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Resonant electron transfer between quantum dots

Leonid A. Openov*
Moscow State Engineering Physics Institute (Technical University), 115409 Moscow, Russia

~Received 30 March 1999!

An interaction of electromagnetic field with a nanostructure composed of two quantum dots is studied
theoretically. An effect of a resonant electron transfer between the localized low-lying states of quantum dots
is predicted. A necessary condition for such an effect is the existence of an excited bound state whose energy
lies close to the top of the barrier separating the quantum dots. This effect may be used to realize the reversible
quantum logic gate NOT if the superposition of electron states in different quantum dots is viewed as the
superposition of bits 0 and 1.@S0163-1829~99!12035-6#
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I. INTRODUCTION

One way to overcome the limitations of present semic
ductor microelectronics is to reduce the dimensions of e
tronic devices well below 100-nm size range. Novel dev
concepts are based on the use of quantum effects
nanostructures.1 While a great number of technological pro
lems still remains to be resolved, there is a considerable
perimental and theoretical activity in the field. Among oth
things, an interaction of electromagnetic field with nan
structures is of particular interest since it results in a vari
of phenomena highlighting the wave nature of electrons~see,
e.g., Ref. 2!.

Grossmannet al.3 have shown that a laser with approp
ate power and frequency can force the electron in a dou
well nanostructure to stay in one of the wells. In this pap
we draw attention to a possibility of an opposite effect
laser-induced electron transfer between two quantum
situated so far from each other that an electron placed
tially in one of the dots may be thought of as localized in th
dot, while having been transferred to the other dot, the e
tron remains localized in it after the laser pulse is off.

The paper is organized as follows. We begin with qua
tative estimates of characteristic energies and times o
double-dot nanostructure and description of an appropr
model. Next, we study the temporal evolution of an elect
under the influence of a classical electromagnetic field m
ing use of the resonant approximation. We demonstrate
the frequency, amplitude, and duration of an electromagn
pulse may be adjusted in such a way that an electron wil
transferred from the localized lowest-energy state of one
the quantum dots to the localized lowest-energy state of
other quantum dot with a probability close to unity. We d
cuss a possibility of using this effect to realize the quant
logic gate NOT.

II. QUALITATIVE ESTIMATES

We consider two semiconducting quantum dots,A andB,
such that each quantum dot, when isolated, has two s
quantized energy levels in the conduction band. Let us
note the energies of the lower levelua1& and the upper leve
ua2& by «a1 and«a2, respectively, wherea5A or B is the
dot index, and the energies are measured from the botto
PRB 600163-1829/99/60~12!/8798~6!/$15.00
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the conduction band. For the sake of simplicity we assu
the quantum dots to be identical, i.e., the values of«a1[«1
and«a2[«2 do not depend ona («2.«1). The wave func-
tions ^r ua1& for the dotsa5A and B have the same func
tional form but are centered in different regions of coordin
space; this is also true for the wave functions^r ua2& of the
excited states.

If the distanced between the quantum dots and the heig
U of the energy barrier separating the dots are reason
large, the wave functionŝ r ua1& for a5A and B are
strongly localized in the vicinity of the corresponding qua
tum dot within the region of the dot sizea. Hence, their
overlap can be neglected. In other words, the stateua1& with
the energy«1 may be thought of as doubly degenerate w
respect to the dot indexa, i.e., with respect to electron loca
tion, either in the dotA or in the dotB.

It should be stressed that an electron may be considere
localized in one of the dots in the stateua i & ( i 51 or 2
specifies the energy level! if we are interested in the pro
cesses whose characteristic times are much shorter tha
time t i it takes for an electron to turn between the statesuAi&
and uBi&. The value oft i may be estimated as

t i'\/Vi , ~1!

whereVi is the energy of electron hopping between the sta
uAi& and uBi&. According to Landau and Lifshitz,4 in the
quasiclassical approximation one has

Vi'
\

Ti
expF2

d

\
A2m* ~U2« i !G , ~2!

whereTi5A2m* a2/« i is a period of a classical motion fo
an electron with the energy« i in the quantum dot, andm* is
the electron effective mass~for the sake of simplicity, we
assume the values ofm* to be the same in the dots and in th
barrier!. For the quantum dot cubic in shape, the ground-s
energy«1 may be estimated as«1'3p2\2/2m* a2 provided
that«1!U. ThenTi'\pA3/«1« i , and one has from Eq.~2!

Vi'
1

g
A«1« iexpS 2g

d

a
AU2« i

«1
D , ~3!

whereg5pA3 is a numerical coefficient.
8798 ©1999 The American Physical Society
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Taking U'1 eV, «1'0.1 eV, andd/a'3, we obtain
V1;10223 eV. Hence, a characteristic time it takes for
electron to tunnel from the ground state of one dot to
ground state of another dot,t1;108 s, is very long even on
a macroscopic scale, and such a tunneling can be igno
On the other hand, if the energy«2 of the excited bound stat
is close toU, then the value ofV2 is many orders of magni
tude greater thanV1. Taking, e.g.,U2«2'0.01 eV, we
haveV2;1023 eV andt2;10212 s. Thus, for a certain se
of quantum dots parameters, the low-lying energy level
the dots can be viewed as degenerate, whereas the ex
level splits into two sublevels with the energies«26V2. It is
important for the following consideration that the electr
wave functions of the resulting excited sublevels are not
calized within a particular dot, but spread over both dots
(^r uA2&6^r uB2&)/A2.

Of course, our estimates ofVi and t i are rather crude
they strongly depend on the supposed form of confinem
potential and should be considered as qualitative. Howe
one can hope that, first, for a dot of an arbitrary shape i
possible to shift the energy of one of excited states very c
to the continuum part of the energy spectrum by varyi
e.g., the dot size and the doping level, and, second, the
tance between two such quantum dots can be adjuste
satisfy the conditionV2@V1 for the energies of electron hop
ping between the excited states and between the gro
states of the dots, respectively~and hence, the conditiont2
!t1 for the times of electron switching between those pa
of states!.

It should be pointed out that except for the timest1 and
t2, there is one more important time scale, the lifetimet* of
electron in the excited state with respect to spontaneous
sition to the ground state at the sacrifice of photon or pho
emission. It has been shown by Nomotoet al.5 that the value
of t* strongly depends on the dot size and can be as lon
1026 s or even longer, so that one can supposet2!t* !t1.

From the above line of reasoning, we setV150 ~i.e., t1
5`). We denoteV2[V. The diagram of one-electron en
ergy levels is shown schematically in Fig. 1. The overall id
is to make use of one of the excited states of the system
induce electron transitions between the lowest-energy st
localized in different quantum dots under the influence
resonant external perturbation~e.g., an ac electromagnet
field!. According to the laws of quantum mechanics an el
tron, having been ‘‘raised up’’~at some moment in time! by
the perturbation from the localized state, e.g.,uA1&, to the

FIG. 1. Energy levels diagram of a nanostructure compose
two identical quantum dots,A andB. See text for details.
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excited state, e.g., (uA2&1uB2&)/A2, immediately becomes
spread over both dots, so that it can be subsequently ‘‘lo
ered down’’ by the same perturbation~acting on both dots!
to the localized state of theother quantum dot, in our ex-
ample uB1&. The physical picture of such an effect seem
quite clear, the question is only in the probability of electr
transfer between the dots.

As to the case of anisolated quantum dot, it is well
known that a periodic perturbationF̂ cos(Vt) with frequency
V5e22e1 ~hereinafter\51) leads to periodic oscillations
of the probabilitiesp1(t) andp2(t) of detecting an electron
in levels u1& and u2&.4,7 If p1(0)51 and p2(0)50 at the
initial moment, then

p2~ t !5sin2~vRt !, ~4!

wherevR5u^2uF̂u1&u/2. Here,̂ 2uF̂u1& is the matrix element
of the interlevel transition. It follows from Eq.~4! that one
can select the timeT during which the perturbation is on~for
example,T5p/2vR) so that the conditionp2(T)51 is sat-
isfied ~so-calledp pulse!. Below we shall show that in the
case of the double-dot system, the probability of elect
transfer between the localized low-lying states of quant
dots can also be put very close to unity through the pro
choice of the characteristics of an electromagnetic pu
Similar effect in semiconducting quantum wells has be
discussed in Ref. 6.

III. DESCRIPTION OF THE MODEL

Let the external perturbation be the classical ac elec
field E(t). Then the model Hamiltonian has the form

Ĥ~ t !5e1~ âA1
1 âA11âB1

1 âB1!1e2~ âA2
1 âA21âB2

1 âB2!

2V~ âA2
1 âB21H.c.!1E~ t !@d~ âA2

1 âA11âB2
1 âB1!

1H.c.#, ~5!

whereâa i
1 (âa i) is the electron creation~annihilation! opera-

tor for an electron in statesua i & (a5A,B; i 51,2); d
5^A2u2er uA1&5^B2u2er uB1& is the matrix element of
optical dipole transitionsuA1&
uA2& and uB1&
uB2&. We
do not specify the spin index explicitly since we conside
single electron whose spin projection on an arbitrary cho
axis remains unchanged upon the action of ac electric fi
Note that in Eq.~5! we have omitted the terms describin
both tunnel and optical transitionsuA1&
uB2& and
uB1&
uA2& since the wave functions entering into the co
responding matrix elements are centered in different qu
tum dots ~one of wave functions being strongly localize
within a particular dot!, and hence one can expect those m
trix elements be exponentially smaller thanV andd, respec-
tively.

Let us suppose that the external field is turned on at
50 and turned off att5T, and has a frequencyV, i.e.,

E~ t !5E0 cos~Vt !u~ t !u~T2t !, ~6!

whereE0 is the field amplitude,u(t) is the Heaviside step
function. The pulse durationT and frequencyV are to be
derived by maximizing the probability that an electron

of
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8800 PRB 60LEONID A. OPENOV
transferred from the localized low-lying state of one qua
tum dot to that of another dot.

It is convenient to introduce new notations for on
electron states:

u1&5uA1&, u2&5uB1&, u3&5~ uA2&1uB2&)/A2,

u4&5~ uA2&2uB2&)/A2, ~7!

and hence, to replace in Eq.~5! the operatorsâA1 andâB1 by
operatorsâ1 and â2, respectively, as well as to go from op
eratorsâA2 and âB2 describing the excited states of isolat
quantum dots with the energye2 to operatorsâ35(âA2

1âB2)/A2 and â45(âA22âB2)/A2 describing the excited
sublevels of the double-dot nanostructure with energiese2
2V ande21V, respectively. Then the time-independent p
of the Hamiltonian acquires a diagonal form, while optic
transitions take place between the statesu1&
u3&, u2&
u3&,
u1&
u4&, andu2&
u4&:

Ĥ~ t !5e1~ â1
1â11â2

1â2!1~e22V!â3
1â31~e21V!â4

1â4

1E~ t !F d

A2
~ â3

1â11â3
1â21â4

1â12â4
1â2!1H.c.G .

~8!

For the system under consideration, the one-electron w
function C(t) can be expressed at any moment as

C~ t !5(
i 51

4

Ai~ t !exp~2 iEi t !u i &, ~9!

whereEi are eigenvalues of the stationary Schro¨dinger equa-
tion Ĥu i &5Ei u i & in the absence of an applied field (t<0):

E15e1 , E25e1 , E35e22V, E45e21V. ~10!

The valuesAi(0) define the electron wave function at th
initial moment;Ai(0)5Ai(t,0) sinceu i & are eigenstates o
the Hamiltonian~8! for t<0. We assume that att<0 an
electron is localized in the ground state of the dotA, i.e.,
A1(0)51, A2(0)5A3(0)5A4(0)50. The probabilitypi(t)
to find an electron in stateu i & at an arbitrary timet is uAi(t)u2
~it follows from the normalization condition thatp1(t)
1p2(t)1p3(t)1p4(t)51 at anyt). In particular, the value
of p2(t) is the probability that an electron occupies the lo
lying localized level of the dotB at a timet. The coefficients
Ai(t) in Eq. ~9! can be calculated by solving the time
dependent Schro¨dinger equation

i
]C~ t !

]t
5Ĥ~ t !C~ t !, ~11!

whereĤ(t) is given by Eq.~8!, i.e., it explicitly depends on
time at 0<t<T.

IV. RESONANT APPROXIMATION

In order to solve the problem analytically, we use t
resonant approximation.4,7 We assume that the frequencyV
of ac electric field is close to the resonant frequency
-

t
l

ve

-

V r5e22V2e1 , ~12!

i.e., to the difference between the energye22V of the lower
excited stateu3& and the energye1 of the twofold degenerate
ground stateu1& (u2&) so that those three states are reson
with the ac field, while the upper excited stateu4& with the
energye21V is out of resonance. To be precise, the value
V should be much more closer toe22V2e1 than to e2
1V2e1, i.e., the following strong inequality should be sa
isfied:

udu!V, ~13!

where the value of

d5V2V r ~14!

quantifies the offset from resonance. Since in the reson
approximation the electron transitionsu1&
u4& and
u2&
u4& can be ignored, the effective Hamiltonian has t
form

Ĥ~ t !5e1~ â1
1â11â2

1â2!1~e22V!â3
1â3

1Fl2 exp~2 iVt !~ â3
1â11â3

1â2!1H.c.G , ~15!

where we have introduced the notation

l5E0d/A2. ~16!

Generally speaking, the Schro¨dinger Eq.~11! with Hamil-
tonian ~15! can be reduced to the system of coupled diff
ential equations for the coefficientsAi(t) in the expansion
~9! of the wave function (i 5123). It is more convenient,
however, to go to a representation with a time-independ
Hamiltonian making use of the unitary transformation

Û~ t !5expF iVt

2
~ â1

1â11â2
1â22â3

1â3!G ~17!

similar to those proposed by Galitskiiet al.8 to describe the
interaction of a semiconductor with a strong electromagn
field. Substituting

C~ t !5Û~ t !C̃~ t ! ~18!

into the Schro¨dinger Eq.~11! for C(t), we obtain the Schro¨-
dinger equation forC̃(t):

i
]C̃~ t !

]t
5 Ĥ̃C̃~ t !, ~19!

with the Hamiltonian

Ĥ̃5Û1~ t !Ĥ~ t !Û~ t !2 iÛ 1~ t !
]Û~ t !

]t

5~e11V/2!~ â1
1â11â2

1â2!1~e22V2V/2!â3
1â3

1Fl2 ~ â3
1â11â3

1â2!1H.c.G . ~20!
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Since the HamiltonianĤ̃ is independent on time, the gen
eral solution of the time-dependent Schro¨dinger Eq.~19! for
0<t<T has the form:

C̃~ t !5(
i 51

3

Bi exp~2 iẼ i t !u ĩ &, ~21!

whereu ĩ & and Ẽi are the eigenstates and eigenvalues of
stationary Schro¨dinger equation

Ĥ̃u ĩ &5Ẽi u ĩ &. ~22!

We seek solutions of Eq.~22! in the form

u ĩ &5 (
k51

3

Cikuk&, ~23!

where uk& are eigenstates defined by Eq.~7! for t<0. Sub-
stituting Eq.~23! into Eq. ~22!, we obtain a set of equation
for Cik and Ẽi :

(
k51

3

Cik~^ i uĤ̃uk&2d ikẼi !50, ~24!

where i 5143, and^ i uĤ̃uk& are the matrix elements of th
Hamiltonian~20! in terms of the first three basis states of E

~7!. The Hamiltonian matrix̂ i uĤ̃uk& has the form

S e11V/2 0 l* /2

0 e11V/2 l* /2

l/2 l/2 e22V2V/2
D . ~25!

From Eqs.~21! and ~23! one has

C̃~ t !5(
i 51

3

Di~ t !u i &, ~26!

where

Di~ t !5 (
k51

3

BkCki exp~2 iẼkt !. ~27!

Since C̃(0)5C(0), seeEqs. ~17! and ~18!, we have
Di(0)5Ai(0), where the coefficientsAi(0) determine the
state ~9! for t<0. Therefore, from Eq.~27! we obtain the
equations that determine the coefficientsBi in terms of given
Ai(0):

Ai~0!5 (
k51

3

BkCki , ~28!

whence

Bi5 (
k51

3

Ak~0!Cki
21 , ~29!

whereC21 is the matrix inverse ofC. From Eqs.~27! and
~29! we obtain
e

.

Di~ t !5 (
k51

3

(
l 51

3

Al~0!Cli
21Cki exp~2 iẼkt !. ~30!

Finally, given Eq.~18! relating the functionC̃(t) to C(t)
and taking into account that the operatorÛ(t) defined by Eq.
~17! is unitary, we obtain an expression for the probabil
pi(t) for the transition to the stateu i &:

pi~ t !5uDi~ t !u2. ~31!

V. RESULTS AND DISCUSSION

Since we assume~see above! that at t<0 an electron is
localized in the levelu1&, the lowest energy level of the do
A, i.e, A1(0)51 and A2(0)5A3(0)50, expressions~30!
and~31! simplify somewhat. Having calculated the eigenva
uesẼi and the matrix of eigenvectorsCik from Eq. ~24!, we
obtain from Eqs.~30! and~31! the expressions for the prob
abilities of transitions from the stateC(0)5u1& to the state
u i &:

p1~ t !5cos4~vRt !2sin2S dt

4 D cos~2vRt !1
d2

64vR
2
sin2~2vRt !

1
d

8vR
sinS dt

2 D sin~2vRt !,

p2~ t !5sin4~vRt !1sin2S dt

4 D cos~2vRt !1
d2

64vR
2
sin2~2vRt !

2
d

8vR
sinS dt

2 D sin~2vRt !,

p3~ t !5
1

2 S 12
d2

16vR
D sin2~2vRt !, ~32!

whered is defined by Eqs.~12! and ~14!, and

vR5
Ad212ulu2

4
. ~33!

In a particular case of exact resonance (d50), one has from
Eq. ~32!:

p1~ t !5cos4~vRt !,

p2~ t !5sin4~vRt !,

p3~ t !5
1

2
sin2~2vRt !. ~34!

We are interested mainly in the probabilityp2(t) of elec-
tron transfer to the levelu2&, the lowest energy level of the
dot B. It follows from Eq. ~34! that p2(t)51 at t5Tn ,
where

Tn5
p

2vR
1

pn

vR
, ~35!

andn is an integer. Hence, after the applied field is off at
5Tn , the electron will stay in the stateu2& since this state is
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8802 PRB 60LEONID A. OPENOV
the eigenstate of the Hamiltonian~8! in the absence of exter
nal perturbation. So, if a characteristic time of electron tu
neling between the statesu1& and u2&, the ground states o
the dotsA andB, respectively, is long enough~i.e., if the two
dots are placed far apart from each other and/or are sepa
by relatively high-energy barrier!, the electron remains, in
fact, localized in the dotB.

When the frequency is offset from resonance (dÞ0), the
value of p2(Tn) derived from Eq.~32! deviates from unity
by a quantity of orderd2Tn

2 . At a given value ofd, the
probability p2(Tn) has a maximum forn50, see Eq.~35!,
i.e., for the perturbation duration timeT05p/2vR :

p2~T0!512
p2

64

d2

vR
2

. ~36!

Taking Eq. ~33! into account, we are led to the followin
inequality

udu!ulu, ~37!

which should hold in order that the probabilityp2(T0), Eq.
~36!, be very close to unity.

Note that the perturbing ac field acting for afinite period
of time, T0, contains harmonics in the frequency rangedv
'1/T0. In order that the approximating Hamiltonian, E
~15!, be valid, the bandwidthdv should be much smalle
than the interval 2V between the energies of excited sta
u3& andu4& since otherwise the external field will mix all th
statesu1&, u2&, u3&, andu4&, see Eq.~7!. Besides, the timeT0
needed to transfer an electron from the ground stateu1& of
the dotA to the ground stateu2& of the dotB should be much
shorter than the lifetimet* of electron in the ‘‘auxiliary’’
excited stateu3& of the nanostructure, see Sec. II, since o
erwise the probability of photon/phonon emission att!T0 is
high, resulting in decoherence and breakdown of unit
electron evolution under the influence of ac field. Hen
taking into account thatT0;1/ulu, see Eqs.~33!, ~35!, and
~37!, we arrive at the following inequalities:

1

t*
!ulu!V. ~38!

Finally, combining Eqs.~13!, ~37!, and ~38! together, one
has the following conditions for~i! applicability of the reso-
nant approximation to the description of electronic tran
tions in the nanostructure under consideration and~ii ! prox-
imity of the probability of electron transfer from one dot
another to unity:

1

t*
, d!ulu!V. ~39!

We note that conditions~39! imposed on the frequency
duration, and amplitude of electromagnetic pulse can be
filled in the experiment. Indeed, ifV;1023 eV ~see esti-
mates in Sec. II!, we should have, e.g.,ulu'1025

21024 eV andudu'102721026 eV @our numerical calcu-
lations have shown that atulu/V50.1 andudu/ulu50.1 the
value ofp2(T0) is about 0.99#. Since the parameterulu is of
the order of a product of the electric field amplitudeE0 and
-

ted

s

-

y
,

-

l-

the optical dipole matrix elementd, see Eq.~16!, and d
'ea, for a characteristic quantum dot sizea'10 nm we
obtainE0'102100 V/cm, which can be easily realized e
perimentally. As to the condition imposed ond, for assumed
value of V one finds that the frequencyV of the external
source should be accurate to within 109 s21 or better. Such
an accuracy can be obtained by modern experimental m
ods. Besides, the resonance condition can probably
achieved by varying the energy difference between the s
quantized levels via applying a gate voltage to the nanost
ture.

From symmetry considerations it is clear that if att<0 an
electron is in the stateu2& ~i.e., in the lowest-energy state o
the dotB), it will take the same timeT0 to transfer it to the
stateu1& ~i.e., to the lowest-energy state of the dotA) as the
time needed for electron transfer from the stateu1& to the
stateu2&, see above. Hence, if initially an electron is in a
arbitrary superposition of statesu1& and u2&, i.e., C(0)
5au1&1bu2& where a and b are complex numbers suc
that uau21ubu251, thenC(T0)5bu1&1au2&.

Now it is in order to mention a possible application of th
effect of ac field-induced electron transfer between t
quantum dots to the so called ‘‘quantum computation.’’9,10

Indeed, if the statesu1& and u2&, i.e., electron locations in
dots A and B, are viewed as the Boolean states 0 and
respectively, then their linear combinationau1&1bu2& may
be viewed as a ‘‘quantum bit’’~‘‘qubit’’ !. In its turn, an
action of the resonant~in the sense discussed above! ac field
on the double-dot nanostructure may be considered as a
tary operation NOT over the qubit:

UNOTS a

b D 5S b

a D . ~40!

Such an operation is nondissipative~reversible!. Hence, the
double-dot nanostructure can function as a reversible lo
gate NOT~inverter!, in contrast to a number of dissipativ
~nonreversible! logic circuits proposed in the literature~see,
e.g., Refs. 5,11–13!.

Various schemes for realizing reversible quantum lo
gates have also been discussed~see, e.g., Refs. 9,14–17! and
demonstrated experimentally.18–20 Almost all of these
schemes are based on encoding qubits in either photon s
or in nuclear spins. From the perspective of high-dens
computational circuits, the reversible logic gates based
single electrons in quantum dots seem to be very appea
Several quantum gate mechanisms based on electron sp
stronglycoupled adjacent quantum dots have been propo
~see, e.g., Refs. 21–24!. In our opinion, encoding qubits in
electron locations~i.e., in fact, in ground states ofweakly
coupled well-separated quantum dots! rather than in electron
spins may have an advantage that such qubits are well
fined and can be expected to have long dephasing tim
Besides, the measurement procedure may appear to be
straightforward than in the case of spin-based qubits.

Of course, a quantum inverter is the simplest logic gate
operates with one qubit only and is not auniversalgate, i.e.
it cannot be considered as the fundamental building block
a quantum computer. However the ideas presented in
paper can be used to construct more complex gates con
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ing of several quantum dots and operating with more t
one qubit, e.g., XOR~controlled-NOT! gate.

In conclusion, we have shown that a resonant elec
transfer between the states localized in distant quantum
can take place upon the influence of a resonant ac field
properly chosen characteristics~amplitude, frequency, an
duration!. Such a transfer occurs via an excited bound s
of the double-dot nanostructure delocalized over both d
Although only the simplest case that each dot has two s
quantized energy levels has been considered, it is clear
in general, the resonant electron transfer between the
can be assisted by any excited level whose energy lies c
to the top of the barrier separating the dots if the appropr
resonance conditions are satisfied. Since an electron ca
an

on
ots
ith

ate
ts.

ze-
hat,
ots
ose
ate

be

in a quantum-mechanical superposition of states localize
different dots, the double-dot nanostructure can play a rol
a reversible logic gate NOT operating the quantum bits.
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