and

fmðzÞ ¼ exp �1
2

mqz
kxGðzÞ

� �2
" #

; ð32Þ

hmðx; zÞ ¼ exp �2
x� mqz

2k

xGðzÞ

� �2
" #

: ð33Þ
3. Imperfect grating and effective rays

Let us consider a less than perfect grating sðxÞ–1 illuminated by
a normally incident scalar plane wave WUðx; pÞ ¼ dðpÞ so that from
(2), (3), and (14) we get

WTUðx;pÞ ¼WTðx;pÞ ¼
X

N

fW tðqx;NÞWsðx;p� pNÞ: ð34Þ

Assuming weak imperfections in the sense that Wsðx;pN � pMÞ ’ 0
for N–M each diffraction order N becomes a continuous distribution
of rays with an angular width given by the width DpN of the p var-
iable in Wsðx; pÞ around pN (see Fig. 5). In this context, weak imper-
fections means from (11) that DpN < q=ð2kÞ.

For coherent plane-wave illumination the irradiance at z > 0
can be expressed as

IzðxÞ ¼
X

N

ffW TðqxN ;NÞ; ð35Þ

where the effective weights of the rays areffW TðqxN ;NÞ ¼
Z 1

�1
dpfW tðqxN � qzp;NÞWsðxN � zp;pÞ: ð36Þ

This implies that we can keep the idea of a diffracted field produced
by the superposition of a numerable set of rays (one ray from each
point xN) provided that the weight of each ray is suitably modified.
According to (36) this is given by a weighted spatial average of fW t

extending to the neighborhood of xN (see Fig. 6). For the spatial sta-
tionary case [21–24] with hsðx1Þs�ðx2Þi depending only on x1 � x2

we have that (36) greatly simplifies since Wsðx;pÞ ¼WsðpÞ does
not depend on x.

This effective-ray approach can be easily extended to the case
when the light illuminating the grating is spatially stationary, so
Fig. 5. Broadening of ray-diffraction orders caused by imperfect gratings.
its Wigner function WU does not depend on x. Otherwise, when
either Ws or WU depend on x, the effective-ray approach is not
so useful, being then preferable to resort to the general approach.

3.1. Random sinusoidal grating with plane-wave coherent illumination

To illustrate this effective-ray approach let us consider the case
of a sinusoidal grating tðxÞ ¼ cos2ðqx=2Þ affected by random micro-
topography with a Gaussian characteristic function [35]

hsðx1Þs�ðx2Þi ¼ exp � x1 � x2

TF

� �2
" #

; ð37Þ

where TF ¼ T0=ðkrjn� 1jÞ being T0 the correlation length of rough-
ness, and r the standard deviation of roughness. When the grating
is a phase grating in transmission configuration then n is the refrac-
tion index of the grating. On the other hand, when it is a reflection
grating then n ¼ �1. The Wigner function of roughness is

WsðpÞ ¼
TFk

2
ffiffiffiffi
p
p exp �1

4
ðTF kpÞ2

� �
: ð38Þ

Under plane-wave illumination the Wigner function after the grat-
ing coincides with the Wigner function of the complete grating
WTU ¼WT . From (2), (25), and (38), the result for WT is exactly of
the form in (28) replacing WUðx; pÞ by WsðpÞ and x0 by TF=

ffiffiffi
2
p

in
X‘ðzÞ; fmðzÞ and hmðx; zÞ. SinceZ 1

�1
dpWsðpÞ expð�imqzpÞ ¼ exp � mqz

TFk

� �2
" #

; ð39Þ

from (26), (36), and (38), the effective weights become

ffW Tðh;0Þ ¼
1
4
þ 1

8
exp � 2qz

TFk

� �2
" #

cosð2hÞ;

ffW Tðh;�1Þ ¼ 1
4

exp � qz
TF k

� �2
" #

cos h;

ffW Tðh;�2Þ ¼ 1
16

: ð40Þ

According with (35) the irradiance at point x of the plane z > 0 is
given by a suitable sum of these weights leading to

IzðxÞ ¼
3
8
þ 1

2
j1ðzÞ cosðqxÞ cos

q2z
2k

� �
þ 1

8
j2ðzÞ cosð2qxÞ; ð41Þ

where the factors jmðzÞ are

jmðzÞ ¼ exp � mqz
kTF

� �2
" #

: ð42Þ

We can appreciate that the self-imaging effect is degraded by the
randomness, that introduces exponential decaying terms.

3.2. Random sinusoidal grating with Gaussian coherent illumination

When the above stochastic grating is illuminated by the Gauss-
ian beam in (4) the Wigner function after the grating is exactly of



Fig. 7. Irradiance distribution in gray levels for a random diffraction grating with
q ¼ 2p=10 lm�1 illuminated with a Gaussian wave with wavelength k ¼ 0:632 lm
and x0 ¼ 50 lm. In case (a) we have TF ¼ 100 lm, while in case (b) TF ¼ 25 lm.
zT ¼ z1 ¼ 31:6 lm is the distance from the grating to the first Talbot self-image. It
can be appreciated the progressive deterioration of the self-images depending on
the roughness level.

Fig. 8. Contrast of the irradiance distribution for the same cases in Fig. 7 when the
grating is illuminated by a plane wave, i.e., x0 !1.
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the form in (28) replacing x0 by C ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=T2

F þ 1=x2
0

q
in all the

terms with p dependence. Then, the irradiance IzðxÞ has the same
form in (30) with some changes in the parameters of the functions
X‘ðzÞ, fmðxÞ, and hmðx; sÞ, namely

fmðzÞ ¼ exp �1
2

mqzx0

kCxTðzÞ

� �2
" #

; ð43Þ

hmðx; zÞ ¼ exp �2
x� mqz

2k

xTðzÞ

� �2
" #

; ð44Þ

X‘ðx; zÞ ¼
x2

0

x2
TðzÞ

x� ‘ qz
2k

� �
; xTðzÞ ¼ x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z

za

� �2
s

; ð45Þ

and za ¼ kx0C=2. When the coherence length tends to infinity
TF !1 the randomness disappears and we have
C! x0; za ! z0;xT ! xG, so that we recover the results of the
deterministic grating in Section 2.3. On the other hand, the case
of plane-wave illumination corresponds to the limit x0 !1.
In Fig. 7 we present an example of propagation for different val-
ues of TF . It can be appreciated that the self-images last larger
propagation distances for larger TF . This can be also appreciated
in Fig. 8 that shows that the contrast of the irradiance distribution
decreases exponentially for increasing distance z from the grating
to the observation plane. The distance up to the contrast is not neg-
ligible decreases when TF decreases.

4. Conclusions

In this work we have analyzed the behavior of diffraction grat-
ings using the geometrical ray picture of light propagation pro-
vided by the Wigner-function formalism. We have applied this
approach to one-dimensional gratings, both perfect and less than
perfect. As deviations from perfection we have considered partial
lack of statistical correlation between grating points (stochastic
gratings). We have taken into account also the finite spatial width
of the illuminating beam. We have shown that this formalism pro-
vides a simple and enlightening geometrical picture of diffraction-
grating features such as self imaging. Therefore, this geometrical
approach might be useful for simplifying calculations and analyses
of diffraction by gratings under diverse conditions.
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Appendix A. Ray picture of paraxial optics

We recall the geometrical Wigner formulation of paraxial optics
for scalar waves. Although standard geometrical optics excludes
coherent phenomena, if we replace ray specific intensity (or radi-
ance) by Wigner function we include once for all coherence effects.
In particular we can express the degree of coherence as a func-
tional of the Wigner function. The price to be paid is that the Wig-
ner function can take negative values so it cannot represent always
specific intensity.

A.1. Definition and properties

The Wigner function is defined as [7–11]

Wðx;pÞ ¼ k
2p

Z 1

�1
dx0hEðx� x0=2ÞE�ðxþ x0=2Þi expðikpx0Þ; ðA:1Þ

where the angle brackets represent ensemble average, x and x0 are
Cartesian coordinates orthogonal to the main propagation direction
along axis z;p is the angular variable representing the local direc-
tion of propagation, and k is the wavenumber in vacuum. The con-
nection between Wigner function and geometrical optics stems
from the fact that x and p represent the parameters of a light ray,
so that W assigns a number to each ray. The main properties of this
formalism are:

(a) The Wigner function provides complete information about
second-order phenomena, including diffraction and interfer-
ence, since its definition can be inverted
hEðx1ÞE�ðx2Þi ¼
Z 1

�1
dpW ½ðx1 þ x2Þ=2;p� exp½ikpðx1 � x2Þ�:

ðA:2Þ

Concerning the limits of the p integrals let us note that parax-
ial approximation implies Wðx; pÞ ’ 0 for p outside the parax-
ial domain. Thus, for computational purposes the limits of the
p integrals can be safely extended to �1 without including
evanescent nonpropagating components.
(b) In particular, the light irradiance at a given point can be
obtained by integrating the angular variablesZ 1

IðxÞ ¼ hjEðxÞj2i ¼

�1
dpWðx;pÞ: ðA:3Þ

This is to say that the irradiance at a given point is the sum of
the values of the Wigner function for all the rays passing
through this point. We will refer to this sum as an incoherent
superposition since the contributions of all rays are
independent.
(c) The Wigner function cannot represent always specific inten-
sity, since it can take negative as well as positive values.
Negative values are crucial to the completeness of the theory
since they contain the coherence [7–11,14–17].

(d) Finally a crucial property for the geometrical interpretation
of the Wigner function is that it is constant along paraxial
rays
Wzðx0; p0Þ ¼W0ðx;pÞ; ðA:4Þ

where ðx;pÞ and ðx0;p0Þ are the input (plane z ¼ 0) and output (plane
z) ray parameters. In free space we have

Wzðx;pÞ ¼W0ðx� zp;pÞ: ðA:5Þ
A.2. Inverted Huygens principle

These properties can be summarized in a principle analogous to
the Huygens principle but with inverted terms replacing waves by
rays and coherent by incoherent superpositions. We can enunciate
this principle in three steps [12,13]:

(i) Each point acts as a secondary source of a continuous distri-
bution of rays with parameters x; p;Wðx; pÞ. We stress that
this is a continuous distribution of rays instead of the more
familiar single ray at each point normal to a wavefront.

(ii) The evolution is given by the incoherent superposition of
rays, as illustrated by the example of irradiance in point
(b) above. We stress that this incoherence is a key feature
of the theory independent of the actual state of coherence
of the light.

(iii) The effect of spatial-local inhomogeneous filters (transpar-
encies) altering phase and amplitude is described in the
wave picture by the product of the amplitude of the input
wave with a transmission coefficient TðxÞ, i.e.,
UðxÞ ! TðxÞUðxÞ. In the geometrical picture this effect is
described by the convolution product of the input Wigner
function WU with the Wigner function WT of the transmis-
sion coefficientZ 1

WTUðx; pÞ ¼

�1
dp0WTðx; p� p0ÞWUðx;p0Þ; ðA:6Þ

where
 Z 1

WTðx;pÞ ¼

k
2p �1

dx0hTðx� x0=2ÞT�ðxþ x0=2Þi

� expðikpx0Þ; ðA:7Þ

and we include the possibility that the transmission coeffi-
cient may require an statistical description represented by
the angle brackets.
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