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The electronic structure for graphene monolayer tubules is predicted as a function of the 
diameter and helicity of the constituent graphene tubules. The calculated results show that 
approximately l/3 of these tubules are a one-dimensional metal which is stable against a Peierls 
distortion, and the other 2/3 are one-dimensional semiconductors. The implications of these 
results are discussed. 

It has recently been postulated’ and observed293 that 
graphene tubules can be formed from a single layer of 
graphite. Such tubules would be expected to have unique 
properties. 

If we consider the interrelation between the two most 
stable fullerenes, C.,, and C,,, we see that by adding one 
row of five armchair hexagons to C,, along the equator 
normal to a fivefold axis, we get CTe. This suggests adding 
instead j such rows of armchair hexagons’ to obtain a 
CsO+ tej molecule which would be in the form of a mono- 
layer graphene tubule (armchair fiber). Similarly, by cut- 
ting the CsO molecule in half, normal to a threefold axis 
along the zigzag edges, a perfect fit can be made to a one- 
atom-thick cylindrical sheath consisting of j rows of nine 
zigzag hexagons (zigzag fiber) .4 This concept of graphene 
tubules can be extended to include chiral fibers2~5*6 whose 
diameter and helicity are defined generally in this letter. 
The corresponding nucleating and terminating caps for any 
chiral fiber can be theoretically predicted.’ Some of the 
general caps are hemispheres with icosahedral symmetry 
and other caps do not have an axis of rotation along the 
fiber axis. In Fig. 1, we show an example of a chiral fiber 
with an icosahedral cap, corresponding to a hemisphere of 
icosahedral C140,8 the smallest diameter fullerene with 
group I symmetry. 

Such graphene tubules are of scientific interest as a 
carbon fiber approaching the smallest possible outer diam- 
eter( - 10 A). Carbon fibers are today commercially im- 
portant for their extraordinary high modulus and strength. 
Having made a new form of carbon suggests making a new 
type of carbon fiber nucleated from a hemisphere of C6c. 
Study of the mechanical and electronic properties of such 
tubules could provide interesting theoretical limits for the 
behavior of carbon fibers, especially for vapor-grown car- 
bon fibers which have a similar structural arrangement. To 
nucleate cylindrical growth instead of C6e ball growth, 
some defect is needed in the cap region during the early 
formation stage. In general, these defective caps will intro- 
duce some chirality which is propagated in the cylindrical 
tubule nucleated by the cap. Experimentally, most of the 
observed tubules exhibit chirality.’ 

The chirality and the fiber diameter are uniquely spec- 
ified by the vector .ch=nlal+n2a2~(n,,p12), where n1,n2 
are integers and a1,a2 the unit vectors of graphite, and ch 
connects two crystallographically equivalent sites, A and 
A’, as shown in Fig. 2 (a). The graphene cylinder is formed 
by connecting together the points A and A’ and the cylin- 

der joint is made along the lightly dotted lines perpendic- 
ular to ch. The fiber diameter d is defined by d 
=I ch]/n-=a,/wz/r,wherea= 1.42~ fiA 
is the lattice constant. The chiral fiber thus generated has 
no distortion of bond angles other than that caused by the 
cylindrical curvature of the fiber. This generalized descrip- 
tion of chiral fibers Fig. 2(b)] includes a range of orien- 
tations for ch extending from the zigzag direction [e=@, or 
(n,,n,> E (p,O), p is an integer] to the armchair direction 
[0= =l=30”,(n,,n,) = (2&--p),@@)], which form two lim- 
iting cases. The chiral angle, 8 = arctan[ - $nz/(2nt 
+ n2)], is defined as the angle between ch and the zigzag 
direction, as shown in Fig. 2 (a). Since there are six defin- 
able angles for a fiber because of the hexagonal local struc- 
ture, we select l0]<30” or --n1<n2<n1 (nt>O). Since 

FIG. 1. A chiral fiber with hemispherical caps at both ends based on an 
icosahedral C& fullerene. The corresponding chiral vector is q,= (10,5), 
d= 10.36 A, and 0= - 19.11’. 
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FIG. 2. (a) Graphene tubules are made by rolling a graphene sheet into 
a cylinder. The tubules are uniquely determined by their lattice vectors ck 
The chiral angle is denoted by 8, while a, and a, denote the unit vectors 
of graphite. (b) Possible vectors for chiral fibers. The circled dots and 
dots, respectively, denote metallic and semiconducting behavior for each 
fiber. 

there is no mirror symmetry for a fiber, both right- (6 > 00) 
and left- (8 < 0”) handed optical isomers are possible, as 
are also chiral fibers with 161 > 30”. The chiral angle 0 
should determine the optical activity of the fiber and the 
speed (or stability) of fiber growth. 

From a theoretical standpoint, graphite tubules are in- 
teresting as the embodiment of a one-dimensional ( 1D) 
periodic structure along the fiber axis. Confinement in the 
radial direction is provided by the monolayer thickness of 
the fiber. In the circumferential direction, periodic bound- 
ary conditions apply to the enlarged unit cell that is formed 
in real space and the subsequent zone folding that occurs in 
reciprocal space. For the fiber geometry, there is some mix- 
ing of the 4 2p,) and a( 2s and 2p,,) carbon orbitals due 
to the fiber curvature, but this mixing is small and can be 
neglected near the Fermi level.6 Thus, we consider only 7r 
orbitals. The two-dimensional (2D) energy dispersion re- 
lations for n- bands of graphite, E,,,, are given by9 

E,,=hyO[ ,.,COS(+)COS(y) 

kyz “’ 
-j-4 cos2 2 ( )I , (1) 

where ‘yo is the nearest-neighbor overlap integral.” Elimi- 
nating k, or kv by using the periodic boundary condition, 
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FIG. 3. Electronic density of states for two (n,,n,) zigzag fibers: (a) 
(10,O) and (b) (9,0). 

ch-k = 25-m, (2) 
where m is an integer, we get 1D energy bands for general 
chiral structures. In other words, 1D energy bands can be 
obtained by sIicing the 2D energy dispersion relations of 
JZq. ( 1) in the directions expressed by Eq. (2). 

In Figs. 3 (a) and 3 (b), the density of states for two 
zigzag fibers with (yl& = ( 10,O) and (9,0), respectively, 
are plotted in units of states per unit cell of 2D graphite. 
We also plot the corresponding density of states of 2D 
graphite (dotted lines) in both figures for comparison. The 
l/ @ singularities characteristic of 1D energy bands ap- 
pear at the band edges of each energy band. In Fig. 3 (a), 
there is an energy gap at the Fermi level (E-O), while we 
have a finite density of states for Fig. 3 (b). Thus, we can 
have both semiconducting [Fig. 3(a)] and metallic [Fig. 
3(b)] fibers by merely changing the fiber diameter. The 
energy gap for the semiconducting fibers decreases with 
increasing fiber diameter d and in the limit of d- 00, we 
obtain the 2D case of a zero-gap semiconductor. The con- 
dition for a fiber to be metallic is 

2n1+n2=3q, (3) 

where q in an integer. This condition is easily obtained by 
substituting the k vector of the degenerate point of 2D 
graphite (corner of the hexagonal Brillouin zone) into Eq. 
(2). Since two optical isomers for - 8 and 8 give the same 
results for the energy gap (optical selection rules are dif- 
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ferent), we show chiral vectors only for - 30”<8<0” in Fig. 
2(b). Here, the metallic and semiconducting fibers are de- 
noted by circled dots and simple dots, respectively. In par- 
ticular, all armchair fibers are metallic, and zigzag fibers 
are metallic when nl is a multiple of three. 

A finite density of states results from the crossing of 
two 1D energy bands at degenerate points of the 2D graph- 
ite energy-band structure. Metallic 1D energy bands are 
generally unstable under a Peierls distortion. However, the 
Peierls energy gap obtained for the metallic cases is found 
to be greatly suppressed by increasing the fiber diameter 
and the Peierls gap quickly approaches the zero-energy gap 
of 2D graphite.67*’ Thus, if we consider finite temperatures 
or fluctuation effects, such a small Peierls gap can be ne- 
glected. It is surprising that the calculated electronic struc- 
ture can be either metallic or semiconducting depending on 
the fiber diameter and on the chiral angle 8, though there 
is no difference in the local chemical bonding between the 
carbon atoms, and no doping impurities are present. 

If the distribution of ch vectors shown in Fig. 2 is 
uniform, l/3 of the fibers will be metallic and 2/3 semi- 
conducting. However, we may obtain a larger fraction of 
metallic fibers if the initial seed of the fiber caps is centered 
about a pentagon, which yields an armchair fiber. If the 
initial seed is not a pentagon but a hexagon, growth of the 
planar graphite structure seems more likely. In this sense, 
nature may prefer armchair-type fibers which are metallic 
for all (p,p) . 

From the results of this letter, one could imagine de- 
signing a minimum-size conductive wire consisting of two 

concentric graphene tubules with a metallic inner tubule 
covered by a semiconducting (or insulating) outer tubule. 
These concepts could further lead to the design of meso- 
scopic metal-semiconductor devices with cylindrical geom- 
etry which are optically active, without introducing any 
doping impurities. There are, of course, many other possi- 
bilities for arranging graphene tubules with interesting po- 
tential applications which could be stimulated by the re- 
sults presented here. 
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