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While time-dependent perturbation theory shows inefficient carrier-phonon scattering in semiconductor
quantum dots, we demonstrate that a quantum kinetic description of carrier-phonon interaction predicts fast
carrier capture and relaxation. The considered processes do not fulfill energy conservation in terms of free-
carrier energies because polar coupling of localized quantum-dot states strongly modifies this picture.
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I. INTRODUCTION

Applications of semiconductor quantum dotssQDsd in op-
toelectronic devices rely on fast carrier scattering processes
towards and between the discrete confined levels. These car-
rier transitions determine the dynamics of QD luminescence1

or the operation of QD lasers.2,3 For low carrier densities,
where Coulomb scattering can be neglected, carrier-phonon
interaction provides the dominant scattering channel. In QDs
only phonons with small momenta can efficiently couple to
the confined carriers.4 Then interaction with LA phonons
does not contribute for large transition energies and only
quasimonochromatic LO phonons need to be considered.

The simplest theoretical approach to electronic scattering
processes is based on time-dependent perturbation theory.
Fermi’s golden rule for carrier transitions due to phonon
emission or absorption contains ad-function for strict energy
conservation in terms of free-carrier energies of initial and
final states and the phonon energy. When transition energies
of localized QD states do not match the LO-phonon energy,
efficient scattering is inhibitedsleading to the prediction of a
phonon bottleneckd and only higher-order processes, such as
a combination of LO and LA phonons,5,6 weakly contribute.
Attempts to broaden thed-function “by hand” immediately
change the results6 which underlines that this point should be
addressed microscopically. The phonon bottleneck effect is
still a debated topic, with experimental evidence both for7–9

and against it.10–12

As in any coupled system, carrier-phonon interaction
renormalizes both electronic and vibrational states. However,
in bulk semiconductors or quantum wells with weak polar
coupling, the net effect can be described by renormalized
effective carrier masses, a small polaron shift of the band
edge, and lattice distortions only modify the background di-
electric constant for the Coulomb interaction of carriers. The
broadening of the transition energies due to carrier-phonon
interaction remains weak.

For carriers in QDs, the discrete nature of localized elec-
tronic states changes the role of polaronic effects.4,13,14 Re-
stricting the analysis to a single QD state coupled to
phonons, polaron effects can be obtained from an exact di-
agonalization of the Hamiltonian.15 While an extension to
several discrete levels has been presented,16 the influence of

the energetically nearby continuum of wetting-layersWLd
states, typical for self-assembled QDs, has not been included.
Furthermore, only quasiparticle properties have been dis-
cussed which provide no direct information about the scat-
tering efficiency for various processes. Calculations of car-
rier transition rates based on the polaron picture are missing.

We use a quantum kinetic treatment for carrier-phonon
interaction in the polaron picture. As a first step, quasiparti-
cle renormalizations due to the polar interaction for both QD
and WL carriers are determined. For the QD states, the hy-
bridization of one state with strong satellites of another state
leads to a rich multipeak structure. The WL states exhibit
weak LO-phonon satellites. Coupling to the WL states pro-
vides a broadening mechanism for the QD states.

Based on the spectral properties of QD and WL polarons,
quantum kinetic equations for the capture processscarrier
transitions from the WL into the QDd and relaxation pro-
cessesstransitions between QD statesd are solved. For situa-
tions where, in terms of free-carrier energies, energy con-
serving scattering processes are not possible, the quantum-
kinetic treatment provides efficient scattering rates. Even for
the InGaAs material system with weak polar coupling, sub-
picosecond scattering times are obtained.

II. QUANTUM DOT POLARONS

The single-particle properties of carriers under the influ-
ence of lattice distortions are determined by the retarded
Green’s functionsGFd Ga

r which obeys the Dyson equation

Fi"
]

]t1
− «aGGa

r st1,t2d = dst1 − t2d +E dt3Sa
r st1,t3dGa

r st3,t2d.

s1d

Here a is an arbitrarysQD or WLd electronic state with
free-carrier energy«a. In the polaron theory one usually con-
siders all possible virtual transitions from this state due to
emission or absorption of phonons. This corresponds to a
self-energySa

r for the carrier-phonon interaction where the
population of the involved carrier states is neglectedselec-
tron vacuumd. The corresponding retarded self-energy in
random-phase approximationsRPAd is given by17
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Assuming that the phonon system is in thermal equilibrium,
the phonon propagatorscombined with the interaction matrix
elementsd is given by

i"Dba
, std = o

q
uMbasqdu2fnLOe−ivLOt + s1 + nLOdeivLOtg,

s3d

where monochromatic LO phonons with the frequencyvLO
are considered. The corresponding phonon population is
given by nLO=1/se"vLO/kT−1d and the Fröhlich interaction
matrix element

Mbasqd =
MLO

q
kbueiq·r ual s4d

contains the overlap between the electronic states and the
phonon mode. For localized electronic states this acts as a
form factor. The prefactorMLO

2 =4pas" /Î2mds"vLOd3/2 in-
cludes the polar coupling strengtha and the reduced massm.
As a result of the above assumptions, the retarded GF itself
depends only on the difference of time arguments and its
Fourier transform can be directly related to the quasiparticle
properties.

Due to energy separation between the discrete QD states
and the WL continuum, polaronic effects in QDs are often
computed by neglecting the presence of the WL.4,13,14,16For
a single discrete level this amounts to the exactly solvable
independent Boson model15 and for several discrete levels it
was shown to be nearly exactly solvable.16 In both cases,
even for nonzero temperatures, the spectral function contains
a series of sharpd-like peaks. In real QDs, however, the
interaction with the WL continuumswhich might require
multiphonon processesd leads to a broadening of these peaks.
The RPA accounts for this broadening effect while it retains
a hybridization effectssee belowd characteristic for the full
solution. Therefore the RPA is expected to provide an ad-
equate description in the presence of the continuum.19 An
additional source of broadening is the finite LO-phonon life-
time due to anharmonic interaction between phonons.

For the numerical results presented in this paper we con-
sider an InGaAs QD-WL system with weak polar coupling
a=0.06. The effective-mass approximation is assumed to be
valid with me=0.067m0 for the conduction band. For flat
lens-shaped QDs the in-plane wave functions of an isotropic
two-dimensional harmonic potential are used while for the
sstrongd confinement in the direction perpendicular to the
WL a finite-height potential barrier is consideredssee Ref. 18
for parameters and further detailsd. To account for a finite
height of the QD confinement potential, the calculations only
include thesdouble degenerated ground state and thesfour-
fold degenerated first excited state, in the following calleds
and p shell, respectively, withs-p spacing andp-WL sepa-
ration of 40 meV. For the description of the WL states we
use the following steps:sid the WL states in the absence of
QDs are described by plane waves for the in-plane part, mul-
tiplied by the state corresponding to the finite-height barrier

confinement for the perpendicular direction.sii d to describe
the WL states in the presence of the QDs, the orthogonalized
plane wave scheme, described in Appendix A of Ref. 18, is
used to construct WL states orthogonal to the QD states.
Calculations are done for a density of QDs on the WL
ndot=1010 cm−2. Details on the calculation of the interaction
matrix elements in Eq.s4d with these wave functions for
various combinations of QD and WL states can be found in
Appendix B of Ref. 18. Convergent results are obtained with
128 points for the in-plane momentum radial integrals and 50
points for the remaining angular integrations entering the
interaction matrix elements.

The Fourier transform of the spectral function, −2 Im
Ga

r svd, is shown in Fig. 1 for thek=0 WL state and for the
QD p- and s-shell sfrom top to bottomd. In the absence of
polar coupling to lattice distortions, the spectral functions are
d-functions at the free-particle energies indicated by the ver-
tical lines. The dotted line in Fig. 1sad is the result for the
k=0 WL state without coupling to the QD states, indicating
that their influence on the WL polarons is weak. The WL
spectral function is broadened, the central peak exhibits a
small polaron shift, and multiple sidebands due to LO-
phonon emissionsabsorptiond appear to the rightsleftd. The
polaron broadening is a result of the irreversible decay in the
continuous WL density of states.

FIG. 1. sad Spectral function of electrons for the lowest WL state
at k=0 under the influence of polar coupling in the combined
QD-WL systemssolid lined and without coupling to the QD states
sdotted lined. For electrons in the QDp shell sbd ands shell scd full
coupling between all statesssolid lined is compared to the case
without coupling to other QD statessdotted lined. Energies are
given relative to the continuum edgeEG in units of the phonon
energy"vLO. Vertical lines show the corresponding free-carrier en-
ergies. The temperature is 300 K.
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The LO-phonon sidebands of the localized QD states in
Figs. 1sbd and 1scd are more pronounced and the hybridiza-
tion of peaks from one shell with the energetically close
sidebands of the other shell can be observed. This effect
stems from the discrete nature of the localized states and
requires that the coupling strength, which is modified by the
form factors in Eq.s4d, exceeds the polaron damping. If only
coupling matrix elements diagonal in the state index would
be considered, a series of sidebands of a state with discrete
energy, spaced by the LO-phonon energy, would be obtained.
Off-diagonal coupling elements alone would lead to a hy-
bridization of discrete levels as, e.g., in quantum optics
where instead of the phonon-field a monochromatic light
field coupled to a two-level system is considered.4 When the
level splitting equals the LO-phonon energy, in the limit of
weak damping the splitting of each line is determined by the
carrier-phonon coupling strength. Due to the interplay of di-
agonal and off-diagonal interaction matrix elements, the QD
spectral functions in Figs. 1sbd and 1scd show a series of
satellites, each of them reflecting the hybridization. The
asymmetry stems from the difference between level spacing
s40 meVd and LO-phonon energys36 meVd. The broadening
of peaks stems mainly from the coupling to the WL states. A
finite LO-phonon lifetime of 5 ps due to anharmonic inter-
action between phonons has been included in the calcula-
tions.

III. CARRIER KINETICS OF RELAXATION AND
CAPTURE PROCESSES

In this section we study consequences of the renormalized
quasiparticle properties on the scattering processes. Fermi’s
golden rule, which has been frequently used in the past, de-
scribes only transition rates from fully populated initial into
empty final states. Proper balancing between in- and out-
scattering events, weighted with the populationf of the ini-
tial states and the blocking 1−f of the final states, leads to
the kinetic equation

]

]t
fa =

2p

"
o
b,q

uMbasqdu2hs1 − fadfbfs1 + nLOd

3ds«a − «b + "vLOd + nLOds«a − «b − "vLOdg

− fas1 − fbdfnLOds«a − «b + "vLOd

+ s1 + nLOdds«a − «b − "vLOdgj. s5d

Quasiparticle and Markov approximation can also be
applied to renormalized polaronic states which results
in a rate-equation description for the population of these
states.20

A quantum-kinetic approach extends Eq.s5d in the sense
that thed-functions with free-carrier energies are replaced
by time integrals over polaronic retarded GFs. Furthermore,
the population factors are no longer instantaneous but explic-
itly depend on the time evolution. This is the time-domain
picture for the inclusion of renormalized quasiparticle prop-
erties sbeyond a quasiparticle approximation and beyond
Markov approximationd. Using the generalized Kadanoff-
Baym ansatzsGKBAd,21 the quantum-kinetic equation has
the form

]

]t1
fast1d = 2 Reo

b
E

−`

t1

dt2 Gb
r st1 − t2dfGa

r st1 − t2dg*

3hf1 − fast2dgfbst2di"Dab
. st2 − t1d

− fast2df1 − fbst2dgi"Dab
, st2 − t1dj. s6d

The phonon propagatorD. follows from Eq. s3d by
replacingt→−t. A Markov approximation in the renormal-
ized quasiparticle picture corresponds to the assumption
of a slow time-dependence of the populationfast2d in
comparison to the retarded GFs such that the population
can be taken at the external timet1. The Boltzmann scatter-
ing integral of Eq.s5d follows if one additionally neglects
quasi-particle renormalizations and uses free-carrier retarded
GFs.22

FIG. 2. Temporal evolution of the QD population due to carrier-
phonon scattering betweenp shell ands shell for an energy spacing
larger than the LO-phonon energy. The solid lines correspond
to a quantum-kinetic calculation whereas for the dotted line the
Markov approximation is used together with polaronic spectral
functions.

FIG. 3. Time-evolution of the QDp-shellssolid lined ands-shell
sdashed lined electron population due to carrier capture from
the WL including the effect of carrier relaxation between QD
shells. If only direct capture processes are considered, the dashed-
dotted and dotted lines are obtained forp shell and s shell,
respectively.
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To demonstrate the influence of quantum-kinetic effects
due to QD-polarons, we first study the relaxation of carriers
from p shell to s shell for the above discussed situation
where the level spacing does not match the LO-phonon en-
ergy such that both, Fermi’s golden rule and the kinetic equa-
tion s5d predict the absence of transitions. A direct time-
domain calculation of the polaron GFs from Eqs.s1d–s4d
together with Eq.s6d is used. We assume an initial popula-
tion fsst0d=0, fpst0d=0.3 and start the calculation at timet0.
While this example addresses the relaxation process itself,
more advanced calculations would also include the carrier
generation via optical excitation or carrier capture discussed
below. Then ambiguities due to initial conditions can be
avoided since the population vanishes prior to the pump pro-
cess which naturally provides the lower limit of the time
integral in Eq.s6d. In practice, we find that within the GKBA
results weakly depend on the details of the initial conditions.

The evaluation of the quantum-kinetic theoryssolid lines
in Fig. 2d yields a fast population increase of the initially
empty QDs shell accompanied by oscillations which reflect
in the time domain the hybridization of coupled carrier and
phonon states. The analogy to Rabi oscillations has been
pointed out in Ref. 4. If one uses the Markov approximation
together with polaronic retarded GFs in Eq.s6d, such that
quasiparticle renormalizations are still included, these tran-
sient oscillations disappear. In both cases the same steady-
state solution is obtained which corresponds to a thermal
population at the renormalized energies. The equilibrium so-

lution can be obtained from the polaron spectral function
using the Kubo-Martin-Schwinger sKMSd relation
fa=−esd"v /pdfsvdIm Ga

r svd, where fsvd is a Fermi func-
tion with the lattice temperature. Note that particle number
conservation is obeyed in Fig. 2 since the degeneracy of the
p shell is twice that of thes shell.

Another important process is the capture of carriers from
the delocalized WL states into the localized QD states. For
the used QD parameters, where the spacing between thep
shell and the lowest WL states40 meVd exceeds the LO-
phonon energy, again Fermi’s golden rule and Eq.s5d predict
the absence of electronic transitions. For the numerical solu-
tion of Eq. s6d we use now as initial condition empty QD
states and a thermal population of carriers in the polaronic
WL statessobtained from the KMS relationd corresponding
to a carrier density 1011 cm−2 and temperature 300 K.23 The
dashed-dotted and dotted lines in Fig. 3 show the increase of
thep- ands-shell population, respectively, when only capture
processes are consideredsscattering from a WL polaron to a
QD polaron state due to emission of LO phononsd. Also in
this situation the quantum-kinetic theory predicts a fast
population of the initially emptyp shell. Albeit the large
detuning sexceeding two LO-phonon energiesd the direct
capture to thes shell is still possible but considerably slower.
When both, direct capture of carriers as well as relaxation of
carriers between the QD states are included in the calcula-
tion, the solid sdashedd line is obtained for thep-shell
ss-shelld population. While faster capture to thep-shell states
leads at early times to ap-shell population exceeding the
s-shell populationsssee inset of Fig. 3d, the subsequent re-
laxation efficiently populates thes states. Since the WL
states form a quasicontinuum, beating at early times is
strongly suppressed.

FIG. 4. sad Spectral function of electrons in the coupled QD-WL
system for thep shell ssolid lined and s shell sdashed lined using
various energy spacingsDE betweens shell, p shell, and WL
sk=0d in units of the LO-phonon energy"vLO. Vertical lines indi-
cate the positions of the unrenormalized QD states,EG is the con-
tinuum edge of the WL states. The temperature is 300 K.

FIG. 5. Temporal evolution of the QD population due to carrier-
phonon scattering betweenp shell sinitially populatedd ands shell
sinitially emptyd for different energy spacingsDE corresponding to
Fig. 4.

SEEBECKet al. PHYSICAL REVIEW B 71, 125327s2005d

125327-4



With the results in Figs. 1–3 we have demonstrated
the ultrafast ssubpicosecondd carrier relaxation and fast
spicosecondd carrier capture for a material with weak polar
coupling and 10% detuning between the transition energies
and the LO-phonon energy. This detuning is, on the
one hand, sufficiently large for the alternative LO+LA
mechanism proposed by Inoshita and Sakaki5 to fail and,
on the other hand, small enough to illustrate the hybridiza-
tion of one state with sidebands of the other states. We
find that the fast scattering is not related to the near reso-
nance condition and in fact relatively insensitive to the de-
tuning between transition energies and LO-phonon energy.
The spectral functions of the coupled QD-WL system
for various detunings, ranging from resonance to a large
mismatch of 40%, are shown in Fig. 4. For better visibility
only the curves for thes and p shells are displayed, while

the WL states are also included in the calculations. As seen
in Fig. 1, the spectral function for the WL states is only
weakly influenced by the coupling to the QDs. In all three
cases of Fig. 4 there is substantial overlap between the
s-shell andp-shell density of states which points to efficient
transition processes. This overlap is due to the multi-peak-
structure which contains the series of phonon sidebands
spaced by the LO-phonon energy and their hybridization.
From top to bottom in Fig. 4, the peak splitting increases
with detuning.

The corresponding results for the carrier relaxation, as in
Fig. 2 but for different detuningsDE, are shown in Fig. 5.
The fast carrier relaxation towards an equilibrium situation is
retained in all three cases. The main difference is in the os-
cillation period, which is reduced for larger detuning due to
the increased splitting in Fig. 4.

A stronger influence of the detuning between transition
energies and the LO-phonon energy is found for the capture
of carriers from the WL into the QD states. As can be seen in
Fig. 6, from the resonance situation to a detuning of 40% the
capture efficiency is reduced by about one order of magni-
tude. Nevertheless, a significant occupancy can be reached
within several ten picoseconds. The reduced capture effi-
ciency is related to a reduced overlap between the WL and
QD spectral functions for increasing detuningswhich is
mainly because the WL states are weakly influenced by the
QD statesd. In comparison to this, the strong interaction be-
tweens andp states maintains a strong overlap between their
spectral functions. As a consequence the relaxation time is
less sensitive to the detuning.

In summary, the quantum-kinetic treatment of carrier-
phonon interaction explains the absence of a phonon bottle-
neck in terms of scattering between renormalized quasiparti-
cle states. A quasiequilibrium situation is reached on a ps
time scale at elevated temperatures even in materials with
weak polar coupling.
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