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Abstract
We define the concurrence hierarchy as d − 1 independent invariants under
local unitary transformations in d-level quantum system. The first one is the
original concurrence defined by Wootters (1998 Phys. Rev. Lett. 80 2245) and
Hill and Wootters (1997 Phys. Rev. Lett. 78 5022) in a two-level quantum
system and generalized to the d-level pure quantum state case. We propose
to use this concurrence hierarchy as a measurement of entanglement. This
measurement does not increase under local quantum operations and classical
communication.

PACS numbers: 03.65.Ud, 03.67.−a

1. Introduction

Entanglement plays a central role in quantum computation and quantum information [3]. One
of the main goals of the theory of entanglement is to develop measures of entanglement.
Several measures of entanglement are proposed and studied according to different aims,
including entanglement of formation, entanglement of distillation, entanglement cost, etc
[4, 5].

Perhaps one of the most widely accepted measures of entanglement is entanglement of
formation Ef which provides a very good measurement of entanglement asymptotically. For
a pure bipartite quantum state ρ = |�〉〈�| shared by A and B, entanglement of formation is
defined by the von Neumann entropy of the reduced density matrix Ef (ρ) = −TrρA log ρA,
where ρA = TrBρ. For a mixed state, the entanglement of formation takes the form

Ef (ρ) = inf
∑

j

pjEf (�j) (1)

where the infimum is taken over all pure-state decompositions of ρ = ∑
j pj |�j 〉〈�j |. For a

mixed state, this definition is operationally difficult because it requires finding the minimum
average entanglement over all possible pure-state decompositions of the given mixed state.
In d-dimensions, the explicit expression of entanglement of formation is only found for
several special types of mixed state, for example, the isotropic states [6] and Werner states
[7]. However, the explicit formulae have been found for the two-level quantum system by
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Wootters and co-workers [1, 2]. Here we briefly introduce the results found by Wootters and
co-workers. The entanglement of formation of an arbitrary state ρ is related to a quantity
called concurrence C(ρ) by a function

Ef (ρ) = ε(C(ρ)) = h

(
1 +

√
1 − C2(ρ)

2

)
(2)

where h(x) = −x log x − (1−x) log(1−x) is the binary entropy function. The entanglement
of formation is monotonically increasing with respect to the increasing concurrence. The
concurrence is defined by an almost magic formula

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4} (3)

where the λi are the square roots of the eigenvalues of ρρ̃ in descending order. And ρ̃ =
(σy ⊗σy)ρ

∗(σy ⊗σy), where σy is the Pauli matrix. For a pure state |�〉 = α00|00〉+α01|01〉+
α10|10〉 + α11|11〉, the concurrence takes the form

C(�) = |〈�|σy ⊗ σy |�∗〉| = 2|α00α11 − α01α10|. (4)

Because of the relation between concurrence and entanglement of formation, we can use the
concurrence directly as the measure of entanglement.

One important objective in formulating the measures of entanglement is to find whether a
bipartite state is separable or not because the entanglement state has some useful applications,
for example, teleportation [8], quantum cryptography by using EPR pairs [9]. In a two-level
quantum system, the Peres–Horodeckis [10, 11] criterion is a convenient method. However,
the concurrence provides another method. If the concurrence is zero, the quantum state is
separable, otherwise it is entangled. For a general mixed state in d-dimensions, we have yet
to find an operational method to distinguish separability and entanglement.

For a pure state in d-dimensions, the measure of entanglement is largely solved by
entanglement of formation. We can use it to distinguish whether a pure state is separable or not
and find the amount of entanglement. However, to completely characterize the entanglement,
one quantity does not seem enough. A simple example is [12]

|ψ〉 = 1/
√

2(|00〉 + |11〉)
|φ〉 = √

x/
√

2(|00〉 + |11〉) +
√

1 − x|22〉.
(5)

When x ≈ 0.2271 is a root of equation xx[2(1 − x)]1−x = 1, the entanglement of formation
is equal to 1 for both |ψ〉 and |φ〉. However, they cannot be transformed to each other by local
operations and classical communication (LOCC).

Because concurrence provides a measure of entanglement in two-level systems, it is
worth generalizing the concurrence to higher dimensions. There are several proposals for the
case of pure states [12–17]. Uhlmann generalized the concurrence by considering arbitrary
conjugations acting on arbitrary Hilbert spaces [13]. Rungta et al generalized the spin-flip
operator σy to a universal inverter Sd defined as Sd(ρ) = 1 − ρ, so the pure state concurrence
in any dimension takes the form

C ′(�) = √〈�|Sd1 ⊗ Sd2(|�〉〈�|)|�〉
=

√
2
[
1 − Tr

(
ρ2

A

)]
. (6)

There is a simple relation between these two generalizations pointed out by Wootters [18].
Another generalization proposed by Albeverio and Fei [15] by using an invariant under local
unitary transformations turns out to be the same as that of Rungta et al up to a whole factor.
They defined the concurrence as

C(�) =
√

d

d − 1

[
1 − Tr

(
ρ2

A

)]
. (7)
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Let us analyse example (5) again by the generalized concurrence. When x = 1/3 is a root of
equation (3x − 1)(x − 1) = 0, the concurrences of |ψ〉 and |φ〉 are equal. But still |ψ〉 and
|φ〉 cannot be transformed to each other by LOCC.

As already noted and conjectured by many researchers, one quantity perhaps is not enough
to measure all aspects of entanglement [19–26], see [27] for a review, and the geometric
properties of entanglement were investigated in [28]. As for the question of separability,
the Peres–Horodeckis [10, 11] criterion is enough for a bipartite two-level quantum system.
For higher dimensions, if we want to find whether a bipartite state is entangled, besides the
partial transposition operation proposed by Peres [10], we need to find other positive but not
completely positive maps. Presently, how to find whether a bipartite state in Cd1 × Cd2 is
entangled is still an open problem.

In this paper, we propose to use not only the invariant (7) to quantify the entanglement
of bipartite pure states but also all symmetric functions of eigenvalues of the reduced density
operator as measures of entanglement. The first non-trivial quantity is the original invariant
under local unitary transformations (7) which provide a separability criterion. Besides the first
non-trivial quantity, other quantities also act as measures of entanglement. These quantities
are invariant under local unitary transformations and do not increase under LOCC. By using
all of these quantities as measures of entanglement, we can show explicitly the reason in some
cases why two bipartite pure states cannot be transferred to each other by LOCC since this
will cause an increase in different types of entanglement. We also show a counter example
that these quantities are still not enough to completely quantify the entanglement. A general
formula to obtain these quantities is also presented.

2. Definition of concurrence hierarchy

In this paper, we propose to use the concurrence hierarchy to quantify the entanglement for
d-dimensions. We restrict ourselves to the Cd ⊗ Cd bipartite pure state. A general bipartite
pure state in Cd ⊗ Cd can be written as

|�〉 =
d−1∑
i,j=0

αij |ij 〉 (8)

with normalization
∑

ij αij α
∗
ij = 1. We define a matrix 	 with entries 	ij = αij . The

reduced density matrix can be denoted as ρA = TrBρ = 		†. Under a local unitary
transformation U ⊗ V , the matrix 	 is changed to 	 → Ut	V , where the superindex t
represents transposition. The reduced density operator is thus transformed to

ρA → (Ut	V )(V †	†Ut†) = Ut		†Ut†. (9)

In two dimensions, it was pointed out by Linden and Popescu [29] that there is one non-trivial
invariant under local unitary transformations I = Tr(		†)2. In general d-dimensions, it
was pointed out by Albeverio and Fei that there are d − 1 independent invariants under local
unitary transformations Ik = Tr(		†)k+1. When k = 0, it is just the normalization equation
I0 = ∑

ij αij α
∗
ij = 1. For k = 1, . . . , d − 1, Ik are d − 1 independent invariants under local

unitary transformations. Then they generalize the concurrence as formula (7) and one relation
can be calculated as

1 − Trρ2
A = I0 − I1 = 1

2

d∑
i,j,k,m

|αikαjm − αimαjk|2. (10)

When C(�) = 0, it is separable; when C(�) 	= 0, it is entangled; when C(�) = 1, it is
a maximally entangled state. For a pure state |�〉 as in (8), when αikαjm = αimαjk for all
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i, j, k,m, it can be written as a product form and thus separable. It is a rather intuitive idea
to use quantity (10) as the measure of entanglement. Indeed all proposals of generalization of
concurrence lead to this result. Also when C(�) 	= 0, state |�〉 is entangled. However, our
opinion is that this quantity is necessary but not enough. For quantifying the entanglement,
it is dealt with independently by restricting to every two-level system. For example, suppose
|�′〉 takes the form

|�′〉 = α00|00〉 + α11|11〉 + α22|22〉. (11)

Actually we can always change a pure state |�〉 to this form by Schmidt decomposition. The
states α00|00〉 + α11|11〉, α00|00〉 + α22|22〉 and α11|11〉 + α22|22〉 are considered independently
in (10) and the entanglement in every two-level system is summed together, C(�) =
|α00α11|2 + |α00α22|2 + |α11α22|2. As already pointed out, when x = 1/3, the concurrences
of |ψ〉 and |φ〉 in (5) are equal but they cannot be transformed to each other by LOCC. Our
idea here is that besides the concurrence in the form (10), we should also quantify it by other
quantities. For example, for the state |�′〉 in (11), we can quantify the entanglement by

C3(�
′) = |α00α11α22|2 (12)

up to a normalized factor. In this quantity we just consider the entanglement in all three levels.
Apparently, C3(�

′) = 0 does not mean that the state |�′〉 is separable. So both this quantity
and (10) are necessary in quantifying the entanglement in a three-level quantum system. We
call these two quantities the concurrence hierarchy for a three-level system. Example (5)
thus can be distinguished as follows. If you let both C(ψ) = C(φ) and C3(ψ) = C3(φ),
we can find just one solution x = 1, i.e. |ψ〉 = |φ〉. In the case of x = 1/3, though the
two-level concurrences defined in (7) for |ψ〉 and |φ〉 are equal, their three-level concurrences
are different, C3(ψ) = 0 while C3(φ) = 1/54. The structure of their concurrence hierarchy
is different. So, they cannot be transformed to each other by LOCC.

Next, we give our precise definition of concurrence hierarchy. Suppose a bipartite
pure state (8) shared by A and B, λ� = {

λ
↓
0 , . . . , λ

↓
d−1

}
, denotes the vector of eigenvalues

of the reduced density operator ρA = TrB(|�〉〈�|) in decreasing order. In other words
λ

↓
j , j = 0, . . . , d − 1 are squares of singular values of matrix 	.

Definition. The concurrence hierarchy of the state |�〉 is defined as

Ck(�) =
∑

0�i0<i1<···<ik�(d−1)

λ
↓
i0
λ

↓
i1

· · ·λ↓
ik

k = 1, 2, . . . , d − 1. (13)

We propose to use this concurrence hierarchy to quantify the entanglement of the state |�〉.

The first-level concurrence is trivial since it is just the normalization condition C1(�) =∑d−1
i=0 λ

↓
i = 1. The two-level concurrence is the d-dimensional generalization of concurrence

proposed by Rungta et al [14] and Albeverio et al [15] up to a whole factor. In two dimensions,
there is just one non-trivial concurrence which is the original concurrence proposed by Wootters
et al [1, 2]. In d-dimensions, the concurrence hierarchy consists of d−1 independent non-trivial
concurrences. We remark that C2(�) is enough to characterize the separability. However,
the hierarchy of Ck(�) concerns the entanglement transformation. The result of three-level
concurrence in three dimensions is already presented in (12). This concurrence hierarchy is
invariant under local unitary transformations and can be represented in terms of invariants
Ik = Tr(		†)k+1 [15]. It should be noted that a similar idea to that in this paper was also
proposed by Sinolecka et al [26]. We give an example to show one relation for three-level
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concurrence of state |�〉 in (8),

C3(�) =
∑

0�i0<i1<i2�(d−1)

λ
↓
i0
λ

↓
i1
λ

↓
i2

= 1 + 2I2 − 3I1

= 1

6

∑
ijklmr

|αijαklαmr + αkjαmlαir + αmj αilαkr − αmjαklαir − αilαkjαmr − αijαmlαkr |2

(14)

where the terms inside | · | correspond to determinants of the 3 × 3 submatrix of 	 with row
indices i, k,m and column indices j, l, r . When |�〉 is separable, all concurrences in the
hierarchy are zeros except the trivial one. If the Schmidt number (rank) of ρA for state |�〉 in
(8) is k, 1 � k � d , all higher level concurrences Cj (�) = 0, j > k. This is simple because
all eigenvalues of ρA are non-negative.

3. A simple method to calculate the concurrence hierarchy and entanglement can be
quantified by concurrence hierarchy

The concurrence hierarchy can be calculated by its definition (13). The two- and three-
level concurrences can be calculated directly by relations (10), (14). Here we show that all
concurrences in the hierarchy can be calculated similarly. According to some results in linear
algebra (see, for example, [31]), the concurrence hierarchy Ck(�) is equal to the sum of the
k-by-k principal minors of reduced density operator 		†. However, it is known that these
quantities are invariant under unitary transformations U		†U †. This leads straightforwardly
to the result that for a bipartite pure state (8), the concurrence hierarchy Ck(�) is invariant
under local unitary transformations. For convenience, we adopt the same notation as in [31].
Let β, γ ⊆ {0, . . . , d − 1} be index sets, each of cardinality k, k = 1, . . . , d . According to
Cauchy–Binet formula, we have the following relations:

Ck(�) =
∑

β

det ρA(β, β)

=
∑

β

∑
γ

det 	(β, γ ) det 	†(γ, β)

=
∑

β

∑
γ

| det 	(β, γ )|2 (15)

where we use the relation ρA = 		†, and the notation det 	(β, γ ) means the determinant of
submatrix 	 with row and column index sets β and γ . When the cardinality k = 2, 3, we
recover the previous results (10, 14). So, we do not need to calculate the eigenvalues of the
reduced density operator to find the concurrence hierarchy, we can calculate the concurrence
hierarchy directly by summing the determinants of all k-by-k submatrices of 	.

Next, we show the concurrence hierarchy cannot increase under LOCC. We use the
theorem proposed by Nielsen by majorization scheme [30]. For convenience, we use the
same notation as in [31] and Nielsen. The elements of vectors x = {

x
↓
0 , . . . , x

↓
d−1

}
and

y = {
y

↓
0 , . . . , y

↓
d−1

}
are ordered in decreasing order. We say that x is majorized by y, x ≺ y,

if
∑k

j=0 x
↓
j �

∑k
j=0 y

↓
j , k = 0, . . . , d − 1 and the equality holds when k = d − 1.

Theorem 1 [30]. |�〉 transforms to |�〉 using LOCC if and only if λ� is majorized by λ�,

|�〉 → |�〉 iff λ� ≺ λ�. (16)
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Now we propose our theorem by directly using the Nielsen theorem.

Theorem 2. |�〉 transforms to |�〉 using LOCC, the concurrence hierarchy of |�〉 is no less
than that of |�〉. And explicitly, if |�〉 → |�〉, then Ck(�) � Ck(�), k = 1, . . . , d .

The proof of this theorem is as follows. Because of the Nielsen theorem, |�〉 → |�〉 then we
have λ� ≺ λ�. Because −Ck, k = 1, . . . , d are isotonic functions [31], i.e. if λ� ≺ λ� then
−Ck(�) � −Ck(�). Thus we have Ck(�) � Ck(�), k = 1, . . . , d . Here we mainly use the
fact that each Ck is a Schur-concave function, see [31].

It is well known that a negative entropy function is isotonic, so the entanglement of
formation cannot increase under LOCC. Here we show the concurrence hierarchy cannot
increase under LOCC.

4. Applications of concurrence hierarchy

According to theorem 2, if some of the relations Ck(�) � Ck(�), k = 1, . . . , d do not hold,
|�〉 and |�〉 cannot be transformed to each other by LOCC. Here we analyse an example
raised by Nielsen [30],

|�〉 =
√

0.5|00〉 +
√

0.4|11〉 +
√

0.1|22〉
|�〉 =

√
0.6|00〉 +

√
0.2|11〉 +

√
0.2|22〉.

(17)

According to Nielsen theorem, neither |�〉 → |�〉 nor |�〉 → |�〉. Here we analyse this
example by calculating their concurrence hierarchy. We can find

C2(�) = 0.29 > C2(�) = 0.28 (18)

C3(�) = 0.020 < C3(�) = 0.024. (19)

It follows from theorem 2 that neither |�〉 → |�〉 nor |�〉 → |�〉. We can roughly interpret
the reason as the two-level entanglement of |�〉 is larger than that of |�〉 (18), but the three-
level entanglement of |�〉 is less than that of |�〉 (19). So we cannot transform them to each
other by LOCC.

It should be noted that the inverse of theorem 2 is not true. That means even if we have
Ck(�) � Ck(�), k = 1, . . . , d , we are not sure whether |�〉 → |�〉. Here we give an
example

|�′〉 =
√

0.5|00〉 +
√

0.4|11〉 +
√

0.1|22〉
|� ′〉 =

√
0.55|00〉 +

√
0.3|11〉 +

√
0.15|22〉.

(20)

One can find the following relations:

C2(�
′) = 0.2925 > C2(�

′) = 0.29 (21)

C3(�
′) = 0.02475 > C3(�

′) = 0.020. (22)

According to the Nielsen theorem neither |� ′〉 → |�′〉 nor |�′〉 → |� ′〉. That means the
concurrence hierarchy is not complete. In the sense of classifying pure bipartite states by
LOCC, the Nielsen theorem is more powerful. However, our result is mainly to quantify the
entanglement by concurrence hierarchy.
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5. Summary and discussions

The drawback of the concurrence hierarchy is that it is not complete though the hierarchy
consists of d − 1 independent invariants. We should note that Vidal [19], Jonathan and
Plenio [20], and Hardy [22] found a complete set of entanglement measures consists
of d − 1 independent entanglement monotones. In concurrence hierarchy, each level
of concurrence involves all parameters of a given pure state. So, we can say that
each concurrence in the hierarchy describes the entanglement globally. For example,
C2(�) describes all two-level entanglements in a pure state |�〉. If two eigenvalues
between λ

↓
� and λ

↓
� are different, the concurrences in the hierarchy will generally be

different.
In summary, we give the definition of concurrence hierarchy and we propose to

use the concurrence hierarchy as a measure of entanglement. All concurrences in the
hierarchy are zero for separable states except the normalization one. The concurrence
hierarchy is invariant under local unitary transformations. The concurrence hierarchy
cannot increase by using LOCC. A simple and direct formula (15) is obtained for the
concurrence hierarchy. We also analyse some interesting examples by using the concurrence
hierarchy.

Our result in this paper is a small step towards completely quantifying the entanglement.
However, we find some interesting applications of concurrence hierarchy. It requires much
attention to be given along the direction of this paper. We just consider the case of pure
states. To study the concurrence hierarchy for mixed states is difficult presently, because
even the first non-trivial concurrence of a general mixed state in d-dimensions has not been
obtained. We do not even have a widely accepted operational way to find whether a state
is entangled. However, our result has potential applications for mixed states. In particular,
we give the definition of concurrence hierarchy (13), which could shed light on how we
should formulate them for mixed states. We should note that the definition of concurrence
hierarchy (13) is just for a pure state. To calculate the concurrence hierarchy for mixed states,
we need some formulae like the form of Wootters in two dimensions (3), because we cannot
characterize separability only by the eigenvalues of density matrix and reduced density matrices
[32].

As we already mentioned, even in the classification of pure states by LOCC, theorem 2 is
weaker than the Nielsen theorem though it has interesting applications. But we actually raise
an interesting question: both |�〉 and |�〉 in (17), and |� ′〉 and |�′〉 in (20) are incomparable
by the Nielsen theorem, however, by using concurrence hierarchy, we show cases (17) and
(20) belong to different groups. Then what are the essential differences between cases (17)
and (20)?

It is also interesting to consider other series of quantities to quantify entanglement, for
example, we can use invariants Ik = Tr(		†)k+1 as measures of entanglement. Quantum
Rényi entropies defined as Sj = 1

1−j
log2 Tr(		†)j (see, for example, [25, 33]) also

provide measures of entanglement. Hopefully, quantum Rényi entropies can constitute a
complete set of measures of entanglement. And these measures of entanglement work
very well for the examples appearing in this paper, i.e., they can determine whether a
pure state can be transformed to another by LOCC. However, a proof of whether quantum
Rényi entropies is complete or not is necessary. It is also interesting to study whether
we can use concurrence hierarchy to study the mixed states, the result in [34] may be
useful to this problem. Some results about invariants for multipartite states are already
available [35], it is worth studying the corresponding concurrence hierarchy for multipartite
states.
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