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Quantum dots with conduction electrons or holes originating from several bands are considered. We assume
the particles are confined in a harmonic potential and assume the electrons(or holes) belonging to different
bands to be different types of fermions with isotropic effective masses. The density-functional method with the
local density approximation is used. The increased number of internal(Kohn-Sham) states leads to a gener-
alization of Hund’s first rule at high densities. At low densitites the formation of Wigner molecules is favored
by the increased internal freedom.
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I. INTRODUCTION

In simple models of quantum dots, the conduction elec-
trons (or holes) of a semiconductor are confined into a two-
dimensional harmonic trap(for reviews see Refs. 1 and 2).
The band structure of the material is taken into account
through the effective mass approximation, and screening ef-
fects are accounted for by the dielectric constant. The prob-
lem is then reduced to solving the many-particle problem of
interacting electrons in a two-dimensional harmonic poten-
tial. The electrons have spin as an “internal degree of free-
dom.” Neglecting spin-orbit coupling, the spin-up and spin-
down electrons can be treated as separate interacting
particles, and consequently we can say that the normal elec-
tron gas is a two-component gas, the components being the
spin-up and spin-down electrons. Similarly, we will call the
polarized electron gas as a one-component system(some-
times also called a system of spin-less fermions).

The simple picture will fail in describing more complex
structures where the number of degrees of freedom of the
electrons is increased either by several two-dimensional lay-
ers or by multiple valleys of the band structure. For example,
in a vertical double-layer quantum dot the electrons confined
in the two layers form(in the vertical direction) “odd” and
“even” states3–5 which could be approximated as different
components, or as different isospin-states of the electron.6

The isospin together with the spin would make the system a
four-component electron gas.

Other multicomponent electron systems would be quan-
tum dots in silicon. In this case the conduction electrons
originating from four valleys of the conduction band could
be approximated as different, but mutually interacting fermi-
ons. Similarly, quantum dots with holes would always have
particles belonging to different bands, i.e., heavy holes and
light holes.7

Density-functional theory in the local(spin) density ap-
proximation(LSDA) provides a flexible method to study the
ground state properties of interacting electrons in quantum
dots.2 In LSDA the exchange and correlation effects of the
interacting conduction electrons are locally approximated by
the exchange-correlation energysexcd of the two-
dimensional, homogenous gas. Similarly, in a multicompo-

nent electron system the starting point for the local density
approximation is the exchange-correlation energy of a two-
dimensional multicomponent gas. Recently, we have sug-
gested that the multicomponentexc can well be approximated
by extending the parametrized two-component function of
Attaccaliteet al.8 to a higher number of components.9 This
parametrization was shown to have correct high and low
density behavior and it has rather simple dependence on the
densities of different components. Moreover, the dependence
of the effective masses of the components can be approxi-
mated through a simple scaling of the density parameter by
an effective average mass.

In this paper we study the electronic structure of quantum
dots where the electron gas has from one up to eight internal
degrees of freedom, using the exchange-correlation func-
tional suggested in Ref. 9. The inclusion of more compo-
nents increases the number of internal degrees of freedom in
the system. As a result, in the self-consistent scheme the
electrons can access more Kohn-Sham states in addition to
the usual two spin states, leading to new features in the elec-
tronic structure. We will discuss the electronic shell structure
of four-component quantum dots by studying the addition
energy spectrum at high densities. In the low density limit
the formation of Wigner molecules in an eight-component
quantum dot is investigated. We found that the seven-
electron configuration is particularly stable like the classical
point-charge calculation predicts.11 In the Wigner molecule
limit the fermions of different components are distributed
spatially so that antiferromagnetic frustration is avoided. Fi-
nally we notice that even a slight increase of mass favors the
heavier components as the heavy component states are
pushed down in energy.

II. THEORETICAL MODEL

We write the total density of the multicomponent electron
gas as

nsr d = o
i=1

L

nisr d = nsr do
i=1

L

nisr d, s1d

whereL is the number of components,ni are the densities of
components andni dimensionless concentrations of the com-
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ponents. In the multicomponent case, the use of concentra-
tions is simpler than the use of total density and polarization
z, as usually done for the normal electron gas(in the two-
component case,n1=n↑ andn2=n↓ andz=n1−n2). Following
the notations of Ref. 9 we define numbers

Zg = o
i=1

L

ni
g, s2d

which allows us to write the exchange-correlation functional
of Attaccaliteet al.8 as

excsrs,hnijd = e−brsfex − ex
s6dg + ex

s6d + a0srsd

+ a1srsds2Z2 − 1d + a2srsds2Z2 − 1d2, s3d

where ex
s6d=s1+ 3

8s2Z2−1d+ 3
128s2Z2−1d2dexsrs,z=0d. As

shown earlier9 this analytic continuation of the originally
two-component functional approximates very well all exist-
ing results for the exchange-correlation energy of a multi-
component electron gas.

The exchange energy is independent of the particle mass.
If the effective masses of all the particles are the same, the
mass dependence of the total energy becomes just a scaling
factor. If the masses are not the same we can use as a first
approximation a properly weighed average mass as a scaling
factor and write9

excsrs,hnij,hmijd =
M

me
excsMrs,hnij,hmi = mejd, s4d

whereme is the bare mass of the electron(or any suitably
chosen effective mass), mi is the effective mass of compo-
nent i, andM is an average mass defined as9

1

M
=

1

Z2
o

i

L
ni

2

mi
. s5d

Note that the density parameterrs in our formulation always
refers to the total number density of all particles:rs

=1/Îpn.
The Kohn-Sham equations have to be solved self-

consistently for each component of the electron gas. The
effective potentialVeff,i consists of the external harmonic
confinement(assumed here to be the same for all compo-
nents), of the Coulomb repulsion of the electron density dis-
tribution (Hartree term) and of the exchange-correlation po-
tential, which can be directly derived from the
multicomponent exchange-correlation energy:

Veff,isr d =
1

2
Kr2 +E dr 8

e2nsr 8d
4p«0eur − r 8u

+ Vexc,isrssr d,hnisr dj,hmijd, s6d

where K is the strength of the external confinement,e
the dielectric constant. Note that the exchange-correlation
potential depends locally on the concentrations of each

component. The Kohn-Sham equations to be solved simulta-
neously for all components are

−
"2

2mi
¹2ci,ksr d + Veff,isr dci,ksr d = ei,kci,ksr d, s7d

resulting in the densitiesni of all componentsi,

nisr d = o
k

Ni

uci,ksr du2, s8d

whereNi is the number of electrons of componenti. In the
ground state the lowest single particle levels are filled and
the numbersNi are known only after the ground state is
found. In practice we solve the equations by keeping the
numbersNi fixed and then choose the configuration which
gives lowest total energy.

The Kohn-Sham equations were solved using a plane-
wave expansion and the fast Fourier transform technique.
We use up to 23323 plane waves and, correspondingly
a 45345 lattice at which the density and potential is
derived. When iterating the Kohn-Sham equations, a
mixing of the new and old potential is necessary to obtain
convergence. The convergence is slow especially at low
densities where broken symmetry solutions(localization of
electrons to Wigner molecules) emerge. We use effective
atomic units where energy is given in effective Hartree,
Ha* =me

*e4/"3s4pe0ed2 and the unit of distance is the effec-
tive Bohr radiusa0

* ="24pe0e /me
*e2.

III. RESULTS

A. Shell structure—Addition spectrum

As confined, fermionic quantum systems, quantum dots
show shell structure with degeneracies determined by the

FIG. 1. Addition energy spectrum of a four-component quantum
dot. The confinement potential changes with the number of elec-
trons so that the average electron density in the dot center corre-
sponds tors=2 a0

* . The inset shows schematically the filling of
levels in the case of 10 electrons. The peaks at 4, 12, and 24 are
caused by shell closings while those in between are caused by
Hund’s rule.
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symmetries of the confining potential. The independent elec-
tron energy spectrum for a two-dimensional(2D) harmonic
oscillator is «nl="v0s2n+ ul u+1d, where n is the principal
quantum number andl is the angular momentum(or its
z-projection). At high densities the independent electron
scheme describes the qualitative characteristics of the shell
filling of the interacting system reasonably well, as known
from the earlier studies2 of normal quantum dots. The main
effect of the electron-electron interaction is to produce the
spin determined by Hund’s first rule.10 The shell structure
effects are usually shown in a form of addition energy spec-
trum where the second difference of the total energy is plot-
ted as a function of the number of electrons in the dot. Ad-
dition energies measure the changesmsN+1d−msNd in the
chemical potentialmsNd=EsNd−EsN−1d.

We will first study the addition energy spectrum of an
ideal four-component electron system in a quite high electron
density,rs=2 a0

* . A physical realization of such system could
be a vertical double dot, where the interlayer distance is very
small. Figure 1 shows the addition energy spectrum and a
schematic picture of the single particle levels. Since each
single particle level can now occupy four electrons the
closed shells correspond to total electron numbers 4, 12, 24,
etc. These “magic” numbers are seen as pronounced maxima
in the addition energy spectrum. In between, we see smaller
maxima at every even electron number up to 12 electrons
and at every third electron number between 12 and 24. These
are manifestations of Hund’s first rule generalized to the
multicomponent case: Degenerate states are filled one com-
ponent at a time. This minimizes the total energy, since the
exchange energy favors a “polarized” electron gas. For ex-
ample, in the third shell we see maxima atN=15, 18, and 21,
corresponding to filling the three orbitals of the first, second,
and third component of the four-component electron gas.

B. Formation of Wigner molecules

At low enough densities the electrons in the parabolic
quantum dot are expected to form Wigner molecules as the
correlation effects start to dominate the electronic structure.
In this limit the electrons localize in the classical configura-
tion that minimizes the electrostatic repulsion11 and this
charge distribution symmetry is reflected in the internal
structure of the many-body wave function.12 In the multi-
component systems the localization is eased up due to the
fact that electrons can access more than two internal states.
In the low density limit we study an eight component system
in fixed external confinement withK=2·10−4 effective
atomic units. A realization of an eight component dot could
be a dot in a multivalley semiconductor, like silocon or ger-
manium. In a more realistic model, however, the unisotropy
of the effective mass should be considered. This choise cor-
responds to densities that are only slightly higher than those
where a polarized(one-component) state becomes the
ground state for different electron numbers. At these low
densities the multicomponent local density approximation lo-
calizes the electrons in the classically predicted configura-
tions. Figure 2 shows the total electron densities for seven,
eight, and nine electrons. In the cases of seven and eight
electrons, one electron is in the center and the rest form a
ring around it, while in the case of nine electrons two

FIG. 2. The total electron densities of a quantum dot having
(from left to right) 7, 8, and 9 electrons at low densities. The con-
finement strenght isK=2·10−4 atomic units. The localization in the
local density approximation is made possible by the eight internal
degrees of freedom of the system.

FIG. 3. Addition energy for a eight component quantum dot at a
low electron density(the confinement strenght isK=2·10−4 atomic
units). The spectrum shows a weak kink atN=7 as a precursor of
the geometrically magic structure. For comparison, addition energy
spectrum of classical electrons is shown.

FIG. 4. Electron density of a four-cmponent quantum dot for three different values ofrs: From left to rightrs=2 a0
* , 6 a0

* , and 14a0
* . The

localization in the multicomponent LDA is made possible by the fact that the neighboring localized electrons belong to different components
as indicated by numbers in the contour plot.

DENSITY-FUNCTIONAL THEORY OF MULTICOMPONENT… PHYSICAL REVIEW B 70, 195310(2004)

195310-3



electrons form a “dimer” at the center and seven electrons
from a ring around them. The geometries are in perfect
agreement with those of classical electrons.11

Figure 3 shows the addition energy spectrum of the eight-
component quantum dot at the low density. The spectrum
does not any more show features of shell structure and
Hund’s rule, but shows a small kink atN=7, in agreement
with the maximum in the addition energy spectrum of the
purely classical system, determined from the results of Ref.
11, and also shown in Fig. 3. Classically, the seven electrons
can form a perfect hexagon with one electron at the center.
The quantum mechanical solution is the same as shown in
Fig. 2. In the density-functional theory the localized elec-
trons are not point charges as in the classical case. As a
consequence, the spectrum is smoother than that of the clas-
sical result.

The evolution of the ground state as a function of density
parameterrs is investigated in an eight electron quantum dot
with four components. As discussed earlier, at high densities
rs&4 a0

* the ground state obeys Hund’s rule giving the con-
figuration (3,3,1,1) for the ground state. As the density is
lowered, the electron structure shows a Wigner molecule-like
state already atrs=6.0 a0

* . Six localized electrons are at the
outer circumference with two nonlocalized in the middle, as
shown in Fig. 4. The six electrons at the outer radius belong
to two components and the two electrons in the middle oc-
cupy also two components. The electrons in the outer ring
are distributed spatially so that the two nearest neigbors of
each electron belong to other component. This means that the
densities of the outer components are rotated byp with re-
spect to one another. In this way the system will avoid anti-
ferromagnetic frustration. Forrs*8 a0

* the electrons localize
into a classically predicted configuration with seven elec-
trons at the outer radius and one in the middle. The frustra-
tion is again avoided by taking the nearest neighbors for each
electron from other components, as shown in Fig. 4.

C. Mass dependence

The effect of the varying mass was tested in the four-
component system withrs=2.0 a0

* andN=24. The masses of
two components were increasedsm1=m2=md while the other
two masses were kept constantsm3=m4=1.0 med. For m
=1.0 me the sd-shell is filled giving the “magic” configura-
tion (6,6,6,6). The mass increase shifts the orbitals of the
lighter components up in energy relative to heavier compo-
nents, as shown in Fig. 5. As a consequence, atm=1.2 me the
sd-orbitals of the light components are empty and the fp-
orbitals of the heavier components are occupied according to
Hund’s rule leading to configuration(10,8,3,3). Already at

m=1.8 me the lighter orbitals have only two electrons and
the heavier components obey Hund’s rule resulting in the
configuration(12,10,1,1). It should be noted that we neglect
the spin-orbit interaction which in semiconductors leads to
so-called split-off band and could thus be important in quan-
tum dots consisting of hole states.

IV. SUMMARY AND DISCUSSION

We have studied the general features of quantum dots
confining a multicomponent electron gas. At high densities
the exchange energy favors polarization of electrons and the
degenerate energy levels are filled with one component at a
time. This leads to an addition energy spectrum which be-
sides the peaks at full shells also shows peaks coming from
the generalization of Hund’s rule.

The increased number of internal degrees of freedom of
the electrons make it easier for the electrons to localize to
Wigner molecules. We have demonstrated this for four- and
eight-component systems. In the low density limit the addi-
tion energy spectrum then does not any more show the elec-
tronic shell structure but the geometrical shell structure of
Wigner molecules.

If the different electrons(or holes) have different masses,
the localization pushes the energy states of the heavy par-
ticles down as compared to those of the light particles. If the
mass difference is small the addition energy spectrum is
expected to be complicated due to the mixture of light
and heavy particle states. However, if the mass ratio is at
a typical value of heavy and light holes, say five, the light
holes do not play any role until the dot has several tens of
particles.
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