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Manipulation and Removal of Defects in Spontaneous Optical Patterns
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Defects play an important role in a number of fields dealing with ordered structures. We demonstrate
theoretically and experimentally the possibility of an active manipulation of defects in terms of an
externally induced motion. We focus on the spontaneous formation of two-dimensional spatial
structures in a nonlinear-optical system, a liquid crystal light valve under single optical feedback.
For a particular parameter setting, a spontaneously formed hexagonal intensity pattern contains several
dislocation-type defects. A scheme based on Fourier filtering allows us to restore spatial order in a
selectable part of the pattern. Starting without control, the controlled area is progressively expanded,
such that defects are swept out of the pattern.
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leads to the restoration of the ordered state, a key ingre- pattern to the uncontrolled and disordered spatial region.
Defects are local deviations from a given ordered struc-
ture and have attracted large interest in many areas of
physics [1]. The most prominent example is condensed
matter physics [2,3]. This extends to adjacent areas, such
as spin lattices and liquid crystals [4], but also to sponta-
neous structure formation, e.g., convection patterns [5].

Defects are catalogued in different classes depending
on their topology [1]. Here we focus on stable point de-
fects in two dimensions, known as dislocations. These
break the discrete symmetry of the periodic structure
locally. Dislocations are robust entities which cannot be
removed by smooth local alterations of the pattern. They
can only be created or annihilated in pairs and, corre-
spondingly, they are assigned a topological charge [1].

The spatial order that we consider here develops spon-
taneously through self-organization and is studied in
many branches of science [6]. Spontaneous patterns are
also observed in numerous nonlinear-optical systems [7].
When the stress parameter exceeds a first threshold, or-
dered patterns appear which then give way to disorder
after a second transition. Such disordered states may be
purely spatial and/or spatiotemporal (optical turbulence)
in nature and are often undesired since disorder reduces
spatial correlations. In certain instances, these secondary
transitions have been shown to be mediated by defects
[6,8]. Here we regard a Kerr-type nonlinearity in a so-
called single-feedback setup [9], where stationary hex-
agonal patterns form at a given threshold of the laser
(pump) intensity. Above a second threshold, patterns
become increasingly disordered, with defects appearing
at random locations [10,11].

The aim of this Letter is to demonstrate the possibility
to actively manipulate and (re)move defects. The inten-
tion is not to replace defects with other spatial structures,
but to change their locations and progressively move them
outside the region of interest. Since removing defects
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dient is a technique to control spatiotemporal disorder. In
the regime of spontaneous disorder, the hexagonal state
survives, but is unstable or marginally stable. Our scheme
of control allows us to select this particular solution out of
the infinite set of coexisting (dynamical) solutions and
stabilize it. We stress that our method actively manipu-
lates topological defects in 2D while previous techniques
simply replace them with other structures as, e.g., in
delayed systems [12] and in 2D laser models [13].

Our approach is based on the control scheme intro-
duced in [13] where the growth of structures which do
not belong to the desired, well-ordered target state is dis-
couraged. This is achieved by adding an all-optical feed-
back (control) loop with a spatial Fourier filter blocking
the discrete number of modes which constitute the target
pattern. The remaining control signal is fed back nega-
tively into the system. Consequently, the system is driven
towards the target state, and the control signal vanishes
when the ordered state is reached. In contrast to other
approaches with persistent perturbations, this control is
minimally invasive, preserving the properties of the
original system [14]. Note that the control signal is con-
tinuous both in space and time, an important requisite for
a local manipulation of defects. The control scheme has
first been tested numerically [13], and then used in several
experiments to control spatiotemporal chaos [15,16].

To manipulate defects in patterns, the control scheme
described above is modified. Since we do not intend to
replace a disordered pattern with a regular one at once, we
apply the control to a gradually increasing part of the
spontaneous structure. Because defects are topologically
robust objects, they should not vanish instantaneously.
Instead, they can annihilate with corresponding partners
or move towards regions where the control signal is not
operating. Consequently, defects should be swept out by
the front separating the controlled, ordered part of the
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In order to achieve this, the control scheme is extended by
introducing a mask, which selects the controlled area.
Hence, in this configuration we act in real space and in the
Fourier domain simultaneously.

In our single-feedback experiment, the optical Kerr-
type nonlinearity is provided by a so-called liquid crystal
light valve (LCLV). This device has an intensity-sensitive
write side (photoconductor layer) and a reflective read
side with variable refractive index (liquid crystal layer)
[17]. An intensity profile at the write side is transformed
into a corresponding phase profile of a light wave, which
is reflected by the LCLV read side [18].

The LCLV is put into a feedback loop: A uniform laser
beam is phase modulated and reflected by the LCLV read
side. The modulated beam is then fed back to its write
side. The free space propagation transforms spatial phase
modulations into intensity modulations. Different con-
figurations of LCLV feedback systems have successfully
been used to investigate spontaneous optical patterns
[10,11,18,19]. In this particular realization, pattern for-
mation is based solely on diffractional coupling.

The experimental setup is presented in Fig. 1. A
cw-Nd:YAG laser (� � 532 nm) acts as a light source
(not shown in the scheme). The expanded laser beam is
phase modulated and reflected by the LCLV, and then
guided to the write side by means of beam splitters
(BS), mirrors (M), and lenses (L). The lenses L1, L2,
and the aperture P form a spatial low pass filter. The dove
prism D accounts for the correction of residual misalign-
ments. The transverse intensity distribution is recorded
with a camera (charge-coupled device).

The shaded box in Fig. 1 contains the control loop. A
fraction of the light wave is coupled out by beam splitter
BS2. It passes the Fourier filter (4f arrangement of the
lenses L3, L4), containing a mask FM in the Fourier
plane, which blocks the target modes. The remaining
wave is reflected by mirror M4 and, after passing the
filter a second time, is reinjected into the system. The
phase of this control wave is adjusted by the phase shifter
PS in order to achieve destructive interference, i.e., nega-
tive feedback of the control signal. The space mask S
allows the selection of the area to which this control is
applied. It is located in a plane, which is imaged onto the
LCLV write side.

For the present experiment, the spatial low pass filter
(L1, L2, P) is used to block all wave numbers above the
CCD
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FIG. 1. Scheme of the experimental setup; details are given in
the text.

113903-2
first critical band. This makes the transition to spatial
disorder smoother and makes it easier to choose the
amount of disorder in the spontaneous structure [10].
The pump intensity was set to about 6 times the pattern
threshold intensity. In the uncontrolled system, a dis-
torted hexagonal pattern is observed (see Fig. 2, first
image at t � 0), showing a slow dynamics on a time scale
of approximately some hundred milliseconds. The struc-
ture consists of several ordered domains, separated by
single or strings of defects. Care was taken to match the
orientation of the target pattern with the spontaneous
pattern in the region where the control is first applied.

After the system has reached an asymptotic disordered
state, the space mask S is opened gradually from the left
to the right side. Snapshots of the recorded sequence are
shown in Fig. 2, where the front between controlled and
uncontrolled regions is indicated by a gray line. Eye
inspection of the images already shows how hexagonal
order is gradually restored.

The ordering effect of our procedure becomes even
more apparent when we extract the defect locations
from the recorded images (Fig. 2). A hexagonal pattern
consists of three independent Fourier modes, each corre-
sponding to a stripe pattern. Each of the stripe patterns
can show defects in the form of dislocations, i.e., of
stripes ending somewhere in the pattern. Depending on
the direction of the ending stripe, the defect is assigned a
positive or negative topological charge. Consequently, a
hexagonal pattern can contain six different types of de-
fects, corresponding to the six possible Burgers vectors of
unit length [2,3]. As long as we restrict the analysis to the
topological properties only, domain boundaries can be
regarded as strings of dislocations [3].

With the exception of a few defects which remain
anchored to local inhomogeneities, the defects are indeed
swept to the right-hand side by the control signal, and are
finally pushed out of the active area. During this motion,
mutual annihilation of pairs of defects takes place as well
as the temporary creation of a few new defect pairs.
FIG. 2. Experimental sweeping of defects at the times indi-
cated. Each panel contains the intensity distribution on the
left and the extracted defect locations on the right. The gray
line indicates the front separating the controlled from the
uncontrolled part. Different marker types correspond to dif-
ferent hexagonal modes, where �, +, and � indicate one
charge, �, �, and � indicate the opposite topological charge,
respectively.
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The effect of the control does not appear to be strictly
limited to the left-hand side part of the pattern that is
directly exposed to the control signal. The number of
defects in the uncontrolled area significantly decreases
even when the control front is relatively far away. This can
be associated to the long range spatial coupling: The
hexagonal pattern is self-sustained by diffractional cou-
pling throughout its extent. The restored order in the
controlled part now promotes order even in the uncon-
trolled, disordered part, causing a reduction of the num-
ber of defects there.

We also observe that defects belonging to different
hexagon modes tend to stay close to each other. This
becomes evident by plotting all detected defect locations
of the sequence into a single plot. The left panel of Fig. 3
illustrates that the defects have moved on definite paths.

In the investigation of model systems, Pismen,
Tsimring, and others [20] have shown that two disloca-
tions of different modes tend to form bound states, so-
called penta-hepta defects. An experimentally observed
penta-hepta defect is shown in Fig. 3. According to [20],
attracting as well as repelling forces can exist between
different penta-hepta defects and the motion of such
defects depends very much on the embedding spatial
structure. Hence, we infer that the inhomogeneities in
our experiment strongly influence the defect motion.

Numerical simulations of the progressive removal of
defects in a spatially disordered stable structure have been
implemented by using the LCLV model originally intro-
duced in [19] and used later in [16]. All parameters of the
fully quantitative model have been chosen in accordance
to the experiment. Simulations above the pattern form-
ing threshold, however, did not reach stable spatially
disordered configurations.

In order to represent more faithfully the experimental
observations, we have simulated inhomogeneities as lo-
calized dips in the pump laser intensity. These local
imperfections were of variable number, location, size,
and depth. A large variety of stable or long term meta-
stable disordered configurations formed by patches of
hexagonal patterns were obtained up to 3 times above
FIG. 3. Left panel: All defect locations, detected during
the sequence of the moving control front (cf. Fig. 2).
Right panel: Experimental example of a penta-hepta defect,
where two rolls of different modes end close to each other (as
indicated).
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threshold. Remaining differences with the experimental
observation of metastable disordered structures higher
above threshold are explainable by the simplified model-
ing of the inhomogeneities. With random initial condi-
tions, a variety of spatially disordered structures were
found, where defects tend to anchor in the vicinity of
the local inhomogeneities. Figure 4(a) shows a stable (or
long term metastable) disordered structure observed 3
times above pattern formation threshold.

The Fourier control scheme was implemented numeri-
cally in a way that the area where control acts on the
spontaneous structure can be chosen. Figures 4(b) and
4(c) show the progressive sweeping of the defects while
the domain which corresponds to the target state grows to
finally occupy the entire area. In spite of the presence of
pronounced local inhomogeneities, an ordered hexagonal
structure is restored and stabilized at the end of the
procedure [see Fig. 4(d)].

In agreement with the experimental results, we observe
in the numerics progressive annihilation of dislocations
ahead of the moving control front. In simulations with
strong local inhomogeneities (such as the ones reported
here), we also observed a lag between the moving front
and temporally surviving defects. This, again, is in agree-
ment with experimental measures. By an appropriate
choice of the space mask, we succeeded in preliminary
simulations to move only an individual defect with neg-
ligible effects on others.

In conclusion, we have shown how defects can be swept
out of spontaneous optical patterns by using a control
technique based on Fourier filtering. The control is ap-
plied to a varying part of slightly disordered hexagons.
Agreement is found between experiments on a LCLV
single-feedback system and numerical simulations on
the full model. We emphasized the role played by local
inhomogeneities in stabilizing spatial disorder by pinning
the defects. This disorganizing effect of inhomogeneities,
which are difficult to eliminate in real experiments, can
be overcome by our control technique.

Our control technique is independent of the nature
of the nonlinearity and has been applied successfully
FIG. 4. Numerical simulation of progressive removal of de-
fects at times t � 0 (a), t � 28 (b), t � 44 (c), and t � 80 (d),
where t has been normalized by the LCLV response time. The
vertical bar signals the position of the control mask moving
from left to right. Each panel contains the intensity distribution
on the left and the location of defects on the right.
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to stabilize unstable patterns in models of saturable
absorbers, lasers [13], and optical parametric oscillators
(OPO) [21]. Presently, we are applying and modifying
our elimination technique to systems with defects other
than pattern dislocations. These include, for example,
domain walls and vectorial defects in models of OPO
devices [22].

We expect our control scheme to work in a variety of
experiments in optics and other sciences such as chemical
reaction-diffusion or fluid-dynamical systems where
stable defects have been observed. There are two options
for an implementation: an all-optical realization which is
possible in systems that can be manipulated by light, for
instance photosensitive chemical reactions [23], or con-
vection experiments by means of local laser heating [24].
Here, the light waves used for detection and for actuation
may need to differ in wavelength and/or intensity. A
transformation between both can be performed by opti-
cally addressed spatial light modulators, such as LCLVs
[17]. This scheme allows one to perform the Fourier filter-
ing optically, the limiting factors now due to the used
modulators.

For other pattern forming systems, a numerically cal-
culated Fourier control signal can be fed back via an
appropriate technique specific to the experimental real-
ization. In these cases, the control response should be
limited by the speed of the camera used in the detection
of the spatial profiles. Even with high-resolution digital
cameras, this can be faster than ten frames per second.
Such a time scale is much shorter than that of diffusion of
heat or of chemical species that determine the dynamics
of spatial structure evolution.

We acknowledge useful discussions with G. K.
Harkness, and support by T. Tschudi and M. Kreuzer.
This research was partially funded by EPSRC (Grant
No. R04096), SHEFC (Grants VIDEOS and VISION),
the German science foundation (DFG grant SFB 185),
and the Federal Ministry of Education and Research
(BMBF Grant No. 13N7311/8). The collaboration between
Strathclyde and Darmstadt was supported by the British
Council and the DAAD. G.-L. O. acknowledges kind sup-
port from SGI and the Royal Society–Leverhulme Trust.
11390
[1] N. D. Mermin, Rev. Mod. Phys. 51, 591 (1979).
[2] P. M. Chaikin and T. C. Lubensky, Principles of Con-

densed Matter Physics (Cambridge University Press,
Cambridge, England, 1995).

[3] H. G. van Bueren, Imperfections in Crystals (North-
Holland, Amsterdam, 1960).

[4] Physics of Defects, edited by R. Balian, M. Kleman, and
J.-P. Poirier (North-Holland, Amsterdam, 1981).

[5] G. Goren, I. Procaccia, S. Rasenat, and V. Steinberg,
Phys. Rev. Lett. 63, 1237 (1989); P. Cerisier, S. Rahal,
and N. Rivier, Phys. Rev. E 54, 5086 (1996).

[6] M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65, 851
(1993).
3-4
[7] N. B. Abraham and W. J. Firth, J. Opt. Soc. Am. B 7, 951
(1990); L. A. Lugiato, Chaos Solitons Fractals 4, 1251
(1994); L. A. Lugiato, M. Brambilla, and
A. Gatti, Adv. At. Mol. Opt. Phys. 40, 229 (1998);
R. Neubecker and T. Tschudi, Chaos Solitons Fractals
10, 615 (1999); F. T. Arecchi, S. Bocaletti, and P. L.
Ramzza, Phys. Rep. 318, 83 (1999).

[8] P. Coullet, L. Gil, and J. Lega, Phys. Rev. Lett. 62, 1619
(1989).

[9] G. D’Alessandro and W. J. Firth, Phys. Rev. A 46, 537
(1992); R. Macdonald and H. J. Eichler, Opt. Commun.
89, 289 (1992); M. Tamburrini et al., Opt. Lett. 18, 855
(1993); G. Grynberg, A. Maı̂tre, and A. Petrossian, Phys.
Rev. Lett. 72, 2379 (1994); T. Ackemann, Yu. A. Logvin,
A. Heuer, and W. Lange, Phys. Rev. Lett. 75, 3450 (1995);
T. Honda et al., Opt. Commun. 133, 293 (1997).
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