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Debye-like screening by edge dislocations of some externally given stress is studied by means of a
variational approach to coarse grained field theory. Explicitly given are the force field and the induced
geometrically necessary dislocation (GND) distribution, in the special case of a single glide axis in 2D, for
(i) a single edge dislocation and (ii) a dislocation wall. Numerical simulation demonstrates that the
correlation in relaxed dislocation configurations is in good agreement with the induced GND in case (i).
Furthermore, the result (ii) well predicts the experimentally observed decay length for the GND
developing close to grain boundaries.
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Crystalline materials generically contain a large number
of dislocations; thus the study of systems of interacting
dislocations is of utmost relevance in material physics [1].
Beside 3D crystals, in several 2D lattices, like Abrikosov
vortices [2] and Wigner solids [3] dislocations greatly
affect the response of the system. At first sight it would
be natural to assume that the dislocations are arranged
completely randomly within the crystal. According to
transmission electron microscopic studies, however, at
high enough deformation level dislocations form different
patterns [1]. Even at small deformations, completely ran-
domly distributed dislocations would have properties con-
tradicting experiments. First, the stored energy per unit
volume, corresponding to complete randomness, would
diverge logarithmically with the crystal size R [4]. In
stored energy measurements, however, there is no evi-
dence for this logarithmic size dependence [5]. A more
precise experimental method is the x-ray Bragg peak pro-
file analysis to determine some statistical parameters (like
the average and the variance of the dislocation density) of
dislocation systems [6]. As was theoretically shown by
Krivoglaz [7] and Wilkens [8], for a completely random
dislocation distribution, the width of a Bragg peak is also
proportional to log�R�. Experimentally, however, the width
is found to be independent of the crystal size if the size is
larger than a few micrometers. So these experiments in-
dicate that real dislocation arrangements are not com-
pletely random. In other words, they are correlated so
that the � / 1=r stress field of a dislocation is screened
by the others. X-ray peak broadening enables the measure-
ment of the screening length, which was found in the order
of the average dislocation spacing [9]. In spite of several
attempts to describe statistical properties of dislocation
systems [10–15], to this date there is no commonly ac-
cepted theory for screening.

Recently, Berdichevsky proposed a variational approach
to the thermal distribution of uniform-sign screw dis-
locations in 2D [16]. The next simplest model, where
dislocations can already screen each other, is a system of
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parallel edge dislocations with single glide orientation and
� Burgers vectors. For this system, the screening of the
elastic field of a disclination was analyzed by Sarafanov
and Perevezentev [17]. On the other hand, the Bogoliubov-
Born-Green-Kirkwood-Yvon hierarchy of the time evolu-
tion equations of different order dislocation density func-
tions was constructed and numerically studied [18,19]. A
key assumption of this theory is that the dislocation-
dislocation correlation is short range.

In this Letter we address the static problem by a varia-
tional effective thermodynamics approach. This yields a
screening equation, which we solve analytically, and com-
pare results to discrete dislocation simulations and experi-
mental results.

Variational principle for stress in equilibrium.—We
start out from the coarse grained field equations of
Kröner and Kosevich [20,21] for the stress field of a given
dislocation system. The dislocation distribution can be
characterized by Nye’s density tensor �̂ � �r� �̂,
where the circumflex marks a tensor and �̂ is the elastic
distortion. If a volume element dV contains the dislocation
line element ds then �̂ is related to the Burgers vector by
�̂dV � ds � b. So as to automatically satisfy div�̂ � 0,
one expresses the stress tensor �̂ in terms of the ‘‘stress
function’’ tensor �̂ as �̂ � r� �̂� r � inc�̂. Then one
easily finds (see Refs. [20,21]) that �̂ satisfies in a linear
medium (subscript s means symmetric part)

�̂ � �r� �̂T�s � inc� ^̂S:inc�̂�; (1)

where ^̂S is the compliance tensor of four indices.
For a given dislocation distribution this yields the equi-

librium stress field. For further considerations it is useful to
note that the bulk Eq. (1) can be obtained via variation by �̂
from the functional

E��̂; �̂	 �
Z
dV

�
�

1

2
inc�̂: ^̂S:inc�̂
 �̂:�̂

�
; (2)

if surface terms are neglected. Here the negated first term is
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the elastic energy
R
"̂ �̂ =2 and so is E itself for a given �̂ if

(1) holds. An advantage of the form (2) is that �̂, character-
izing the dislocation distribution, appears linearly, in the
second term. This term actually represents the interaction
energy of a dislocation system in a fixed stress field char-
acterized by �̂, whence from variation by the position of a
given dislocation segment the Peach-Koehler formula fol-
lows [21]. We mention that it is a rough approximation to
consider only the coarse grained elastic energy, while
neglecting other energy terms like the core energy or
contributions coming from coarse graining.

Edge dislocations in a 2D isotropic medium.—Let us
consider a system of parallel edge dislocations, with tan-
gent vector t � ds=ds � �0; 0;�1� and single glide axis
parallel to the x direction. Then the Burgers vector can be
b � �b�1; 0; 0�, where the
 sign refers to? dislocations.
The respective (coarse grained) number densities are %

and %�. The absolute density of the dislocations is % �
%
 
 %�, while the density of the signed ones is � �
%
 � %�, commonly called the density of geometrically
necessary dislocations (GNDs). The energy now depends
only on �33, denoted henceforth by �, and by definition the
planar stress tensor components are

�xx � �@
2
y�; �xy � @x@y�; �yy � �@

2
x�: (3)

The only nonzero element of �̂ of (1) is �33 � @1�32 �

@2�31 � b@y�. Assuming isotropy Eq. (2) becomes

E��; �	 �
Z
dV

�
�
D
2
����2 
 b�@y�

�
; (4)

where D equals �1� ��=2� for a 3D crystal, and
1=�2��1
 ��	 in a 2D hexagonal lattice, respectively,
with� the shear modulus and � Poisson’s ratio. By varying
functional (4) we get the equilibrium condition D�2� �
b@y�. This can be solved by the Green function

G0�r� � �4	��1y ln�r=r0�; (5)

with r0 an arbitrary constant, representing the stress func-
tion for � � D=b
�r� in an infinite system.

Effective free energy for screening.—In order to address
the problem of screening, we add externally fixed (pinned)
dislocations with GND density �ext. Then E��; �
 �ext	
gives the elastic energy at extremum in �. When disloca-
tion dynamics is affected by thermal noise, this should be
taken into account by an appropriate entropy. While it is
often argued for that entropic effects are negligible in
practical cases of plastic deformations, we shall see it
below that, at least for small GND, an effective tempera-
ture parameter characterizes the relaxed equilibrium state
of dislocations restricted to their glide axes. Next we con-
sider the entropy of a gas of � dislocations S �

R
sd2r

with
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s � �%
 ln
%

%0
� %� ln

%�
%0

� �
1

2
��%
 �� ln�%
 �� 
 �%� �� ln�%� ��

� 2% ln2%0	; (6)

where %0 is a normalizing constant. From (4) and (6) the
following free energy can be constructed

F � E��; �
 �ext	 � TS�%; �	; (7)

where T is an effective temperature. Since in this Letter our
goal is to study screening by the GND density �, we
assume that the absolute density % is given, so, only the
GND together with the stress field is allowed to relax. Thus
the condition of equilibrium reads as


F

�
� �D�2�
 b@y��
 �ext� � 0; (8a)


F

�
� �b@y�
 Ttanh�1��=%� � 0: (8b)

Green’s function for Debye screening of pinned dislo-
cations.—We shall consider the case of an infinite medium,
which turns out to be solvable in the limit of small GND
density, j�j � �, if % is constant in space. In leading order
Eq. (8b) yields

b@y� � T�=%: (9)

Differentiating by y, keeping % constant, from (8a) we get

�2� � 4k2
0@

2
y�
 q@y�ext; (10)

with the notation q � b=D, k0 �
���������������������
b2%=4DT

p
. The equa-

tion for the Green function corresponding to (10) reads

�2G�r� � 4k2
0@

2
yG�r� 
 @y
�r�: (11)

Its solution decaying at infinity is

G�r� � ��4	k0�
�1 sinh�k0y�K0�k0r�; (12)

where K0 is the zeroth modified Bessel function of the
second kind. One can check directly for r > 0 that (12)
solves (11). Near the origin, the asymptote K0�z� � � lnz
yields G�r� � G0�r� of (5) with r0 � 1=k0. Since for small
r we have k2

0@
2
yG0 � �2G0, thus Eq. (11) becomes the

unscreened (k0 � 0) equation. This is indeed solved by
G0�r�, so we can conclude that (12) satisfies (11) also
around the origin. The emergence of G0�r� for small r
means that, as one expects, screening is ineffective near a
pinned dislocation. Furthermore, for k0 ! 0, the high-T
limit, G0�r� is recovered for any r. We can now express the
stress function � induced by an arbitrary external disloca-
tion field �ext as

��r� � q
Z
d2r0G�r� r0��ext�r

0�; (13)

whence by (3) the stress tensor follows. Thus by Eq. (9) the
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density of the induced GND is

��r� � 4k2
0q
�1@y��r�: (14)

Screening of a single pinned dislocation: induced GND
and stress field.—It follows from the above considerations
that a positive edge dislocation fixed at the origin induces
the stress function � � qG�r�, whence by (14)

��r��
k2

0

	

�
ysinh�k0y�

r
K1�k0r��cosh�k0y�K0�k0r�

�
: (15)

This function is displayed on a contour plot in Fig. 1. The
Peach-Koehler force [21] acting on a dislocation with
positive Burgers vector is f � b��xy;��xx�. If we define
the potential V via f � �brV, from (3) and (14) we find
V�r� � �@y��r� � �q��r�=4k2

0. Hence follows the re-
markable feature that � also plays the role of the induced
potential felt by a negative edge dislocation.

Whereas for small r screening is negligible, farther from
the pinned dislocation, however, screening becomes im-
portant. We obtain essentially exponential asymptotes for
large jxj with constant y as � / e�k0r=

���
r
p

. In the neighbor-
hood of the y axis, however, we get for jyj ! 1 a power
law as

� �

���������
k0

32	

s
1

jyj3=2

�
1�

3

2

k0x
2

jyj

�
; (16)

thus screening is weak in the direction perpendicular to the
Burgers vector. Furthermore, we see that the attractive
parabolic potential in x for a positive dislocation survives
screening, with a prefactor jyj�5=2 decaying only slightly
more slowly than the unscreened jyj�2 [21]. This means
that the stability of dislocation walls is hardly affected by
screening.

The stress-free positions also change due to screening.
While for small r the jyj � jxj stable and x � 0 unstable
positions are recovered for a negative dislocation, charac-
terizing unscreened interaction, for larger distances the
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FIG. 1. Induced GND by a single pinned dislocation. Shading
lightens towards increasing values, the only open contours
indicate the zero level, and the coordinates are in units of 1=k0.
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lines of the stable position bend, and asymptotically they
satisfy jyj � x2=3.

Correlations in relaxed dislocation systems.—Based on
analogy with Coulomb plasma, one naturally expects that
screening of a single pinned dislocation also characterizes
correlations in many-dislocation systems. In order to test
this assumption we performed simulation of overdamped
dislocations, bound to randomly placed, parallel, glide
axes, with periodic boundary conditions. Starting out
from random initial configurations we allowed the system
to relax. The number of positive and negative dislocations
was equal, totaling 128, and an ensemble of 1000 such
systems was considered. In the relaxed configurations the
correlation functions %��0 �r� were computed, characteriz-
ing dislocations of signs �;�0 at relative position r. Then
%

 � %
� measures the signed density with respect to
positive dislocations. Since on average this should equal
the formula with inverted subscripts, for better statistics we
consider �corr � %

 � %
� 
 %�� � %�
. This is ex-
pected to be represented by the appropriately scaled GND
distribution from our theory. We were able to compare our
theory with simulation near the y axis, where by (16) the
GND decays the slowest. Figure 2 shows the comparison of
�corr�r� obtained by discrete dislocation dynamics simula-
tion and ��r� given by (15). The only fitting parameter k0

was found to be k0 � 4:2
����
�
p

.
We emphasize that the above simulation was done in the

absence of thermal noise. Remarkably, the constraint to the
glide axes, keeping dislocations apart, turned out to act as a
finite effective temperature. Furthermore, the fixed glide
axes prevent annihilation exempting the total density �
from the condition of thermal equilibrium, justifying our
treatment of � as externally given. We speculate that the
temperature parameter TD=b2 � 0:014 may characterize
the relaxed states of most, moderately inhomogeneous
dislocation systems with a single glide axis, too.

Screening of a dislocation wall.—The screening of a
dislocation wall aligning perpendicular to the Burgers
vector (low angle grain boundary), can be straightfor-
wardly calculated based on the findings above. We con-
sider a finite wall of length 2L, centered at the origin, and
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FIG. 2. Induced GND near the y axis (x � 0 and x � 0:76=k0)
and the theoretical prediction. The inset shows part of the curves
with log-log scales, demonstrating the power decay predicted by
(16).
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consisting of N pinned positive dislocations. This corre-
sponds to the external density

�ext�r� �
N
2L

�x����L
 y� � ��y� L�	; (17)

where ��x� is the Heaviside function. Substituting this into
Eq. (13) we get the stress function, whence by (14) the
GND is

��r� � �
k0N
2	L

fsinh�k0�L
 y�	K0�k0r
�


 sinh�k0�L� y�	K0�k0r��g; (18)

with r� �
�����������������������������
x2 
 �y� L�2

p
. Again, screening causes expo-

nential suppression in x; (18) decays essentially within a
few 1=k0 lengths.

For a long wall we expect a quasi-1D GND distribution.
Indeed, in the large k0L limit, while L
 r, we get

��r� � �
N
2L

����������
k0

2	L

s
exp

�
�
x2k0

2L

�
; (19)

which is independent of y. Since x may be in the region
k�1

0 � jxj � L, the exponent need not be small. Note that,
in the units of the linear densityN=2L of dislocations in the
wall, the induced GND is small, because of the extra 1=

����
L
p

factor. Remarkably, the quasi-1D approximation is good at
y � 0 even if the condition L
 x is not met, e.g., for
k0L � 2 the deviation from the exact function (18) is less
than 10% of the peak value for all x. This means that near a
small angle grain boundary the decay of the induced GND

is characterized by the length l �
�����������
L=k0

p
/

�������������
L=

����
�
pq

. In

order to test this prediction we compared it to the experi-
mentally observed GND distribution of El-Dasher et al.
[22]. There the dislocation distributions were displayed
(Fig. 3 in Ref. [22]) in the proximity of a small angle grain
boundary. The relaxation of the GND is apparent with
characteristic length of about 10 �m. This is much larger
than the dislocation spacing, the length one would expect
by traditional arguments. If, however, we take a typical
value � � 1014 m�2, with L � 1 mm extracted from the
figure, l is in the order of magnitude of 10 �m. Although
the slip configuration is obviously more complex in the
experimental system than the one considered in our analy-
sis, the order of magnitude of the surprisingly weak re-
laxation can be explained by our proposition that

�������������
L=

����
%
pp

is the relevant characteristic length.
The screening of a disclination studied in Ref. [17]

corresponds in our framework to the external GND density
�ext�r� / ��y�. From (11) and (12) one concludes that
��r� / G�r�, the very same result obtained in Ref. [17].

In conclusion, the effective free-energy functional pro-
posed accounts for the screening phenomenon observed by
discrete dislocation dynamics simulations. Furthermore, it
predicts the right order of magnitude for the experimen-
tally observed characteristic decay length of the GND
16550
density next to a grain boundary. We add that the meaning
of the effective free energy at zero physical temperature is,
in fact, the coarse grained energy, corrected by a term
accounting for correlations. One of the most important
consequences of screening of the stress field of a single
dislocation is that the energy does not diverge with the
system size. We suggest that other elastic screening prob-
lems can also be analyzed within our framework. The static
theory is reinforced by the fact that from our free-energy
functional one can obtain gradient dynamics [23], consis-
tent with the ones derived from the equation of motion of
individual dislocations in Ref. [19].
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