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Random Berry phase magnetoresistance as a probe of interface roughness in Si MOSFET’s
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The effect of silicon-oxide interface roughness on the weak-localization magnetoconductance of a silicon
metal-oxide-semiconductor field-effect transistor in a magnetic field, tilted with respect to the interface, is
studied. It is shown that an electron picks up a random Berry’s phase as it traverses a closed orbit. Effectively,
due to roughness, the electron sees a uniform field parallel to the interface as a random perpendicular field. At
zero parallel field the dependence of the conductance on the perpendicular field has a well-known form, the
weak-localization line shape. Here the effect of applying a fixed parallel field on the line shape is analyzed.
Many types of behavior are found including homogeneous broadening, inhomogeneous broadening, and a
remarkable regime in which the change in line shape depends only on the magnetic field, the two length scales
that characterize the interface roughness, and fundamental constants. Good agreement is obtained with experi-
ments that are in the homogeneous broadening limit. The implications for using weak-localization magneto-
conductance as a probe of interface roughness, as proposed by Wheeler and co-workers, are discussed.
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I. INTRODUCTION

Disorder has a profound effect on electron transpor
low temperature. The scaling theory of localization appl
over an enormous domain and is a keystone in our un
standing of disorder effects.1,2 For two-dimensional sample
that are weakly disordered and at low temperature~‘‘weak-
localization regime’’! the theory predicts the precise depe
dence of the conductance on an applied magnetic fi
~‘‘weak-localization line shape’’!.3 The exquisite agreemen
of the predicted line shape with experiment constitutes
important confirmation of scaling theory.4

Silicon metal-oxide-semiconductor field-effect transisto
~MOSFET’s! are an important experimental realization of
two-dimensional electronic system. In a MOSFET electro
are confined to the interface between layers of oxide
semiconductor. In this paper we analyze the effect of in
face roughness on the weak-localization line shape in MO
FET’s. Although the effects are small they are of inter
from various points of view:

~i! The deviations from the known line shape of an ide
interface are small but measurable: our results agree
with the experiments that stimulated our work.5–7

~ii ! The relevant effect of roughness on the electrons
be traced to a subtle quantum interference effect: Ber
phase.8,9 There has been considerable theoretical interes
the influence of Berry’s phase on quantum electr
transport10 and recent experiments have reported a detec
of it.11 Here we show that the earlier experiments of Re
5–7 constitute an observation of Berry’s phase in the qu
tum transport context.

~iii ! A remarkable feature of many quantum transport p
nomena is their universality, in the sense that the obser
effects are independent of microscopic sample proper
such as the mean mobility. The effects of roughness have
feature. We find a particularly striking regime in which th
effect is determined entirely by the geometric parameter
the interface and the applied magnetic field while being
0163-1829/2001/64~23!/235325~20!/$20.00 64 2353
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dependent of both sample mobility and temperature~which
controls the dephasing length!.

~iv! There has been much experimental and theoret
work on the motion of electrons in a random magnetic fie
particularly in the strong-field limit12–18 ~motivated in part
by possible relevance to cuprates and the quantum Hall
tem at filling factor 1/2!. We find that due to roughness ele
trons see a uniform in-plane magnetic field as a random
pendicular field; hence it may be possible to use this sys
to study electron motion in a random magnetic field. He
our analysis is restricted to the weak-field limit appropria
for calculating the line shape in MOSFET’s. Experiments
other realizations of the random-field problem are briefly d
cussed in Sec. VI.

~v! Finally, this work may have practical implications
MOSFET’s are the building blocks of modern electronic
Roughness of the interface between the oxide and semi
ductor influences the mobility of the device and has be
correlated with device failure due to dielectric breakdown
the oxide.19,20 It is therefore of technological interest to cha
acterize the roughness. R. G. Wheeler and co-workers h
proposed that magnetoresistance measurements on a M
FET in the weak-localization regime can be used as a n
destructive probe of its interface roughness.5,6 They and oth-
ers have carried out experiments that demonstrate
feasibility of making the needed measurements.5–7 The
present work contributes to this program by providing t
precise relationship between the interface roughness pa
eters and the measured magnetoresistance.

Figures 1 and 2 summarize our findings. Following t
experiments of Refs. 5 and 6 we imagine that the devic
placed in a magnetic field tilted with respect to the plane
the interface. The in-plane component of the field,Bi , is
kept fixed and the conductance is plotted as a function of
perpendicular componentB' . To understand these curves
is useful to recall that there are two important length sca
that determine the transport properties of the sample:l e , the
elastic mean free path of electrons~which determines the
©2001 The American Physical Society25-1
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H. MATHUR AND HAROLD U. BARANGER PHYSICAL REVIEW B 64 235325
mobility!, and l f , the distance over which electrons mai
tain phase coherence and are thus able to interfere. In
weak-localization regime,l f@ l e . Also, atomic force micro-
scope images reveal that statistically the rough interface
be characterized by two parameters:D5 the root-mean-
square height fluctuations andL5 the distance over which
the fluctuations are correlated.

For Bi50 we obtain the classic weak-localization lin
shape appropriate for an ideal interface~dotted curves in
Figs. 1 and 2!. The height~measured relative to the Drud
conductance given by the large-field asymptotic value of
conductance corrected for classical magnetoresistance! and
the width of the peak are controlled by the dephasing len
l f . The solid curves show possible line shapes when
parallel field is turned on. Figure 1 shows that when
roughness is correlated over a very short length scaleL
! l e) the effect of the parallel field is to decrease the deph
ing length; the line shape is otherwise unaltered. Borrow
the terminology of magnetic resonance and atomic phy
the effect of the in-plane field in this limit may be describ
ashomogeneousline broadening. In the opposite limit whe

FIG. 1. MOSFET with short-ranged correlated roughnessL
! l e). The conductance~in units of 1025 mhos) is plotted as a
function of the applied perpendicular field,B' /Bf . The dotted
curve is the classic weak-localization line shape. It correspond
zero in-plane field,Bi50. The solid curve shows the effect of ap
plying a fixed in-plane magnetic field. It corresponds toBe /Bf

5400 andBi /Bf5(A8/p1/4)Al el f
2 /LD2.
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the interface fluctuates slowly (L@ l e), the effects are more
dramatic. The deviation from the ideal line shape chan
sign as a function of perpendicular field~Fig. 2, inset!.
Again, by analogy to magnetic resonance and atomic ph
ics, the extreme limit,L@ l f@ l e , can be interpreted asin-
homogeneousbroadening~see Sec. V!. The sign change is
then traceable to a necessary inflection point in the id
weak-localization line shape. The intermediate regimel f
@L@ l e is particularly interesting although it cannot be
simply interpreted. In this limit the deviation from the ide
line shape has a universal form independent ofl e andl f . For
example, the sign change occurs at a value of the perp
dicular field determined by the purely geometric conditi
B'L25(1.79•••)h/e. Note that in all cases the deviatio
from the ideal line shape grows withBi andD ~in proportion
to Bi

2 andD2 in the experimentally relevant regime!.
Further discussion and a detailed summary of our res

are given in Sec. VII.

II. BORN-OPPENHEIMER ANALYSIS

As a model of the silicon-oxide interface, for many pu
poses it is sufficient to regard the oxide as an impenetra
hard wall and to assume that the electrons are bound to
interface by a uniform perpendicular electric field.21 It will
become apparent in the sequel that for the present purpo
is only necessary to assume that the electrons are fir
bound to the interface: it is not necessary to commit to
specific form of the confinement potentialUconf. If the axes
are chosen so that the interface lies in the planez50, for an
ideal interface the confinement potential would depend o
on z; but for a rough interface it would vary from point t
point and hence also depend onx andy. The strength of the
confining potential controls the extent of the wave functi
in thez direction, denotedl. We also allow for the possibility
of electron scattering by impurities in the semiconductor
introducing a potentialU imp . The magnetic field is assume
to lie in thex-z plane: thusBx5Bi ,By50, andBz5B' . It is
convenient to work in a Landau gauge and to chooseAx
50, Ay5B'x, andAz5Biy. The Schro¨dinger equation is

2
\2

2m S ]

]z
2 ie

Az

\ D 2

C2
\2

2m S ¹2 ie
A

\ D 2

C1Uconf~z,x,y!C

1U imp~z,x,y!C5EC~x,y,z!. ~1!

to
h

-

FIG. 2. Same as Fig. 1 for a MOSFET wit
long-range correlated roughness (L@ l e). The
dotted curve corresponds toBi50; the solid
curve, toBiDL5fsc/10. Also Be5400Bf andL
5 l f /A5. The crossing of the two curves is high
lighted by a plot of their difference~inset!.
5-2



-

o
T

tl
es
c-
gh
it
e
i

he

ld

n-
fa
s.

n
.
te

i
o
tio

v
ar

x

tio

he
e
s

tl

in
r

ef-

by

fast

be

rgy
e

e

c
ian

-

ap-

and

ls
is

RANDOM BERRY PHASE MAGNETORESISTANCE AS A . . . PHYSICAL REVIEW B64 235325
For later convenience¹ is used to denote the two
dimensional gradient in thex-y plane. SimilarlyA denotes
the x-y component of the vector potential.

For an ideal interface the electronic motion in the plane
the interface and in the perpendicular direction separate.
motion in the perpendicularz direction is quantized by the
confining potential. Provided the temperature is sufficien
low and the density of electrons not too high, only the low
subband mode in thez direction is populated and the ele
tronic motion is essentially two dimensional. For a rou
interface the motion no longer separates but we find that
an excellent approximation to integrate out the motion p
pendicular to the interface and to obtain an effective Ham
tonian for motion in the plane of the interface using t
Born-Oppenheimer method.22

For simplicity first suppose there is no magnetic fie
Assume that the motion in thex-y plane is slow; the motion
perpendicular to it, fast. The first step in the Bor
Oppenheimer method is to analyze the motion of the
coordinates treating the slow coordinates as parameter
this case it is necessary to solve

2
\2

2m

d2

dz2
fn~z;x,y!1Uconf~z,x,y!fn~z;x,y!

5En~x,y!fn~z;x,y!. ~2!

Herefn(z;x,y) denotes the ‘‘local subband’’ wave functio
andEn(x,y) is the energy of thenth subband wave function
Sometimes it will be convenient to write the subband sta
using Dirac notation:fn(z;x,y)→un;x,y&. Both the subband
wave function and the subband energy vary with location
the x-y plane because the confinement potential varies fr
point to point. It is assumed that the subband wave func
is normalized everywhere so that^n;x,yun;x,y&
5*2`

` dzufn(z;x,y)u251. For a given (x,y) Eq. ~2! only
fixes the subband wave function up to a phase. It is con
nient to choose the wave functions to be real and to v
smoothly withx andy.

According to the Born-Oppenheimer method an appro
mate solution to Eq.~1! is

C~x,y,z!'c~x,y!fg~z;x,y!. ~3!

Here fg denotes the lowest energy subband wave func
andc(x,y) is governed by

2
\2

2m
¹2c~x,y!1Ũ imp~x,y!c~x,y!1Eg~x,y!c~x,y!

1Wg~x,y!c~x,y!5Ec~x,y!. ~4!

Equation ~4! describes the motion of the electrons in t
plane of the interface after the transverse motion has b
integrated out.Ũ imp , the effect of impurities, now depend
only on x andy. For impurities that are sufficiently far from
the interface so that their potential does not vary significan
over the confinement scalel, Ũ imp5U imp , while for short-
range impuritiesŨ imp incorporates their effect on electrons
the lowest subband. Note that the local subband ene
23532
f
he

y
t

is
r-
l-

.

st
In

s

n
m
n

e-
y

i-

n

en

y

gy

Eg(x,y) appears as a potential in the Born-Oppenheimer
fective Hamiltonian. The effective potentialWg(x,y) is also
determined by the solution to the fast problem. It is given
a more complicated expression,

Wg~x,y!5 (
nÞg

^g;x,yu~¹un;x,y&!•^n;x,yu¹ug;x,y&.

~5!

Next suppose that the magnetic field is turned on. The
coordinate is now governed by

2
\2

2m S d

dz
2 i

e

\
BiyD 2

fn~z;x,y!1Uconf~z,x,y!fn~z;x,y!

5En~x,y!fn~z;x,y!. ~6!

Let jn(z;x,y) denote a normalized solution to Eq.~6! when
the magnetic field is turned off. This solution is chosen to
real and to vary smoothly withx and y. It is easy to verify
that a solution to Eq.~6! with the magnetic field is

fn~z;x,y!5expS i
e

\
BiyzD jn~z;x,y!. ~7!

Turning on the magnetic field leaves the subband ene
En(x,y) unchanged; but it introduces a nontrivial twist in th
subband wave functions due to the phase factor in Eq.~7!.
Following Berry,8,9 this can be made explicit by defining th
geometric vector potential Ag(x,y)[ i (\/e)
3^g;x,yu¹ug;x,y& and its curl, the geometric magneti
field. Straightforward calculation reveals that the Cartes
components ofA are

Agx~x,y!50,

Agy~x,y!52BiZg~x,y!, ~8!

and the geometric magnetic field is

Bg~x,y![
]

]x
Agy2

]

]y
Agx52Bi

]

]x
Zg~x,y!. ~9!

Here Zg(x,y) is the meanz coordinate for the lowest sub
band wave function,

Zg~x,y![E
2`

`

dz zujg~z;x,y!u2. ~10!

Now, according to the Born-Oppenheimer method, an
proximate solution to Eq.~1! is given by Eq.~3!. Herefg
denotes the lowest energy subband wave function
c(x,y) is governed by

2
\2

2m S ¹2 i
e

\
@A~x,y!1Ag~x,y!# D 2

c~x,y!

1Eg~x,y!c~x,y!1Wg~x,y!c~x,y!

1Ũ imp~x,y!c~x,y!5Ec~x,y!. ~11!

Equation~11! is the central result of this section. It revea
that after the fast motion perpendicular to the interface
5-3
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H. MATHUR AND HAROLD U. BARANGER PHYSICAL REVIEW B 64 235325
integrated out, the electrons essentially move in two dim

sions under the influence of an effective potential,Ũ imp

1Eg1Wg , and an effective perpendicular magnetic fie
B'1Bg .

The effective magnetic field is seen to be the compon
of the applied field that is perpendicular to the surface
fined by the meanz coordinate of the subband wave fun
tions Zg(x,y) provided that the gradients in this surface a
small. Note that the geometric magnetic fieldBg given by
Eq. ~9! is proportional to the in-plane component of the a
plied field and to the gradient of the surfaceZg . It vanishes
if Bi50 or for an ideal interface for which the surfaceZg
would be flat. The effective potentialsEg andWg also owe
their existence to the roughness of the interface but are in
pendent ofBi .

Note that Eq.~6! only defines the subband wave functio
fn up to a phase. A specific choice given by Eq.~7! is made
in the calculation above. This amounts to choosing a ga
for the geometric vector potential: a different choice of pha
would transform the geometric vector potentialAg , but
would leave the geometric magnetic fieldBg unchanged.
Thus the calculation above uses a specific gauge for both
applied and geometric magnetic field—the Landau gauge
fined before Eq.~1! and the gauge given by Eq.~8!, respec-
tively. The gauges are chosen for their convenience but
results are, of course, independent of the choice of gaug
fuller discussion of the gauge invariance of the Bo
Oppenheimer method is given in Chap. 3.7 of Ref. 9.

Finally we briefly discuss the applicability of the Born
Oppenheimer approximation. In Appendix A it is shown th
the approximation should work providedl !l f , ¹Zg!1,
and l¹2Zg!1. Here l is the typical extent of the subban
wave function in thez direction andl f is the Fermi wave-
length of the electrons. The first condition is to ensure t
the electron density is not so high that more than one s
band is occupied. The other two inequalities are adiabati
requirements on the surface roughness needed to ensur
the motion in the plane of the interface can be approxima
decoupled from the transverse motion. They stipulate that
roughness must vary slowly on a scale determined by
strength of the confining potential.

To check the validity of the adiabaticity conditions we c
use the atomic force microscope images of the silicon-ox
interface presented in Ref. 6. These images reveal tha
height fluctuations of the interface follow a Gaussian dis
bution parameterized byDAFM , the root-mean-square heigh
fluctuation, andL, the correlation distance. The discussion
Appendix A suggests that the surfaceZg should be similarly
distributed with essentially the same parameters. Hence
adiabaticity conditions can be expressed in terms of the
servable parameters asDAFM /L!1 and (lDAFM)/L2!1 and
are seen to be very well satisfied for both samples of Re

III. WEAK-LOCALIZATION LINE SHAPE

The purpose of this section is to review the calculation
the weak-localization line shape. The calculation is reform
lated in a way that is suitable for the eventual goal of cal
23532
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lating the tilted field magnetoresistance of a MOSFET with
rough interface.

In the previous section it was shown that effectively t
electrons move in two dimensions under the influence o
random potentialV(x,y) and a perpendicular magnetic field
The magnetic field is the sum of the applied perpendicu
field and the geometric field, which is due to interface roug
ness and the applied parallel field. It is assumed that
surfaceZg(x,y) is a Gaussian random surface with ze
mean and variance given by

^Zg~r !Zg~r 8!& rough5D2 expS 2
ur2r 8u2

L2 D . ~12!

As noted above, atomic force microscope images of
silicon-oxide interface presented in Ref. 6 reveal a Gauss
random surface, which makes it extremely plausible that
surfaceZg(x,y) must also be Gaussian. An argument to th
effect is given in Appendix A. Equations~9! and ~12! thus
determine the statistics of the random magnetic fieldBg .

The random potentialV is caused by impurities and by th
roughness of the interface~in the notation of the previous
sectionV5U imp1Eg1Wg!. Here we shall assume that th
random potential is Gaussian white noise with zero mean
variance^V(r )V(r 8)& imp5V0

2d (2)(r2r 8). Since we assume
that the interface roughness is correlated over a length s
L, strictly the assumption that the random potential is Gau
ian white noise is justified only under special circumstan
~if the impurity potential is white noise and it dominate
interface roughness scattering, or ifL is much smaller than
all relevant length scales and the impurity scattering is eit
also white noise or is dominated by interface roughness s
tering!, but in practice it is reasonable to believe that o
results will be more broadly applicable since localization
fects are believed to be insensitive to microscopic details
the random potential. We estimate that for both samples s
ied in Ref. 6 impurity scattering dominates interface roug
ness scattering, and for one sampleL is shorter than all rel-
evant length scales in addition; but it is expected that
results should apply under less favorable circumstances a

It is useful to consider the electron Green function whi
obeys the Schro¨dinger equation

F2
\2

2m S“2 i
e

\
@A1Ag# D 2

1V~x,y!2EGG~r ,r 8;E!

52d (2)~r2r 8!. ~13!

For the retarded Green functionG R, the energyE has a posi-
tive infinitesimal imaginary part; for the advanced,G A, a
negative part. Linear-response theory allows us to exp
the conductance in terms of the Green functions23

g52
e2\3

8pm2L2E drE dr 8DG~r ,r 8,Ef !

3
]J

]y

]J

]y8
DG~r 8,r ,Ef !. ~14!
5-4
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RANDOM BERRY PHASE MAGNETORESISTANCE AS A . . . PHYSICAL REVIEW B64 235325
Here DG[G R2G A, EF5 Fermi energy, andm5 effective
mass of electrons. We have assumed that the sample is
angular~dimensionsL3W) and current is driven along th
length of the sample which is oriented along they axis. The
two-sided derivative in Eq.~14! is defined as

f
]J

]y
g[ f

]

]y
g2g

]

]y
f . ~15!

We are interested in the disorder averaged conductance
this end it is necessary to average products of Green fu
tions over the random potential and the interface roughn
under the statistical assumptions made above.

In the two subsections below we review the calculation
the conductance at zero magnetic field and in a uniform p
pendicular field, circumstances under which there is no r
dom magnetic field and it is only necessary to perform
average over the random potential. The effect of the rand
magnetic field is analyzed in the following sections.

A. Zero field

The average over the random potential can be calcul
perturbatively2,24 in an expansion in the small paramet
(Efte)

21. Herete , the elastic scattering time for electron
is given by\/2pr(Ef)V0

2, wherer(Ef)5 density of states
for spinless electrons. In this approximation the avera
Green function is given by24

GR~r ,r 8,Ef !5E dk

~2p!2
GR~k,Ef !expik•~r2r 8!,

GR~k,Ef !5S Ef2
\2k2

2m
1 i

\

2te
D 21

. ~16!

HereG(r ,r 8;Ef)5^G(r ,r 8;Ef)& imp is the Green function av
eraged over the random potential.

The average of a product of Green functions does
factorize into a product of the averages; it is correlated by
underlying random potential. The correlation betweenG R

andG A responsible for weak localization is called the coo
eron,C(r ,r 8). Semiclassically this correlation can be und
stood to arise from the constructive interference of class
paths related by time-reversal symmetry.1–4 Figure 3 shows
the Feynman diagrams that contribute to the cooperon1–4

From these diagrams we see that it obeys the integral e
tion

FIG. 3. Cooperon diagrams. Solid lines denote impurity av
aged Green functions. The upper lines are retarded Green funct
the lower lines, advanced. Dotted lines represent scattering f
impurities ~shown as crosses!.
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C~r ,r 8!5C(0)~r ,r 8!1E dr 9C(0)~r ,r 9!C~r 9,r 8!. ~17!

HereC(0)(r ,r 8)5@\/2pr(Ef)te#u^GR(r ,r 8,Ef)& impu2. Using
Eqs.~14! and ~16!, the weak-localization contribution to th
conductance,gWL , can be expressed in terms of the fu
cooperon:

gWL52
2

p

e2

L2
DteE dr C~r ,r !. ~18!

Here D[v f
2te/2 is the electron diffusion constant. Calcul

tion of gWL therefore reduces to solution of Eq.~17!.
The customary procedure is to obtain eigenfunctions

C(0) which obey

E dr 8C(0)~r ,r 8!Ql~r 8!5lQl~r !. ~19!

The solution to Eq.~17! is then

C~r ,r 8!5(
l

S l

12l DQl~r !Ql~r 8!. ~20!

It turns out that eigenfunctions that vary slowly on the sc
of l e5v fte dominate the conductance; hence it is only ne
essary to accurately calculate the slowly varying solutions
Eq. ~19!. Asymptotic evaluation of the Green function, E
~16!, shows that

C(0)~r ,r 8!'
1

2p l e
2

expS 2
ur2r 8u

l e
D ~21!

providedur2r 8u@l f andkf l e@1. C(0) is therefore sharply
peaked aboutr'r 8 and for the slowly varying eigenfunc
tions the integral in Eq.~19! can be performed approximatel
by expandingQl(r 8) in a Taylor’s series aboutr 85r . Keep-
ing terms to second order transforms the integral Eq.~19!
into a diffusion equation

Dte¹
2Ql~r !1Ql~r !5lQl~r !. ~22!

It is sufficient to use the solutions of the diffusion equati
~22! to construct the cooperon, Eq.~20!, and to calculate the
conductance using Eq.~18!. This completes the usual calcu
lation at zero field.

We now introduce an alternative formulation more su
able for analyzing the effects of roughness. Consider the
nel

K (0)~r ,r 8![
1

2p l e
2

expS 2
ur2r 8u2

2l e
2 D . ~23!

By analogy withC(0) andC introduceK given by

K~r ,r 8!5K (0)~r ,r 8!1E dr 9K~r ,r 9!K (0)~r 9,r 8!. ~24!

Note thatK (0) is not equal toC(0) @compare Eqs.~21! and
~23!#; but the slowly varying eigenfunctions ofK (0) also
obey the diffusion Eq.~22!. For this reasonK andC have the

-
ns;
m
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same long-distance behavior.Thus we may use K instead
C in Eq. ~18! to calculate the weak-localization conductan
since it is dominated by the long-distance behavior.

The chief virtue ofK compared toC is that it can be
expressed in terms of tractable Gaussian integrals. A us
expression forK is obtained from Eq.~24! by iteration

K~r ,r 8!5 (
n50

`

K (n)~r ,r 8!,

K (n)~r ,r 8!5E dr1•••drnK (0)~r ,r1!K (0)

3~r1 ,r2!•••K (0)~rn ,r 8!. ~25!

Evidently K (n)(r ,r 8) may be interpreted as the probabili
for a Gaussian random walker to go fromr 8 to r in n11
steps.

An important physical ingredient must now be added.
noted above, weak localization is a quantum interference
fect. It is therefore damped by electron-electron and electr
phonon scattering.25 In the conventional analysis the dam
ing effect of these processes is included phenomenologic
by addingte /tf to the eigenvaluel in Eqs.~19!, ~20!, and
~22!. Here tf is the dephasing time and it is assumed t
tf@te in the weak-localization regime. The equivalent pr
cedure in our formulation is to replace

K (n)→K (n)expS 2
~n11!te

tf
D . ~26!

Eqs.~18!, ~25!, and~26! then yield

gWL52
e2

\

Dte

L2 E dr(
n

K (n)~r ,r !expS 2
nte

tf
D . ~27!

In summary, Eqs.~23!, ~25!, and ~27! provide the tools to
calculate the weak-localization conductance.

Equation~27! has an appealing form.gWL is expressed as
a sum over closed random walks, consistent with the ph
cal idea that it is due to the interference of closed paths
their time reversed counterparts. The integral overK (n) gives
the weight ofn-bounce paths; the exponential factor sho
that the contribution of very long paths is cut off by depha
ing. For a different formulation of weak localization in term
of random walks, see Ref. 26.

Let us explicitly calculategWL . Successive integration
over intermediate points shows

K (n)~r ,r 8!5
1

~n11!l e
2

expS 2
ur2r 8u2

~n11!l e
2D , ~28!

a well-known result.K (n) has the same form asK (0) but with
l e→An11 l e in agreement with the general proposition th
the displacement of a random walker grows as the squ
root of the number of steps. Now
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gWL52
e2

\

W

L (
n51

`
1

n
expS 2

nte

tf
D

'2
e2

\

W

L
ln

tf

te
52

e2

\

W

L
ln

l f

l e
, ~29!

a celebrated result.1–3 Here we have introducedl f5ADtf,
the dephasing length, and made use of the inequalitytf
@te . The logarithmic divergence ofgWL as l f→` can be
traced to the slow 1/n decay of the weight of long paths. In
field theory formulation it indicates that the theory flows
strong coupling on long length scales but on shorter scale
is ‘‘asymptotically free.’’27 Provided that the cutoffl f is
shorter than the localization length, perturbation theory
accurate.

B. Uniform perpendicular field

We consider magnetic fields that are weak compared
impurity scattering. The precise condition we assume isB
!Be , whereBe5fsc/2p l e

2 and fsc5h/2e is the supercon-
ducting flux quantum. In this limit the classical paths are n
modified by the magnetic field. Its main effect is to chan
the phase of the paths~the Aharonov-Bohm effect!. This has
no effect on the classical Drude conductance, but the we
localization correction, which is an interference effect,
suppressed in a manner analyzed in Ref. 3.

The starting point for this analysis is to assume that
effect of turning on a perpendicular field on the Green fun
tion is to multiply it by a phase factor:

GB'

R ~r ,r 8;Ef !'GB50
R ~r ,r 8;Ef !expS i

e

\Er8

r
dl•AD . ~30!

Here GB50 is the disorder averaged Green function at ze
field, Eq.~16!; GB'

, the Green function with the perpendicu
lar magnetic field turned on; and the integral in the pha
factor is evaluated along a straight line fromr 8 to r . The
zeroth order cooperon becomes

CB'

(0)~r ,r 8!5CB50
(0) ~r ,r 8!expS i

2e

\ E
r8

r
dl•AD . ~31!

Once again we are interested in the eigenfunctions ofCB'

(0)

which obey

E dr 8CB50
(0) ~r ,r 8!expS i

2e

\ E
r8

r
dl•ADQl~r 8!5lQl~r !.

~32!

For the slowly varying eigenfunctions Eq.~32! may be trans-
formed into a differential equation by expanding both t
phase factor andQl(r 8) about r 85r to second order. The
result is

FDteS ¹2 i
2e

\
A~r ! D 2

11GQl~r !5S l1
te

tf
DQl~r !.

~33!
5-6
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In Eq. ~33! we have explicitly inserted a damping ter
te /tf . The customary solution3 is to construct the coopero
from the Landau-level solutions to Eq.~33!.

As in the previous subsection we now describe an al
native formulation. Consider the kernel

KB'

(0)~r ,r 8!5KB50
(0) ~r ,r 8!expS i

2e

\ E
r8

r
dl•AD ~34!

with KB50
(0) given by Eq.~23!. The slowly varying eigenfunc-

tions of KB'

(0) also obey Eq.~33!; hence if we defineKB'
via

KB'
~r ,r 8!5KB'

(0)~r ,r 8!1E dr 9KB'

(0)~r ,r 9!KB'
~r 9,r 8!,

~35!

then KB'
has the same long-distance behavior asCB'

and
may be used in its place to calculate the conductance.

A useful expression forKB'
is obtained from Eq.~35! by

iteration,

KB'
~r ,r 8!5 (

n50

`

KB'

(n)~r ,r 8!,

KB'

(n)~r ,r 8!5E dr1•••drnKB50
(0) ~r ,r1!•••KB50

(0) ~rn ,r 8!

3expS i
2e

\ E
r8

r
dl•AD . ~36!

The integral in the phase factor is evaluated along the p
from r 8 to r obtained by joining the pointsr 8,rn , . . . ,r1 ,r
with line segments in the given order. Forr5r 8

KB'

(n)~r ,r !5E dr1•••drnKB50
(0) ~r ,r1!•••KB50

(0) ~rn ,r !

3expS i2p
fn

fsc
D . ~37!

Here fn5 flux through the polygon defined by the close
path fromr to r and fsc5h/2e is the superconducting flux
quantum.

Using Eqs.~18! and ~36!

gWL52
e2

\

Dte

L2 E dr (
n50

`

KB'

(n)~r ,r !expS 2~n11!
te

tf
D .

~38!

In summary, Eqs.~23!, ~37!, and ~38! provide the tools
needed to calculate the perpendicular field magnetocon
tance.

Let us now explicitly calculate the magnetoconductan
It is necessary to first evaluateKB'

(n)(r ,r ). The integrals are

performed in Appendix B and will be used in later section
For the present, more insight is gained by noticing t
KB'

(n)(r ,r ) has a natural interpretation in terms of rando

walks.
23532
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Imagine thatn-sided polygons are drawn on a plan
starting from a fixed pointr . Let the probability density
of drawing a polygon with vertices atr ,r1 ,r2 , . . . ,rn ,r
be given by the Gaussian expression@2p l e

2(n
11)#KB50

(0) (r ,r1)KB50
(0) (r1 ,r2)•••KB50

(0) (rn ,r ). The factor
2p l e

2(n11) is included to normalize the distribution. Leta
denote the directed area of the polygon~defined in Appendix
C!. Then Eq.~37! may be rewritten as

KB'

n ~r ,r !5
1

2p l e
2~n11!

E
2`

1`

da Pn11~a!expS 2p i
B'a

fsc
D .

~39!

HerePn(a) is the probability distribution of the directed are
of an n-sided polygon drawn from the Gaussian polyg
ensemble defined above. Equation~39! shows thatKB'

(n)(r ,r )

is the Fourier transform of the distribution of directed are
The directed area distribution is discussed in Appendix
For n@1

Pn~a!5
p

2nle
2
sech2S pa

nle
2D , ~40!

and its Fourier transform is

KB'

(n)~r ,r !5
B'

2fsc
FsinhS npB'l e

2

fsc
D G21

. ~41!

Equation~41! is derived in Appendix B and is shown to b
sufficiently accurate for our purposes for alln providedB'

!Be . For further discussion of the directed area distributio
see Appendix C.

Substitution of Eq.~41! in Eq. ~38! leads to

gWL52
e2

\

W

L (
n51

`
B'

2Be
FsinhS nB'

2Be
D G21

expS 2
nte

tf
D .

~42!

SinceB'!Be , the sum may be evaluated asymptotically28

Using an integral representation of the digamma function29

c~x!5E
0

`

dqS e2q

q
2

e2xq

12e2qD , ~43!

we obtain

gWL52
1

2p2

e2

\

W

L F lnS Be

B'
D2cS 1

2
1

Bf

B'
D G . ~44!

HereBf is the field corresponding to a flux quantum throu
the phase-breaking length,Bf[fsc/4p l f

2 . This is the ideal
weak-localization line shape derived by Hikami, Larkin, a
Nagaoka3 and shown as the dotted curves in Figs. 1 and

It is instructive to summarize the main points of the de
vation. First the conductance is expressed as a sum of cl
random walks, Eq.~38!. Equation~37! shows that the con-
tribution of a fixed random walk oscillates with the enclos
flux with a periodfsc, revealing the Aharonov-Bohm origin
of the weak-localization magnetoresistance. The contribu
5-7
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of all n-bounce paths is the Fourier transform of their
rected area distribution; it decays exponentially forB'

@fsc/nle
2 @see Eq.~42!#. Summing overn leads to the gen-

tler decay described by Eq.~44!.

IV. SHORT-RANGE ROUGHNESS

In this section we assume that the distance over which
roughness is correlated is short compared to the elastic m
free path (L! l e). Under this circumstance the effect of tur
ing on an in-plane magnetic field is comparatively straig
forward: it enhances the dephasing rate and hence prod
‘‘homogeneous broadening’’ of the weak-localization lin
shape.

For simplicity we first assume that the applied field lies
the plane of the interface. According to the analysis of S
II, the interface electrons see a uniform in-plane field a
random perpendicular field. The typical strength of the r
dom field isBg;BiD/L @see Eqs.~5! and~12!#. We assume
that the random magnetic field is weak compared to impu
scattering (Bg!Be), a condition that is well satisfied in prac
tice. As in the previous section, the only effect of the ma
netic field in this limit is to multiply the Green function by
phase factor, so the zeroth-order cooperon becomes

CBi

(0)~r ,r 8!5CB50
(0) ~r ,r 8!expS i

2e

\ E
r8

r
dl•AgD . ~45!

The cooperon is determined in principle by Eqs.~17! and
~45!; our objective is to average it over the interface roug
ness.

To this end it is convenient to formally solve Eq.~17! by
iteration:

CBi
~r ,r !5 (

n50

`

CBi

(n)~r ,r !;

CBi

(n)~r ,r !5E dr1•••drnCB50
(0) ~r ,r1!•••CB50

(0) ~rn ,r !

3expS i2p
fg

fsc
D ;

fg5E
r

r
dl•Ag . ~46!

The integral in Berry’s phase factorfg is to be evaluated
around the perimeter of the polygon obtained by joini
r ,r1 , . . . ,rn ,r in that order. We average the Berry pha
factor using the gauge given by Eq.~8! and assuming tha
Zg(x,y) is a Gaussian random surface with statistics giv
by Eq.~12!. To avoid digression we shall return to the eva
ation of this average below. For the moment we give
result forL! l e :
23532
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K expS i2p
fg

fsc
D L

rough

'expS 22Ap
e2

\2
Bi

2D2LF ~y2y1!2

ur2r1u

1•••1
~yn2y!2

urn2r u G D . ~47!

From Eqs.~46! and ~47! we obtain the average cooperon,

CBi
~r ,r !5 (

n50

`

CBi

(n)~r ,r !; ~48!

CBi

(n)~r ,r !5E dr1•••drnCBi

(0)~r ,r1!•••CBi

(0)~rn ,r !;

CBi

(0)~r ,r 8!5CB50
(0) ~r ,r 8!expS 22Ap

e2

\2
Bi

2D2L
~y2y8!2

ur2r 8u
D .

For brevity ^CBi
(r ,r )& rough is written asCBi

(r ,r ).
Evidently Eq.~48! is the formal iterative solution to the

integral equation

CBi
~r ,r 8!5CBi

(0)~r ,r 8!1E dr 9CBi

(0)~r ,r 9!CBi
~r 9,r 8!.

~49!

In principle the roughness averaged cooperon is determ
by Eq. ~49! with CBi

(0)(r ,r 8) given by Eqs.~21! and~48!. The

expression forC Bi

(0)(r ,r 8) shows that after averaging ove

roughness, the effect of the in-plane field is to multiply t
zeroth-order cooperon by an exponential factor.

To solve Eq.~49! it is most convenient to look for eigen
functions ofCBi

(0) which obey

E dr 8CB50
(0) ~r ,r 8!expS 22Ap

e2

\2
Bi

2D2L
~y2y8!2

ur2r 8u
D Ql~r 8!

5lQl~r !. ~50!

CBi
may be expanded in terms of these eigenfunctions a

Eq. ~20!. We are interested in eigenfunctions that vary slow
compared tol e . For these eigenfunctions Eq.~50! may be
transformed into a diffusion equation by expandingQl and
the exponential factor in powers ofr2r 8. Keeping the lead-
ing terms~second order inQl and first order in the exponen
tial factor! we obtain

~11Dte¹
2!Ql~r !5S l1

te

tf
1

te

t i
DQl~r !. ~51!

In Eq. ~51! we have put a dephasing termte /tf by hand.
The in-plane field is responsible for thete /t i term. Heret i
is defined by
5-8
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te

t i
52Ap

e2

\2
Bi

2D2LE dr 8CB50
(0) ~r ,r 8!

~y2y8!2

ur2r 8u

'Ap
e2

\2
Bi

2D2Ll e . ~52!

Equation~51! shows that, upon averaging, the only effect
an in-plane magnetic field on the long-distance behavio
the cooperon, and hence on the conductance, is to enh
the dephasing rate by

1

tf
→ 1

tf
1

1

t i
, ~53!

wheret i is given by Eq.~52!.
The form of t i

21 in Eq. ~52! can be obtained from the
following simple argument. We wish to find the typical pha
associated with ann-sided random polygon due to the ra
dom vector potential. Consider a single side of the polyg
it has typical lengthl e , and the vector potential is approx
mately constant over segments of lengthL but of either
sign—A;6BiD. Then the typical phase accumulated
this side is rms@(2e/\)*A•dl#;(2e/\)Al e /L)BiDL. Since
the phase along each side is uncorrelated, the typical
phase is rms@fn2gon#;An(2e/\)Al e /L)BiDL. The contri-
bution ofn-gons will be cut off when this phase is of order
giving the condition fort i

21 . This gives the condition for
t i

21 if we setn→t i /te . We find te /t i;4(e/\)2Bi
2D2Ll e ,

the same form as Eq.~52!.
Now we indicate how to generalize this analysis when

applied magnetic field has a nonzero perpendicular com
nent. Assuming this component is weak compared to im
rity scattering (B'!Be), an Aharonov-Bohm phase facto
must be included in Eqs.~45! and~46!. After averaging over
interface roughnessCBi ,B'

obeys Eq.~49! with

CBi ,B'

(0) ~r ,r 8!5CB50
(0) ~r ,r 8!expS i

2e

\ E
r8

r
dl•AD

3expS 22Ap
e2

\2
Bi

2D2L
~y2y8!2

ur2r 8u
D .

~54!

Keeping track of the phase factor, we find that the slow
varying eigenfunctions ofCBi ,B'

(0) obey Eq.~33! with the sub-

stitution given in Eq.~53!.
Hence we arrive at the central result of this section.For

short-range correlated roughness, application of an in-pla
field increases the dephasing rate according toEq. ~53! but
does not otherwise alter the weak-localization line sha.
The dependence of the conductance on the perpendic
field is still given by Eq.~44! but with

Bf→Bf1p3/2
eBi

2

h

D2L

l e
. ~55!
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Since the form of the line shape is not changed, this effec
analogous tohomogeneousbroadening in magnetic reso
nance and atomic physics.

The idea that an in-plane field produces homogene
broadening of the line was anticipated by the authors of R
5 and 6. Our result differs in two important respects: Fir
we find that homogeneous broadening occurs only if
roughness is correlated over short distances (L! l e), and sec-
ond, the dependence oft i on the interface roughness param
eters that we derive@Eq. ~52!# is quite different from that
conjectured in Ref. 6.

Figure 6 shows that Eqs.~44! and~55! provide a good fit
to data with essentially no adjustable parameters. More
tails are given in Sec. VI.

To complete the analysis we must now average Ber
phase factor exp(i2pfg /fsc) over interface roughness to ob
tain Eq. ~47!. Recall that the distribution of a linear comb
nation of correlated Gaussian random variables is a
Gaussian. The distribution offg is therefore Gaussian. Evi
dently it has zero mean since we have assum
^Zg(x,y)& rough50. For a Gaussian random variables with
zero mean it is easy to show

^exp~ i js!&5exp~2 1
2 j2^s2&!. ~56!

Hence averaging Berry’s phase factor reduces to the calc
tion of the variance of the phase. Explicitly we must calc
late

^fg
2& rough5 (

i 51

n11

(
j 51

n11 K E dl i•AgE dl j•AgL
rough

. ~57!

Here*dl i•Ag denotes the line integral along the edge joini
r i 21 to r i ~with the understanding thatr05rn115r ).

Let us first evaluate the diagonal terms in Eq.~57!. Let the
i th edge make an angleu with the x axis and lets be the
length parameter along that edge. Using Eq.~8! for Ag and
Eq. ~12! for the correlation ofZg(x,y) we obtain

K S E dl i•AgD 2L
rough

5Bi
2D2sin2uE

0

ur i2r i 21u
ds

3E
0

ur i2r i 21u
ds8expF2S s2s8

L D 2G
'ApBi

2D2L
~yi2yi 21!2

ur i2r i 21u
. ~58!

We have assumed that the edge is much longer than
correlation lengthL. Since the length of a typical edge isl e ,
this is justified in the short-range limitL! l e . We have also
usedur i2r i 21usinu5yi2yi21.

Evidently the only important off diagonal terms in Eq
~57! are those for which the two edges pass within a cor
lation length of each other. The contribution of such ed
pairs to the sum will be smaller than the diagonal term
typically by a factor ofL/ l e ~except in the rare circumstanc
that the two edges meet at a glancing angle and overlap f
considerable part of their length!. Furthermore, the numbe
of contributing off-diagonal terms is comparable ton, the
5-9
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number of diagonal terms; hence the contribution of the o
diagonal terms may be safely neglected in the short-ra
limit L! l e .

That the number of important off-diagonal terms is co
parable ton can be established by an argument commo
used in polymer physics.30 Suppose that line segments
typical length l e are drawn at random on a plane with
densityr segments per unit area. If a fresh segment of len
l e is now drawn on this plane, typically it will suffer;r l e

2

intersections. Working in units wherel e51, the area of a
typical polygon in Eq.~46! is n and hence the density o
edgesr;n/n51. Each edge therefore typically encounte
one intersection and the total number of intersections is c
parable ton.

Adding the diagonal contributions@Eq. ~58!# and neglect-
ing the off-diagonal ones we obtain

^fg
2& rough'ApBi

2D2LF ~y12y!2

ur12r u
1•••1

~y2yn!2

ur2rnu G .
~59!

Use of Eqs.~56! and ~59! finally leads to Eq.~47!.

V. LONG-RANGE ROUGHNESS

We now consider the roughness correlation length to
long compared to the mean free path (L@ l e). This circum-
stance is more difficult to analyze; hence the discussio
limited to the circumstance that the in-plane magnetic field
weak in a sense made precise below. Roughly it is assu
that the random Berry phase is small for all contributi
paths. This is more stringent than the conditionBg;BiD/L
!Be imposed in the previous section@see discussion follow-
ing Eq. ~45!#. The experiments of Refs. 5–7 meet this co
dition for most part. For simplicity, we first assume the a
plied field lies in the plane of the interface,B'50 ~Sec.
V A !. In the next subsection no restriction is placed onB'

~other thanB'!Be).

A. Zero perpendicular field applied

SinceBg!Be is automatically ensured by the weak-fie
condition onBi that we will impose below, the cooperon
given by Eq.~45!. Since the Berry phase factor varies on t
scale ofL@ l e , we may work withK instead ofC and write

KBi

(0)~r ,r 8!5KB50
(0) ~r ,r 8!expS i

2e

\ E
r8

r
dl•AgD ~60!

in place of Eq.~45! and

KBi
~r ,r !5 (

n50

`

KBi

(n)~r ,r !,

KBi

(n)~r ,r !5E dr1•••drnKB50
(0) ~r ,r1!•••KB50

(0) ~rn ,r !

3expS i2p
fg

fsc
D ,
23532
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fg5E
r

r
dl•Ag ~61!

in place of Eq.~46!. Note that we could not make this re
placement in the previous section since the Berry phase fl
tuated rapidly on the scale ofl e . Our objective now is to
averageKBi

over interface roughness and then use Eq.~27!

to evaluate the conductance.
The Berry phase factor is a Gaussian random variable

it is easy to perform the average. Using Eq.~8! for the vector
potential, Eq.~12! for its statistics and Eq.~56!, we obtain

K Bi

(n)~r ,r !5E dr1•••drnKB50
(0) ~r ,r1!•••KB50

(0) ~rn ,r !

3exp@2V~r ,r1 , . . . ,rn!# ~62!

with

V~r ,r1 , . . . ,rn!5
4e2Bi

2D2

\2 (
j 51

n

(
k51

n

~yj2yj 21!~yk2yk21!

3expF2
1

4L2
~r j1r j 212r k2r k21!2G .

~63!

HereK (n)5^K (n)& rough andr05rn115r . K (n) is thus an in-
tegral over (n11)-bounce closed random walks just as it
at zero field but the weight of each polygon is no long
Gaussian. The links of the polygon now ‘‘interact,’’ and th
interaction, given by Eq.~63!, is anisotropic and long ranged

K (n) is difficult to calculate. For weak in-plane magnet
fields it is sufficient to analyze the interaction perturbative
To first order

dK Bi

(n)~r ,r ![K Bi

(n)~r ,r !2KB50
(n) ~r ,r !

52E dr1•••drnKB50
(0) ~r ,r1!•••KB50

(0) ~rn ,r !

3V~r ,r1 , . . . ,rn!. ~64!

V(r ,r1 , . . . ,rn) is a sum over pairs of links according to E
~63!. To illustrate the evaluation of Eq.~64! focus on the
particular term for whichj 51 andk53,4, . . . ,n. It is con-
venient to perform the integrals over the end points of thej th
andkth links last. Integrating over the remaining intermed
ate points yields

dK Bi

(n)~r ,r !5
1

p2E drdr1dr k21dr k

3
1

~n112k!~k22!
~y12y!~yk2yk21!

3expF2
~r2r k!

2

2l e
2~n112k!

2
~r k212r1!2

2l e
2~k22!

G
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3expF2
~r k2r k21!2

2l e
2

2
~r12r !2

2l e
2 G

3expF 1

4L2
~r1r12r k212r k!

2G . ~65!

This is a low-dimensional Gaussian integral and can be
plicitly evaluated.

Proceeding in this manner we obtain

dK Bi

(n)~r ,r !5S eBiD

\ D 2

@ f 1~n,d!1 f 2~n,d!1 f 3~n,d!#,

f 1~n,d!'
n~11nd!

16d2 (
k53

n
1

~k22nk2@n/4d# !2
,

f 2~n,d!'
11nd

n
,

f 3~n,d!'1 ~66!

with d5 l e
2/(2L2). The three contributions toK (n) arise from

the interaction of disconnected links, adjacent links, a
from the self-interaction of links, respectively. We have us
n@1 andd!1 to simplify Eq.~66!. This is justified because
weak localization is dominated by long paths and we
concerned with long-range correlated roughness in this
tion.

Using Eq. ~27! for the conductance and Eq.~66! for
dK (n), after considerable simplification we obtain the par
lel field magnetoconductance

dg52
e2

\

1

fsc
2 ~BiDL !2f ~a! ~67!

with a5 l f
2 /L2 and

f ~a!5aE
0

`

dxe2xS 11
1

2@xa~11xa!#1/2

3 ln
A11xa2Axa

A11xa1Axa
D . ~68!

It is striking thatdg is independent of the mean free path le .
In appropriate units it is a product of two factors: the fl
through an areaDL, determined entirely by the geometry o
the rough interface, andf (a). f (a) describes the crossove
asl f is varied relative toL. It is plotted in Fig. 4 and has th
asymptotic behavior

f ~a!'a for a@1,

'
2

3
a2 for a!1. ~69!

Substituting Eq.~69! in Eq. ~67! gives the asymptotic be
havior of the parallel field magnetoconductance,
23532
x-

d
d

e
c-

-

dg'2
e2

\

Bi
2D2l f

2

fsc
2

for l f@L

'2
2

3

e2

\

Bi
2D2l f

4

fsc
2 L2

for L@ l f . ~70!

These formulas have a simple interpretation. The rand
magnetic field has a typical magnitudeBiD/L and is corre-
lated over a distanceL. For L@ l f , the typical flux through
an areal f

2 is therefore (BiD/L) l f
2 ; for L! l f , it is BiD l f

@The areal f
2 can be broken up intol f

2 /L2 correlated squares
of area L2. The typical flux through each square
(BiD/L)L2. Since it can be of either sign, the flux throug
the total areal f

2 grows as the square root of the number
squares.#. Eq. ~70! then shows thatdg ~in units of e2/h) is
the square of the flux through a phase-coherent region
units of the flux quantum.

B. Perpendicular field applied

The calculation with a perpendicular field applied close
parallels the calculation atB'50. We write

KB' ,Bi

(0) ~r ,r 8!5KB50
(0) ~r ,r 8!expF i

2e

\ E
r8

r
dl•~Ag1A!G

~71!

in place of Eq.~60! and

KB' ,Bi
~r ,r !5 (

n50

`

KB' ,Bi

(n) ~r ,r !,

KB' ,Bi

(n) ~r ,r !5E dr1•••drnKB50
(0) ~r ,r1!•••KB50

(0) ~rn ,r !•••

3expS i2p
fg

fsc
DexpS i2p

f'

fsc
D ,

fg5E
r

r
dl•Ag ,

FIG. 4. Plot of f (a)/a as a function ofa5 l f
2 /L2. f (a) de-

scribes the dependence of the in-plane magnetoresistance, at
perpendicular field, on the roughness correlation lengthL @see Eq.
~67!#.
5-11
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f'5E
r

r
dl•A ~72!

in place of Eq.~61!. Here f' is the Aharonov-Bohm flux
through the polygon that goes fromr to r via r1•••rn due to
the applied perpendicular field;fg is the Berry phase aroun
the same polygon.

The Berry phase factor is a Gaussian random varia
Performing the average as in the previous subsection yie

KB' ,Bi

(n) ~r ,r !5E dr1•••drnKB50
(0) ~r ,r1!•••KB50

(0) ~rn ,r !

3exp@2V~r ,r1 , . . . ,rn!#

3expS i2p
f'

fsc
D . ~73!

HereK (n)5^K (n)& roughandV is given by Eq.~63!. As in Sec.
III B, K (n) is the Fourier transform of the directed area d
tribution of n-sided polygons; but the weight of the polygo
is no longer Gaussian. The links of the polygons now ‘‘i
teract’’ and the interaction given by Eq.~63! is anisotropic
and long ranged.

For weak in-plane fields a full analysis ofK (n) is not
needed. It is sufficient to analyze the interaction pertur
tively. To first order

dK B' ,Bi

(n) ~r ,r ![K B' ,Bi

(n) ~r ,r !2KB'

(n)~r ,r !

52E dr1•••drnKB50
(0) ~r ,r1!•••

3KB50
(0) ~rn ,r !V~r , . . . ,rn!expS i

2pf'

fsc
D .

~74!

V(r ,r1 , . . . ,rn) is a sum over pairs of links according to E
~63!. To evaluate Eq.~74! it is convenient to focus on the
particular term corresponding to thej th andkth links. As in
the corresponding evaluation of Eq.~64!, it is convenient to
perform the integrals over the end points of thej th andkth
links last. The integral over the other intermediate points
facilitated by Eqs.~B10! and ~B15! of Appendix B. The ex-
pression that results is a low-dimensional Gaussian inte
over the end points of linksj and k that can be explicitly
computed.

Proceeding in this manner we obtain

dK B' ,Bi

(n) ~r ,r !5S eBiD

\ D 2

@ f 11 f 22 f 3#;

f 1~n,g,d!'
ng

p (
k53

n S coth@kAg#coth@~n2k!Ag#21

1
d

Ag
coth@kAg#1

d

Ag
coth@~n2k!Ag# D

3$sinh@kAg#sinh@~n2k!Ag#%21
23532
e.
s

-

-

s

al

3S coth@kAg#1coth@~n2k!Ag#14
d

Ag
D 22

f 2~n,g,d!'
2n

p

Ag

sinh@nAg#
$Agcoth@nAg#1d%

f 3~n,g,d!'
n

p
Ag

1

sinh@nAg#
, ~75!

whereg[(B'/2Be)
2 is a measure of the dynamical streng

of the applied perpendicular field and we have takenn@1,
g!1, andd!1. This is justified because weak localizatio
is dominated by long paths, the applied field is dynamica
weak, and we are concerned with long-ranged roughnes
this section. We have also takenng!1, justifiablea poste-
riori , because we finddK (n) decays exponentially forn
@1/Ag.

Using Eq. ~27! for the conductance and Eq.~75! for
dK B' ,Bi

(n) , after considerable simplification, we obtain

lengthy expression for the parallel field magnetocond
tance,

dg522
e2

\ S BiDL

fsc
D 2

u~h,Bf /B'!. ~76!

Hereh[fsc/2pB'L2 and

u~h,Bf /B'!5hE
1

`

dy
ln y

y2Bf /B'
Fv~y,h!2

2

y221
G ,

~77!

with

v~y,h!5
2

~y221!

@~112h12h2!~y221!14h#

@~112h!2~y221!18h#

2S h

f 3/2
@~112h!~y221!21~814h!~y221!18#

3 lnH @Af 22h~y221!#22~y221!2

@Af 12h~y221!#22~y221!2J D ,

f ~y,h!5~y221!@~112h!2~y221!18h#. ~78!

Equations~76!–~78! are the main results of this section
They give the shift in conductance from the standard we
localization line shape due to the applied in-plane fieldBi .
Remarkablydg is independent of le .

Since the expression fordg is complicated, it is instruc-
tive to examine several special cases. First, by taking
limit B'→0 it is possible to recover the result of the prev
ous subsection, Eq.~67!. Next consider the strong perpen
dicular field limit B'l f

2 @fsc. In this limit

dg522
e2

\ S BiDL

fsc
Dh~h! ~79!
5-12
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with

h~h!5hE
1

`

dy ln y v~y,h!2
p2

4
h. ~80!

A plot of h(h) is shown in Fig. 5. It has the asymptot
behavior

h~h!'h2 for h!1'2
p2

8
for h@1. ~81!

Note thath(h) changes sign; it vanishes forh'0.558.
Eq. ~79! reveals that forB'l f

2 @fsc, dg depends only on
the magnetic fieldsBi andB' and geometric parameters th
characterize the rough interface,D and L. It is independent
not only of le it but also of l f . The intermediate regime in
which l e!L, but L! l f , is particularly interesting. In this
limit Bf!fsc/L

2 and hence Eq.~79! applies in a range o
B' over whichh varies from large to small. Thus the pe
pendicular field magnetoconductance curves at different
ues ofBi cross at a point determined by the purely geome
condition

B'L2'1.79
h

e
. ~82!

For this reason we call this intermediate regime,l e!L
! l f , thegeometricregime.

The opposite limit of extremely long-ranged roughne
L@ l f@ l e , we call the inhomogeneous broadening regim
In this limit, too, perpendicular magnetoconductance cur
corresponding to different smallBi cross, but the crossing
point is not determined by the purely geometric conditio
Eq. ~82!. In this case the range ofB' over which the simpli-

FIG. 5. Plot ofh(h)/h as a function ofh5fsc/(2pL2B'). The
inset shows the smallh behavior and the zero ofh(h) in detail.
h(h) describes the perpendicular field dependence of the in-p
magnetoresistance in the geometric limit,l e!L! l f ; see Eq.~79!.
23532
l-
c

,
.
s

,

fied formula, Eq.~79!, applies corresponds to very smallh
and does not include the geometric crossing point,h
50.558 . . . . Wemust therefore use the general express
Eq. ~76! to determine the crossing point. Nonetheless in
inhomogeneous broadening regime the deviation from
conventional weak-localization line shape and the existe
of a crossing point has a simple interpretation. Since
random magnetic field is correlated over a length scaleL, the
sample breaks up into blocks of sizel f each of which sees a
slightly different~but uniform! perpendicular magnetic field
B'1dB. For smalldB, the shift in conductance of a particu
lar block may be computed from the conventional wea
localization line shapegWL(B') by expanding in a Taylor
series:

dg'
]

]B'

gWL~B'!dB1
1

2

]2

]B'
2

gWL~B'!dB21 . . . .

~83!

Bearing in mind that the average value of the random field
zero and the typical value,BiD/L, the average deviation is

dg;Bi
2 D2

L2

]2

]B'
2

gWL~B'!. ~84!

The curvature ofgWL(B') is positive atB'50. At large
B'@fsc/ l f

2 , gWL(B');(e2/h)ln(B' /Bf); hence the curva-
ture is negative. Thus there must be an inflection point
which the curvature ofgWL(B') vanishes. According to Eq
~84! this is the crossing point. Substitution of the know
asymptotic forms ofgWL(B') in Eq. ~84! allows a check on
the consistency of this interpretation. For smallB' we re-
cover the estimate given in the second line of Eq.~70!. For
B'@fsc/ l f

2 we obtain

dg;
e2

h

Bi
2D2

B'
2 L2

~85!

in agreement with the smallh limit of Eq. ~79!.

VI. COMPARISON TO EXPERIMENT
AND RELATED WORK

In their experiments Wheeler and collaborators apply
fixed Bi and measure the conductance as a function ofB' .
They have reported such line-shape measurements for m
devices and have also explored the effect of varying elec
density on the line shape. The data of Andersonet al.6 are
particularly interesting because they have independe
measured the interface roughness by etching away the o
and imaged the exposed silicon surface using atomic fo
microscopy. Hence we focus on the measurements repo
in that paper.

Figure 6 shows the measured magnetoconductance o
control device atBi50 ~gray! and Bi51.5 T ~black!. By
fitting the Bi50 data to a weak-localization line shap
~dashed curve in Fig. 6!, Eq. ~44!, Andersonet al. infer l e
50.085 mm, l f50.76 mm. Atomic force microscope mea
surements yieldD51.35 Å andL50.055 mm. Thus the

ne
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device is in the short-range correlated regime. The bl
curve shows the calculated line shape using the indep
dently measured values ofD, L, l e , and l f . No parameters
are adjusted except for a constant offset. The fit is go
comparable, for example, to the fit to weak-localization li
shape atBi50.

Andersonet al. also report measurements on a second
vice ~called the textured device!. This device is fabricated on
a silicon wafer that has been roughened by argon sputte
prior to gate oxidation. As a result the textured device h
atypical values ofD and L. L for the textured sample is
comparable tol e . Consistent with this we do not obtain
good zero-parameter fit to either the short- or long-ran
roughness expressions derived here. Following Ander
et al. we can force fit the data to the homogeneously bro
ened line shape; but the value ofD2L we then obtain is
inconsistent with the atomic force microscope images.

Finally it is interesting to compare the experiments
Wheeleret al. to other work on random or periodic magnet
fields. Such fields have been realized by gating a Ga
AlGaAs heterostructure with type-II superconducti
film;12,13 by randomly depositing type-I superconductin
grains14 or ferromagnetic dysprosium dots15 on the hetero-
structure surface; and by covering the device with a rou
macroscopic magnet.16 In work most closely related to
Wheeler and co-workers, Gusevet al. have prepatterned th
substrate by drilling a lattice of holes so that the interface
which the two-dimensional electron gas forms is periodica
modulated.17 An inhomogeneous magnetic field leads
many interesting features in the magnetoresistance eve
the classical and ballistic regimes; many experiments h
focused on these effects. Except for the work of Rammer
Shelankov18 noted below, much of the theoretical literatu
too explores these regimes or focuses on the fundame
question of whether all eigenstates are localized in a rand
magnetic field.

Two experiments study quantum corrections in the we
localization limit: In the work of Bending, von Klitzing, and
Ploog12 the inhomogeneous magnetic field is produced by
Abrikosov lattice of flux lines in the superconducting ga
hence it is periodic. However the magnetoresistance is
sensitive to the arrangement of the vortices since the dep
ing length is shorter than the distances between the vorti
This circumstance was analyzed by Rammer a
Shelankov.18 In the experiment of Gusevet al. too the mag-
netic field is essentially periodic rather than random allow
them to analyze it via a chessboard model.17 Thus in both
these works the inhomogeneous magnetic field is rather
ferent from the random Gaussian correlated field studied
the experiments of Wheeler and co-workers and analy
here. It is also worth noting that the parallel field wea
localization magnetoresistance for disordered films~width
greater thanl e but less thanl f) has previously been studie
by a number of authors.31 In contrast to these works, th
system we consider here is a truly two-dimensional elect
gas ~width smaller than the Fermi wavelength! with corre-
spondingly different physics.
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VII. SUMMARY AND CONCLUSION

In this paper we have been concerned with the influe
of interface roughness on the magnetoconductance of M
FET’s. Using a Born-Oppenheimer approximation we ha
shown that effectively electrons respond to an applied
plane magnetic field as though it were a random perpend
lar field. Technically, the random magnetic field appears a
Berry phase term in the Born-Oppenheimer effective Ham
tonian. Equation~9! shows that the random magnetic field
the component ofBi normal to the rough surfaceZg(x,y).
The Born-Oppenheimer analysis also gives precise mea
to the surfaceZg(x,y): it is the location of the center of the
local subband wave function.

The next step is to analyze the magnetoconductance.
is controlled by the familiar physics of weak localization:
zero field there is a contribution to the conductance due
constructive interference of closed electron paths and t
time-reversed counterparts. This contribution is suppres
by application of a perpendicular magnetic field because
electron acquires an Aharonov-Bohm phase as it travers
closed path. The analysis of this paper shows that an in-p
field too has an effect due to interface roughness. The e
tron acquires a Berry’s phase equal to the flux of the rand
field through the closed path. The effect of the random B
ry’s phase on the conductance is the main focus of this pa

To calculate the effect it is necessary to sum the stand
divergent series of cooperon diagrams~Fig. 3!. We find it
useful to reformulate this sum in a manner reminiscent of
central limit theorem. Feynman graphs of high order cont
the sum. In these graphs we are able, without signific

FIG. 6. Plot of the conductance~in units of 1025 mhos! against
perpendicular field,B' ~in G!, for the control device of Anderson
et al.6 Data points forBi50 are grey; forBi51.5 T, black. The
dashed line is a fit to the weak-localization line shape, from wh
Anderson et al. infer l e50.085 mm, l f50.76 mm. The solid
curve shows the line shape atBi51.5 T calculated from the ex-
pression for homogeneous broadening derived in this paper,
~44! and ~55!. All the parameters for this curve are independen
determined. The values ofD51.35 Å andL50.055 mm are ob-
tained from atomic force microscope images; forl e and l f , we use
the values cited above.
5-14
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error, to replace pairs of Green-function lines with suita
Gaussian factors. At zero field, thenth-order diagram is then
essentially the weight of a closedn-step Gaussian random
walk @Eq. ~27!#. For the known case of an applied perpe
dicular field, this formulation brings out clearly the relatio
ship between the classic weak-localization line shape@Eq.
~44!# and the distribution of directed area for closed rand
walks @see Eqs.~38! and~39! and Appendix C#. The method
also proves useful when an in-plane field is applied for lo
range correlated roughness (L@ l e). In this case the magne
toconductance is related to the directed area distribution
an interacting random walk @see Eqs.~63! and ~73!#. To
make contact with experiment it is sufficient to analyze t
problem perturbatively. We do not attempt a complete so
tion of the interacting random walk or calculation of the fu
magnetoconductance for long-range correlated roughn
These problems are left open for future work.

For short-range correlated roughness, however, we
able to obtain the full magnetoconductance. The depende
of the conductance on perpendicular fieldB' still has the
classic weak-localization line shape@Eq. ~44!# when an in-
plane field is applied, just as it does atBi50. The only effect
of the in-plane field is to enhance the dephasing rate@Eq.
~52!#. In terms of field scales,Bf becomes larger; the effec
tive Bf is given by Eq.~55!. Hence we say that short-rang
correlated roughness produces homogeneous broadeni
the weak-localization line shape.

The departure from the conventional line shape is m
striking in case of long-range correlated roughness~although
quantitatively smaller if all parameters exceptL are held
fixed!. The change in conductancedg when a parallel field is
applied ~‘‘parallel field magnetoconductance’’! is given by
Eq. ~76!. The most remarkable feature of this expression
that it is independent ofl e . dg is determined entirely by the
magnetic field, geometric parameters of the interface,D and
L, and the dephasing lengthl f . It may be of either sign
~positive nearB'50 and negative for largeB'). The expres-
sion for dg is lengthy and cannot be more compactly e
pressed in terms of known special functions. It can be
merically computed and plotted with ease and precisi
however, it is worthwhile to examine several special cas

In the limit of extremely long-ranged roughness,L@ l f
@ l e , the parallel field magnetoconductance has a simple
terpretation: the sample breaks up into independent block
sizel f

2 each of which sees a slightly different magnetic fie
Hence in this limit we say that the effect of an in-plane fie
and roughness is to inhomogeneously broaden the w
localization line. Pursuing this interpretation we can und
stand the sign change indg and recover its form in various
circumstances@see the discussion following Eqs.~70! and
~82!#.

The limit of intermediate-range correlated roughness,l f
@L@ l e , is particularly striking. For sufficiently large per
pendicular field,B'l f

2 @fsc, dg becomes independent no
only of l e but alsol f @see Eq.~79!#. Essentially the paralle
magnetoconductance is controlled by the functionh(h)
whereh5fsc/(2pL2B') is a measure of the perpendicul
flux ~see Fig. 5!.
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Another special case, useful for making contact w
experiment7 is the parallel field magnetoconductance f
B'50 @Eq. ~67!#. In this case,dg, in units of e2/h, is a
product of the squared flux (BiDL)2, determined entirely by
the field and the geometry of the interface, and the funct
f (a). f (a) describes the crossover asl f is varied relative to
L (a5 l f

2 /L2; see Fig. 4!.
Wheeler and co-workers have shown experimentally i

number of cases that the effect of an in-plane field is
produce homogeneous broadening. Our analysis of the sh
range correlated regime provides a theoretical justification
such fits to data and allows quantitative information ab
the interface roughness to be extracted. It is encouraging
for the control sample studied by Andersonet al.,6 for which
the interface parameters are independently measured
atomic force microscopy, our formulas give a satisfacto
zero parameter fit~Fig. 6!. Unfortunately, our analysis show
that in the short-range regime, magnetoresistance meas
ments will not separately yieldD andL: instead they provide
the combinationD2L. Thus it will be necessary to combin
magnetoconductance measurements with other techniqu
separately obtainD andL.

The roughness of the interface is controlled by its p
cessing. For example, Andersonet al.6 are able to increase
bothD andL by argon sputtering the silicon surface prior
gate oxidation. It would be desirable to create devices w
long-range correlated roughness in order to experiment
observe, for example, the geometric regime described ab
At the same time, for long-range correlated roughness,
prospects are much better for extracting bothD andL from
magnetoconductance measurements alone, provided
measurements can be made with sufficient precision. Eq
tion ~76! provides the means to study the feasibility of su
experiments.

Another potential application of our analysis is related
efforts to engineer the MOSFET interface to have spec
structure, for example, a structure that is periodic in o
direction like a corrugated sheet.32 Weak-localization magne
toconductance measurements would provide a nondes
tive way to check that structures have been successfully
ricated. It should be a straightforward and interesti
extension of our analysis to calculate the magnetoresista
signature of various simple periodic structures.

ACKNOWLEDGMENTS

It is a pleasure to acknowledge many stimulating conv
sations with Albert Chang, Rachel Lombardi, Satya Maju
dar, Don Monroe, and Bob Wheeler. H. Mathur was su
ported by NSF Grant No. DMR 98-04983 and the Alfred
Sloan Foundation and acknowledges the hospitality of
Aspen Center for Physics.

APPENDIX A: ADIABATIC APPROXIMATION

Here we briefly discuss the conditions for the validity
the Born-Oppenheimer approximation used in Sec.
Roughly, we want only the low-lying states of the lowe
subband to be occupied and we want the gap between
5-15
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bands to be large. For this purpose, and to ensure the
dimensionality of the electron gas, we need the Fermi ene
to be small compared to the subband spacing. The subb
spacing is of order\2/ml2 where l is the length scale ove
which the electron is confined. Hence this condition may
phrased as

l f@ l . ~A1!

To obtain additional conditions we return to the Schro¨dinger
Eq. ~1! and seek a solution of the form

C~x,y,z!5(
n

cn~x,y!fn~z;x,y!. ~A2!

For simplicity we limit discussion to the case of zero ma
netic field.cn(x,y) then obeys9,22

F2
\2

2m
¹21U imp~x,y!1En~x,y!1Wn~x,y!Gcn~x,y!

1 (
mÞn

Hnmcm~x,y!5Ecn~x,y!. ~A3!

Here

Hnm5
\2

m
^n;x,yu¹um;x,y&•¹1

\2

2m
^n;x,yu¹2un;x,y&.

~A4!

Equation ~A4! constitutes an exact reformulation of th
Schrödinger Eq.~1!. The Born-Oppenheimer approximatio
consists of keeping only one term in the sum~A2! and hence
omitting the off-diagonal terms in Eq.~A3!.

In a commonly used model of the interface21 it is assumed
that the confining potential has the form

Uconf~z;x,y!5U@z2z~x,y!#. ~A5!

Herez(x,y) is the elevation of the silicon-oxide boundary.
this model the mean elevation of the local subband w
function exactly tracks the interface; hence the surf
Zg(x,y), probed by weak-localization magnetoresistan
has the same statistics as the silicon-oxide interfacez(x,y),
which is presumably imaged by atomic force microsco
For a more general form of the confinement potential t
precise correspondence betweenZg(x,y) andz(x,y) is lost
but it seems reasonable that the two surfaces would h
similar statistics, comparable correlation lengths, and me
square fluctuations.

Equation~A5! implies that the local subband wave fun
tion is of the form

fn~z;x,y!5jn@z2z~x,y!#. ~A6!

Using Eq. ~A6! we can estimate the off-diagonal elemen
given by Eq.~A4!. Requiring these to be small compared
subband spacing\2/ml2, leads to

l¹2Zg!1, ¹Zg!1. ~A7!

In summary, Eqs.~A1! and ~A7! are the conditions for the
validity of the Born-Oppenheimer approximation. Note th
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the same conditions can in fact be derived under less res
tive assumptions than Eq.~A5!.

If we assume thatZg is statistically the same as the su
face imaged by atomic force microscopy, Eq.~A7! may be
rewritten

lDAFM

L2
!1,

DAFM

L
!1. ~A8!

For the control sample studied by Andersonet al.6 DAFM
51.35 Å, L50.055 mm, l f5100 Å; for the textured
sample,DAFM57.5 Å, L50.09 mm, l f570 Å. Taking l
'30 Å, it is easily seen that the Born-Oppenheimer a
proximation is applicable.

APPENDIX B: COOPERON PATH INTEGRAL

The purpose of this appendix is to calculate the integ
Eq. ~36!. It is useful to first calculate

D (n)~y,y8!5E
2`

1`

dy1•••dynD (0)~y,y1!•••D (0)~yn ,y8!,

D (0)~y,y8!5
1

Ap
e2(y2y8)22g(y1y8)2

. ~B1!

It is easy to show by induction thatD (n) is of the form

D (n)~y,y8!5
1

Ap

1

An
e2an(y2y8)22bn(y1y8)2

~B2!

with anbn5g. By completing squares we find

D (n11)~y,y8!5E
2`

1`

dy1D (0)~y,y1!D (n)~y1 ,y8!

5
1

Ap

1

An11
e2an11(y2y8)22bn11(y1y8)2

~B3!

providedanbn5g. Here

1

an11
5

1

an1g
1

1

bn11
,

1

bn11
5

1

an11
1

1

bn1g
,

An115AnAan1bn111g. ~B4!

Using Eq. ~B4! we can verify thatan11bn115g ensuring
D (n12) will also be of the form given in Eq.~B2!. In prin-
ciple the recurrence relations, Eq.~B4!, determinean , bn
and An ; but in practice it is easier to follow a differen
method.

Experience with paths integrals suggests that the eig
functions of the kernelD (0) are Hm(A2ay)e2ay2

with a
suitably adjusted—of the same form as the eigenfunction
5-16
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a harmonic oscillator. To verify this conjecture and to fixa
we use a generating function for the Hermite polynomial

exp~2x212xA2ay2ay2!5 (
m50

`
xm

m!
Hm~A2ay!e2ay2

.

~B5!

Upon completing squares we find

E dy8D (0)~y,y8!exp~2x212xA2ay82ay82!

5
1

11Ag
expF2S 12Ag

11Ag
D 2

x2

12S 12Ag

11Ag
D x2g1/4y22Agy2G

5 (
m50

`
~12Ag!m

~11Ag!m11

xm

m!
Hm~2g1/4y!exp~22Agy2!

~B6!

provided a52Ag. This condition is imposed by requirin
that the coefficient of they2 term in the second line of Eq
~B6! should bea. Comparing Eqs.~B5! and ~B6! we con-
clude that Hm(2g1/4y)e22Agy2

are eigenfunctions ofD (0)

with eigenvalue (12Ag)m/(11Ag)m11 for m50,1,2, . . . .
Now let us evaluate

E
2`

1`

dy8D (n)~y,y8!exp~22Agy822x214g1/4xy!

5
1

An

Apan

an1Ag
expH 22Agy22F ~an2Ag!

~an1Ag!
G 2

x2

14g1/4F ~an2Ag!

~an1Ag!
GxyJ

5 (
m50

`
1

m!

Apan

An

~an2Ag!m

~an1Ag!m11
xmHm~2g1/4y!e22Agy2

5 (
m50

`
1

m!

~12Ag!m(n11)

~11Ag!(m11)(n11)
xmHm~2g1/4y!e22Agy2

.

~B7!

The integral in the first line of Eq.~B7! has been analyzed i
two ways. First we use the ansatz forD (n), Eq.~B2!, perform
the integral by completing squares, and expand the re
using the generating formula for the Hermite polynomia
Eq. ~B5!. The results are given in the second and third lin
Alternatively, we expand the exponential in the first line
terms of the eigenfunctions ofD (0) using the generating for
mula, Eq.~B5!, and note that the eigenfunctions ofD (0) are
also eigenfunctions ofD (n) but with the eigenvalue raised t
the (n11)st power~considered as an integral operator,D (n)
23532
ult
,
.

amounts ton11 repeated applications ofD (0)). The result is
given in the fourth line. Comparison of the third and four
lines reveals

an5AgF ~11Ag!n111~12Ag!n11

~11Ag!n112~12Ag!n11G ,

bn5AgF ~11Ag!n112~12Ag!n11

~11Ag!n111~12Ag!n11G ,

An5
Ap

2g1/4
@~11Ag!n111~12Ag!n11#1/2

3@~11Ag!n112~12Ag!n11#1/2. ~B8!

These expressions are the solution to the recurrence rela
in Eq. ~B4! with the initial conditiona051,b05g,A051.

In summary the integralD (n), defined in Eq.~B1! is given
by Eqs.~B2! and ~B8!.

Now we evaluate Eq.~36! for KB'

(n)(r ,r 8). Rescaling the

co-ordinates we obtain

KB'

(n)~r ,r 8!5
1

2l e
2

E(n)~r ,r 8! ~B9!

with

E(n)~r ,r 8!5E dr1•••drnE(0)~r ,r1!•••E(0)~rn ,r 8!,

E(0)~r ,r 8!5
1

p
exp@2ur2r 8u22 ib~x2x8!~y1y8!#,

~B10!

andb5B' /Be . In the Landau gaugeE(0) depends only on
(x2x8) and has the Fourier transform

1

Ap
exp@2~x2x8!22 ib~y1y8!~x2x8!#

5E
2`

1` dk

2p
expS 2

@k1b~y1y8!#2

4 Deik(x2x8).

~B11!

By virtue of translational invariance

E(n)~r ,r 8!5E
2`

1` dk

2pE2`

1`

dy1•••dyn

1

Apn11
eik(x2x8)

3e2[k1b(y1y1)] 2/4
•••e2[k1b(yn1y8)] 2/4

3e2(y2y1)2
•••e2(yn2y8)2

. ~B12!

If we shift yi→yi2k/2b
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E(n)~r ,r 8!5E
2`

1` dk

2pE2`

1`

dy1•••dyn

1

Apn11
eik(x2x8)

3expF2
b2

4
~ ȳ1y1!21•••2

b2

4
~yn1 ȳ8!2G

3e2( ȳ2y1)21•••2(yn2 ȳ8)2
. ~B13!

Here ȳ5y2k/2b, ȳ85y82k/2b, and thek integral must be
performed after they integrals. Evidently

E(n)~r ,r 8!5E
2`

1` dk

2p
eik(x2x8)D (n)S y2

k

2b
,y82

k

2b D .

~B14!

D (n) is given by Eqs.~B2! and~B8! with g→b2/4. Perform-
ing the remaining Gaussian integral overk yields

E(n)~r ,r 8!5
1

pqn
e2anur2r8u22 ib(y1y8)(x2x8);

an5
@11~b/2!#n111@12~b/2!#n11

@11~b/2!#n112@12~b/2!#n11
;

qn5
1

b F S 11
b

2 D n11

2S 12
b

2 D n11G . ~B15!

Equations~B9!, ~B10!, and~B15! constitute the final expres
sion for KB'

(n)(r ,r 8).

The calculation ofKB'

(n) is similar to the solution of Schro¨-

dinger’s equation for an electron in a magnetic field beca
the slowly varying eigenfunctions ofKB'

(0) obey the differen-

tial Eq. ~33!. However, the derivation of Eq.~B15! goes be-
yond solution of the differential equation because we a
obtain the short-distance behavior ofKB'

(n) .

Settingr5r 8 in Eq. ~B15! we obtain

KB'

(n21)~r ,r 8!5
1

2p l e
2

B'

Be
F S 11

B'

2Be
D n

2S 12
B'

2Be
D nG21

'
B'

2fsc
FsinhS nB'

2Be
D G21

~B16!

provided thatB' /Be is sufficiently small that not only is
B' /Be!1 but also (B' /Be)

2n!1. The approximate expres
sion in Eq.~B16! is the same as Eq.~41!. For a given large
Be /B' Eq. ~41! is accurate only forn!(Be /B')2; but since
KB'

(n)(r ,r 8) is exponentially small forn@Be /B' , no signifi-

cant error is made by taking Eq.~41! to apply for alln.

APPENDIX C: DIRECTED AREA DISTRIBUTION

First let us make precise the meaning of directed a
Imagine ann-sided polygon drawn on a plane. The polyg
is endowed with an orientation by assigning each edg
direction such that each vertex has one incoming edge
one outgoing. Roughly, the two orientations of a given po
23532
e

o

a.

a
nd
-

gon correspond to the two senses in which its perimeter m
be circumnavigated.

Now suppose a magnetic field is applied perpendicula
the plane. Roughly, the directed area is the quantity by wh
the magnetic field must be multiplied in order to obtain t
flux through the oriented polygon~in magnitude and sign!.
For a simple polygon with no self-intersection the direct
area is equal in magnitude to the area; the sign is positiv
negative depending on whether the orientation of the po
gon is anticlockwise or clockwise viewed from the directio
in which the magnetic-field points. For a polygon with se
intersection, the directed area is obtained by subdividing
polygon into infinitesimal area elements and weighting
area of each element with its winding number before add
them. Here the winding number of an area element is co
puted by drawing a vector from the area element to a po
on the boundary of the polygon and counting the numbe
turns made by the vector as its tip then circumnavigates
perimeter in the sense dictated by the orientation of the p
gon. Clockwise turns count as negative turns~see Fig. 7!. For
a polygon with successive vertices atr ,r1 , . . . ,rn21 ,r im-
mersed in a magnetic field pointing in thez direction, the
directed area is given by

a52
1

2
~x12x!~y11y!2

1

2
~x22x1!~y21y1!

1•••2
1

2
~x2xn!~y1yn!. ~C1!

Let the probability density of drawing ann-sided oriented
polygon with successive vertices atr ,r1 , . . . ,rn21 ,r be
(n/pn21)exp@2ur2r1u21•••1urn212r u2#. Equations~C1!
and ~B10! show that

E(n21)~r ,r !5
1

npE2`

1`

daP~a!exp~ i2ba!. ~C2!

HereP(a)5 probability distribution of the directed area fo
the Gaussian polygon ensemble defined above. By inver

FIG. 7. An oriented polygon. Area elements in the white regi
have winding number11; in the light grey region,12; and in the
dark region,21.
5-18
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the Fourier transform in Eq.~C2! and making use of Eq
~B15! for E(n21)(r ,r 8) we obtain

P~a!5E
2`

1`da

2p S na

2 D F S 11
a

4 D n

2S 12
a

4 D nG21

e2 iaa

'E
2`

1`da

2p S na

4 D FsinhS na

4 D G21

e2 iaa

5
p

n
sech2S 2pa

n D . ~C3!

The approximate form of the integrand in the second l
above is valid only fora!1/An; but it may be extended to
,

ys
v.

a

h

s
.

l.

n

p-

23532
e

all a since the integrand is already exponentially small
a@1/n.

Equation~C3! is the formula for the directed area distr
bution. It coincides with Eq.~41! if we take the step size o
the random walker to beA2l e instead of 1 as we have don
in this appendix.

The distribution of directed area for Brownian motion w
analyzed by Le´vy33 and restudied more explicitly in connec
tion with electron transport by Argamanet al.34 Here, how-
ever, we require the area distributionPn(a) for a random
walk with afinite number of stepsn. The largen behavior of
Pn(a) was recently obtained by Bellissardet al. for random
polygons on a square lattice by an interesting application
noncommutative geometry.35 Their result agrees with the
largen limit of Eq. ~C3!.
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