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X-ray data on the intramolecular complexes 1–4 (N-dimethylchlorosilylmethyl derivatives of amides, lac-
tams, carbamides, and hydrazides of carbon acids) possessing an identical ClSiC3O coordination center
have been used for mapping the path of the SN2 substitution reaction at SiIV with the Bürgi–Dunitz
method. A classic hyperbolic like representation of the reaction coordinate has been obtained using
the nonlinear least squares method. The hypothesis of the unified character of the change in geometry
parameters of the ClSiC3O reaction center in 1–4 under the influence of internal factors and the medium
is corroborated based on the study of ab initio and DFT gas-phase and solution structures of a series 1–4.
The extent of deviation of calculated points from the correlation function, defined by the collective body
of X-ray data for the coordination center of related compounds, may be used as an indicator of the accu-
racy of their geometry calculation in the isolated state and, especially, in solutions.

� 2010 Elsevier B.V. All rights reserved.
1 The reaction of complex formation of boranes with amines [13] may be cited as a
1. Introduction

A ‘‘static” approach (the structural correlation method, SCM)
proposed by Bürgi and Dunitz [1–3] has been widely used to solve
the diversified problems of the chemical dynamics [1–11]. In the
framework of SCM the modeling of chemical transformations is
performed by a set of equilibrium crystal structures of complexes
containing the fragment of interest (coordination center hereinaf-
ter CC), identical with the reaction center. The gradual distortion
or static deformation that the molecular fragment manifests col-
lectively over a large variety of crystalline frameworks mirrors
the distortion which that fragment would undergo along a given
reaction coordinate. Figuratively speaking, each structure from
the set is considered as a ‘frozen-in’ point taken along the studied
reaction pathway (RP).

In the framework of the Bürgi–Dunitz method, the relationship
of structure correlations to reaction profiles is expressed in the
structure correlation hypothesis. This hypothesis suggests that if
a correlation can be found between two or more independent
parameters describing the structure of a given structural fragment
in a variety of environments, then the correlation function (CF)
ll rights reserved.

+7 3952 419346.
maps a minimum energy path in the corresponding parameter
space [12].

The laws governing chemical bonding and intermolecular inter-
actions are essentially the same in the gas phase, in solid, and in
solutions [3]. Thus, the search of CF for a coordination center
may be in principle performed using the structural parameters of
related compounds determined in any their phase state. Because
of the scant information on the geometry of inter- and intramolec-
ular complexes for the gas phase and its total absence for solution,
the corroboration of this conclusion has not been yet obtained.1

However, necessary information on the structure of molecules in
their isolated states and in solutions may be provided also by
quantum chemistry methods. Thus, it is reasonable to propose that
the large-magnitude root-mean square deviations (v2) of theoret-
ical points from the high quality CF, found using X-ray data, may
be a consequence of the approximate character of calculation
methods and solvation models. It is tempting to use this circum-
stance for the original evaluation of the reliability of ab initio
rare example when for the modeling of RP it was possible to invoke not only the X-ray
solid-state structures, but also the gas-phase (microwave spectroscopy) ones. It turns
out that the structures go well together and make it possible to describe the reaction
coordinate more precisely.

http://dx.doi.org/10.1016/j.theochem.2010.03.026
mailto:svf@irioch.irk.ru
http://www.sciencedirect.com/science/journal/01661280
http://www.elsevier.com/locate/theochem
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and DFT molecular geometries in the gas phase and, especially (be-
cause of the absence of experimental data) in solutions. Indeed, the
validation of solvation models is performed only according to their
capability for reproducing experimental spectral information or
reaction energetics in solutions [14–17]. However, a good agree-
ment between the theoretical and the experimental differences
of energies of the key structures on RP may not ensure the reliable
quality of their calculated geometry in solutions. As the reason for
this one may cite, for example, a parametric character of the pop-
ular continuum solvation models and an error compensation effect
inevitable in the energy difference estimation [18,19].

With the use of ab initio and DFT methods and with appropri-
ately chosen objects of investigation it seems possible to provide
answers to the following questions: (i) whether the deformations
of CC in a set of related compounds, induced by the change of its
intramolecular environment and medium effects, follow a common
regularity; (ii) ‘‘how much the deviations (v2) of theoretical points
from the correlation function, defined by the collective body of X-
ray data for CC geometry parameters, are sensitive to the calcula-
tion method and to the solvation model, used for these points
calculation.

To provide answers on the questions we invoked data on the
N-dimethylchlorosilylmethyl derivatives of amides, lactams, car-
bamides, and hydrazides of carbon acids 1–4 (see Chart 1) and per-
formed the SCM modelling of the SN2 substitution reaction
coordinate at SiIV (see Eq. (1)). A series of crystalline structures
1–4 was extended by the gas-phase and solution structures 1a–b,
2a, and 3a–b calculated with ab initio and DFT methods.

It is significant that, according to data of IR, NMR spectroscopy
and quantum chemical calculations, the geometry of the ClSiC3O
silicon polyhedron for the majority of the intramolecular com-
plexes 1–4 is sensitive both to the internal factors (nature of ‘ami-
domethyl’ fragment) and to the medium [20–23].

This unique set of structures 1–4, which are characterized by
the identical ClSiC3O coordination center and a large interval of
change in the crystalline values for the axial Si–O and Cl–Si bond
lengths (1.988–2.450 Å and 2.154–2.321 Å, respectively), has been
used earlier for the mapping of the SN2 reaction path at the silicon
Chart 1
atom [24,25]. However, for a number of reasons given below, the
question of the optimal correlation function for the ClSiC3O frag-
ment geometrical parameters remains open for such related
compounds.

ð1Þ
2. Computational methods

The computations of 1a–b, 2a, 3a–b were performed at the MP2
and DFT (widely used B3LYP, BP86, B3PW91 functionals and a re-
cently developed M05-2X [26] functional) levels of theory using
the 6-31G(d), 6-311G(d), 6-311++G(d,p), and 6-311G(2d,p) basis
sets. The geometries of all species studied were fully optimized.
The correspondence of the DFT optimized structures to the minima
on the potential energy surface was confirmed by the positive
eigenvalues of the corresponding Hessians. An effect of the nonspe-
cific solvation on the geometry of compounds 1a–b, 2a, 3a–b was
estimated with the continuum Onsager (SCRF) [27] and IEF PCM
(PCM) [28,29] models. An effect of the specific solvation of these
compounds was considered in the framework of the supermolecu-
lar approach (SM) [30] using several H-complexes of 1a–b, 2a, 3a–
b with two explicit chloroform molecules (see Chart 2) [31] as an
example. In the SCRF model a spherical cavity radius was deter-
mined using the isodensity procedure [32]. In the computational
scheme PCM the cavity was created via a series of overlapping
atomic spheres with radii (rA) optimized: (1) for the universal force
field (UFF) [33] – PCM/UA0; (2) for the HF/6-31G(d) method –
PCM/UAHF [34]. In both cases hydrogen atoms were enclosed in
the spheres of heavy atoms to which they are bonded. GAMESS
electronic structure code [35] was employed for the M05-2X calcu-
lations of 1a–b, 2a, 3a–b. All remaining calculations were carried
out with Gaussian 03 program package [36].
.



Fig. 1. Relationship between the X-ray internuclear Si–O and Cl–Si distances (d, Å)
in compounds 1–4 and the position of the experimental points relative to the curves
defined by Eqs. (12) and (13).
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An analytical representation of the reaction path of Eq. (1) was
obtained applying the nonlinear least squares method [37]. The ap-
plied approach is based on minimization of the chi-squared (v2):

v2 ¼ ð1=mÞ
XN

i¼1

½f ðxiÞ � yi�
2
; ð2Þ

where (xi, yi) are the coordinates of points corresponding to the
structures 1–4, therewith x = dSi–O, y = dCl–Si; f(xi) is the fitted func-
tion describing these points, m = N � n is the degrees of freedom, N is
the number of points, and n is the number of coefficients of param-
eters used in the regression fit. For the estimation of the extent of
deviation of ab initio and DFT calculated points from the function
f(x) describing the reaction path we used the parameter v2 putting
n = 0.

3. Results and discussion

3.1. A modeling of the SN2 type reaction at SiIV with the set of
structures 1–4

According to the main idea of SCM, a considerable interval of
the change in the X-ray internuclear distances Cl–Si (dCl–Si) and
Si–O (dSi–O) in the series 1–4 (see Table 1) allows to reconstruct a
significant part of the SN2 substitution reaction path at the silicon
atom including the region of Walden inversion of its configuration
(Eq. (1)) with this set of structures (intermediate complexes B).

For the reactions of this type (Eq. (1)) proceeding with the
cleavage of one univalent bond and the formation of another one,
the sum of bond orders of the axial Cl–Si and Si–O bonds (NCl–Si

and NSi–O) in any point of RP (Eq. (1)) is constant by definition
[45–47], and is equal to unity:

NCl—Si þ NSi—O ¼ 1 ð3Þ
Table 1
X-ray geometrical parameters (Å) of the ClSiC3O coordination center for species 1–4.

Compound dSi–O
a dCl–Si

a DSi
b Ref.

1a 2.450 2.154 0.322 [38]
1b 1.954 2.307 0.058 [23]
1c 1.950 2.315 0.055 [23]
1d 1.939 2.321 0.055 [39]
1e 2.021 2.282 0.082 [23]
1f 2.050 2.284 0.099 [23]
1g 1.989 2.307 0.060 [38]
1g 1.988 2.312 0.074 [38]
1h 2.171 2.210 0.190 [40]
1i 2.050 2.271 0.110 [41]
2a 2.077 2.229 0.134 [42]
2a 2.027 2.259 0.160 [42]
2b 1.918 2.348 0.027 [23]
2c 1.974 2.307 0.050 [43]
2d 1.975 2.294 0.077 [23]
2e 1.923 2.316 – [44]
2f 2.142 2.223 0.187 [23]
3a 1.879 2.432 �0.078 [23]
3c 1.788 2.624 �0.178 [23]
4 1.840 2.438 �0.073 [25]

a dSi–O and dCl–Si are the Si–O and Cl–Si bond distances.
b DSi is the displacement of the silicon atom out of the plane of three carbon

atoms.
The bond orders NCl–Si and NSi–O can be obtained from the corre-
sponding bond lengths (dCl–Si and dSi–O) using the Pauling relation-
ship [48]:

Ddi ¼ C log Ni ð4Þ

where Ddi ¼ di � d0
i (i = Cl–Si, Si–O) is the change in the internuclear

distances Cl–Si and Si–O for complexes B with respect to the lengths
of d0

Cl—Si and d0
Si—O covalent bonds with N = 1 corresponding to the

nonchelate form A (reagent) and to the cation C (product), respec-
tively; C is a constant which can be different for the Cl–Si and Si–
O contacts (C1 and C2).

In view of Eq. (4), Eq. (3) represents the hyperbolic like
function:

10�ðDdCl—Si=C1Þ þ 10�ðDdSi—O=C2Þ ¼ 1: ð5Þ

The relationship between the dCl–Si and dSi–O values (see Table 1) in
a series of structures 1–4, presented in Fig. 1, is really of the hyper-
bolic like type being characteristic for SN2 reactions [3,8,45].

Parameters of this function (Eq. (5)) are usually found using the
definition2 [49] of the bond orders of the Cl–Si and Si–O bonds in
complexes 1–4 in terms of geometry parameters of their ClSiC3O sil-
icon polyhedron [24,25]:

NCl—Si ¼ ðDmax
Si þ DSiÞ=2Dmax

Si

NSi—O ¼ ðDmax
Si � DSiÞ=2Dmax

Si

(
ð6Þ

where DSi is the displacement of the silicon atom out of the plane of
three carbon atoms in 1–4, and Dmax

Si is the same in the reagent A
(product C).

Eq. (4) can be written, in view of Eq. (6), in two forms (Eqs. (7)
and (8)).

DdCl—Si ¼ C1 logððDmax
Si þ DSiÞ=2Dmax

Si Þ
DdSi—O ¼ C2 logððDmax

Si � DSiÞ=2Dmax
Si Þ

(
ð7Þ

DdCl—Si;Si—O ¼ C logððDmax
Si � DSiÞ=2Dmax

Si Þ; ð8Þ

where the plus sign refers to the Cl–Si bond and the minus sign re-
fers to the Si–O bond.
2 Eq. (6) is not the only representation of the Cl–Si and Si–O bond orders of
complexes 1–4 in terms of geometrical characteristics of their silicon ClSiC3O
polyhedron. To a lesser extent the equations [NCl–Si = (1�3cosu)/2, NSi–O = (1 + 3cosu)/
2, where u is the mean Cl–Si–C bond angle between an axial bond and equatorial ones
in the ClSiC3O fragment] are used.



Table 2
MP2 and DFT selected gas-phase bond distances (d [Å]) and root mean square deviations v2 from the hyperbole of Eq. (13) for species 1a–b, 2a, and 3a–b.

Method 1a 1b 2a 3a 3b v2

dSi–O dSi–Cl dSi–O dSi–Cl dSi–O dSi–Cl dSi–O dSi–Cl dSi–O dSi–Cl

MP2/6-31G(d) 2.578 2.127 2.223 2.172 2.263 2.153 2.118 2.196 2.005 2.234 0.0013
MP2/6-311++G(d,p) 2.682 2.117 2.330 2.155 2.334 2.143 2.206 2.178 2.027 2.235 0.0010
BP86/6-31G(d) 2.500 2.176 2.221 2.219 2.251 2.200 2.125 2.245 2.014 2.290 0.0002
B3LYP/6-31G(d) 2.629 2.155 2.248 2.207 2.282 2.187 2.123 2.240 1.996 2.292 0.0001
B3PW91/6-31G(d) 2.509 2.155 2.195 2.202 2.233 2.181 2.091 2.230 1.985 2.274 0.0002
B3PW91/6-311G(2d,p) 2.532 2.153 2.212 2.203 2.251 2.181 2.100 2.234 1.966 2.291 0.0001
M05-2X/6-31G(d) 2.546 2.163 2.127 2.234 2.170 2.212 2.046 2.259 1.958 2.304 0.0001

3 A discrepancy between the d0
OH (exp) and d0

OH (opt) values has been observed also
in the MSC modeling of the proton transfer reaction paths with a series of H-
complexes having the fragment OH. . .O [9, 10].

4 Newly obtained (Eqs. (11) and (12)) are distinct from those found previously [24].
This is due to the fact that we used the improved X-ray results for complex 1a [38]
and invoked new crystalline structures of 1d, 1h, 2c, 2e, and 4.
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In the variant C1 – C2, an apparent nonequivalence of the Cl–Si
and Si–O bonds is emphasized, and at C1 = C2 = C, a representation
of the reaction coordinate from Eq. (3) in the ideal form of Eq. (5) is
more justified [50].

Invoking the experimental X-ray values (d0
Si—O (exp) = 1.639 Å,

d0
Cl—Si (exp) = 2.065 Å and Dmax

Si (exp) = 0.60 Å), which are character-
istic of the model compounds of the tetracoordinate silicon and
recommended in Ref. [24], we have obtained an explicit form of
the linear regression (Eqs. (7) and (8)):

DdCl—Si ¼ �1:348 log½1:180 � ðDmax
Si þ DSiÞ=2Dmax

Si �;
R ¼ 0:98; sd ¼ 0:02

DdSi—O ¼ �1:448 log½1:298 � ðDmax
Si � DSiÞ=2Dmax

Si �;
R ¼ :97; sd ¼ 0:03

8>><
>>: ð9Þ

DdCl—Si;Si—O ¼ �1:313 log½1:194 � ðDmax
Si � DSiÞ=2Dmax

Si �;
R ¼ :97; sd ¼ 0:03 ð10Þ

This allowed us to give expressions, which represent the coordinate
of reaction (Eq. (1)) in terms of the sum of axial bond orders:

10�ðDdCl—Si=1:348Þ þ 10�ðDdSi—O=1:448Þ ¼ 1:239þ f ðDSiÞ; ð11Þ

10�ðDdCl—Si=1:313Þ þ 10�ðDdSi—O=1:313Þ ¼ 1:194 ð12Þ

In the case of Eq. (11) the interval of the change in the value of the
function f(DSi) = �0.098 DSi is not greater than 0.03 in a series of
complexes 1–4. Thus, the total order of the axial Cl–Si and Si–O
bonds is constant with a good precision in the series 1–4, irrespec-
tive of the form of presentation of the linear correlation (Eqs. (7) or
(8)). At the same time, for the hyperbolic like functions of Eqs. (11)
and (12), similar to functions found previously [24,25], the NCl–Si +
NSi–O sum is significantly larger than unity in their equations and
hence the natural initial and final conditions for the reaction of
Eq. (1) (at NCl–Si (NSi–O) ? 1, NSi–O (NCl–Si) ? 0) are not satisfied.

A moderate quality of the reaction coordinates (Eqs. (11) and
(12)) may arise from the expected differences between the d0

Si—O,
d0

Cl—Si and Dmax
Si values of the reactant A (product C) for the process

of Eq. (1) and the values of the forcedly invoked model compounds
[8]. It is not feasible to perform their correct experimental choice.
However, an effort can be made to find the representation of the
reaction path (Eq. (1)) in the ideal form (Eq. (5)) without using a
specific definition of bond orders and experimental values of
d0

Si—O, d0
Cl—Si and Dmax

Si . Drawing on the nonlinear least squares meth-
od, we performed the search for the parameters C and d0

i for the
function of Eq. (5) in a way that it would give the best fit to a set
of experimental points 1–4. Three such optimal parameters were
found: d0

Cl—Si (opt) = 2.140 Å, d0
Si—O (opt) = 1.723 Å, C1 = C2 = C =

0.679. Then the corresponding reaction path is analytically repre-
sented as follows:

10�ðDdCl—Si=0:679Þ þ 10�ðDdSi—O=0:679Þ ¼ 1;v2 ¼ 0:0003; R ¼ 0:98 ð13Þ

Fig. 1 shows that along the curve of Eq. (13), the crystalline struc-
tures 1–4 are arranged with the significantly lesser root mean
square deviation (v2 = 0.0003) as compared to the best correlation
function (Eq. (12)) found conventionally (v2 = 0.0010 for Eq. (11)
and 0.0009 for Eq. (12)). Nevertheless, on the relatively narrow
interval of the change in dCl–Si measuring 2.2–2.5 Å (dSi–O = 1.8–
2.1 Å) a difference between Eqs. (12) and (13) is insignificant (see
Fig. 1). This difference becomes pronounced only for the large Si–O
and Cl–Si distances. At dSi–O > 2.1 Å the correlation function of
Eq. (12) overestimates the covalent contribution of the Si–O bond
as compared with that of Eq. (13) [1a (dSi–O = 2.45 Å): NSi–O = 0.241
(Eq. (12)), 0.085 (Eq. (13))]. In contrast, at dCl–Si > 2.5 Å it underesti-
mates the ionic component of the Cl–Si bond [3c (dCl–Si = 2.624 Å):
NCl–Si = 0.375 (Eq. (12)), 0.194 (Eq. (13))].

The optimal values d0
Si—O (opt) = 1.723 Å and d0

Cl—Si (opt) =
2.140 Å for the function of Eq. (13) turn out to be �0.08 Å greater
than the corresponding experimental values (d0

Si—O (exp) = 1.639 Å
and d0

Cl—Si (exp) = 2.065 Å) which were used in the derivation of
Eqs. (11) and (12).3 How much do the d0

Cl—Si (opt) and d0
Si—O (opt) val-

ues conform with the values of the Cl–Si and Si–O bonds being char-
acteristic of the true reactant (the nonchelate form A) and product
(the cation C) of the studied reaction? It was found that the dCl–Si val-
ues for the nonchelate form A and the dSi–O for cations C of com-
pounds 1a–b, 2a, and 3a–b, calculated both with the DFT and MP2
methods, also exceed the corresponding experimental d0

Cl—Si (exp)
and d0

Si—O (exp) values and they are considerably closer to the fitted
d0

Cl—Si (opt) and d0
Si—O (opt) values. For example, for 1b dCl–Si = 2.096 Å

in A and dSi–O = 1.778 Å in C, according to MP2/6–31G(d) results and,
respectively, 2.121 and 1.774 Å, according to the B3LYP/6-31G(d)
data.

Thus, the doubts [24,25] about the possibility of describing the
reaction coordinate (Eq. (1)) with a classic function of Eq. (5) using
the set of crystalline points 1–4 are not supported by the results of
our investigation.4 Actually such a hyperbolic like function (Eq.
(13)) describes well the geometrical reconstruction of the ClSiC3O
coordination center of complexes 1–4 during the process of Eq.
(1) and includes the reasonable values for d0

Cl—Si and d0
Si—O. On this

basis Eq. (13) can be considered as a reliable analytic representa-
tion of the correlation between X-ray values of dCl–Si and dSi–O in
a series 1–4 and be used for the analysis of quantum-chemical
structural information.
3.2. Position of the MP2 and DFT optimized gas phase and solution
values dCl–Si and dSi–O of compounds 1a–b, 2a, and 3a–b with respect
to the crystal structure correlation function (Eq. (13)) of the chelates
1–4

A series of structures 1a–b, 2a, and 3a–b calculated in the iso-
lated state and in solution with different solvation models (see
Tables 2 and 3) may be divided into two groups according to the



Table 3
MP2 and DFT selected solution bond distances (d [Å]) and root mean square deviations v2 from the hyperbole of Eq. (13) for species 1a–b, 2a, and 3a–b.

Model Method 1a 1b 2a 3a 3b v2

dSi–O dSi–Cl dSi–O dSi–Cl dSi–O dSi–Cl dSi–O dSi–Cl dSi–O dSi–Cl

CHCl3 solution (e = 4.9)
SCRF BP86/6-31G(d) 2.364 2.204 2.094 2.275 2.198 2.218 2.083 2.261 1.972 2.323 0.0006

B3LYP/6-31G(d) 2.505 2.175 2.096 2.268 2.196 2.215 2.067 2.261 1.926 2.356 0.0003
B3PW91/6-31G(d) 2.388 2.177 2.084 2.249 2.172 2.202 2.050 2.247 1.933 2.319 0.0001
B3PW91/6-311G(2d,p) 2.380 2.183 2.042 2.279 2.170 2.209 2.034 2.261 1.918 2.333 0.0002

PCM/UA0 MP2/6-31G(d) 2.309 2.187 2.064 2.255 2.156 2.204 2.025 2.263 1.922 2.338 0.0001
BP86/6-31G(d) 2.290 2.241 2.065 2.316 2.139 2.262 2.024 2.327 1.932 2.403 0.0032
B3LYP/6-31G(d) 2.337 2.228 2.046 2.324 2.143 2.256 1.997 2.341 1.890 2.456 0.0030
B3LYP/6-311G(d) 2.488 2.209 2.044 2.358 2.172 2.265 2.001 2.372 1.857 2.592 0.0091
B3PW91/6-31G(d) 2.248 2.229 2.035 2.302 2.114 2.246 1.987 2.319 1.899 2.400 0.0008
B3PW91/6-311G(2d,p) 2.273 2.228 2.017 2.319 2.119 2.249 1.974 2.336 1.866 2.445 0.0010

SM MP2/6-31G(d) 2.266 2.208 2.086 2.253 2.132 2.223 1.995 2.292 1.921 2.347 0.0001
B3LYP/6-31G(d) 2.274 2.252 2.074 2.311 2.116 2.277 1.970 2.367 1.892 2.455 0.0038
B3PW91/6-31G(d) 2.216 2.242 2.063 2.287 2.103 2.255 1.968 2.335 1.900 2.399 0.0009

DMSO solution (e = 46.7)
SCRF BP86/6-31G(d) 2.294 2.222 2.045 2.309 2.173 2.228 2.066 2.268 1.955 2.339 0.0009

B3LYP/6-31G(d) 2.426 2.190 2.044 2.301 2.205 2.212 2.046 2.271 1.898 2.396 0.0005
B3PW91/6-31G(d) 2.323 2.191 2.044 2.273 2.144 2.213 2.034 2.254 1.911 2.344 0.0001
B3PW91/6-311G(2d,p) 2.278 2.209 1.980 2.329 2.127 2.227 2.005 2.276 1.900 2.353 0.0004

PCM/UA0 MP2/6-31G(d) 2.199 2.226 2.010 2.307 2.113 2.230 1.988 2.303 1.883 2.423 0.0004
BP86/6-31G(d) 2.163 2.300 2.012 2.376 2.093 2.299 1.988 2.374 1.894 2.490 0.0077
B3LYP/6-31G(d) 2.171 2.293 1.974 2.410 2.089 2.296 1.944 2.414 1.830 2.662 0.0114
B3LYP/6-311G(d) 2.221 2.301 1.935 2.523 2.084 2.330 1.901 2.535 1.744 3.526 0.0868
B3PW91/6-31G(d) 2.131 2.284 1.978 2.367 2.067 2.281 1.952 2.367 1.861 2.502 0.0032
B3PW91/6-311G(2d,p) 2.139 2.289 1.945 2.405 2.058 2.294 1.918 2.412 1.809 2.633 0.0046

PCM/UAHF MP2/6-31G(d) 2.346 2.171 2.081 2.235 2.176 2.188 2.052 2.237 1.941 2.300 0.0004
B3LYP/6-31G(d) 2.403 2.204 2.068 2.294 2.168 2.236 2.024 2.306 1.915 2.393 0.0012
B3PW91/6-31G(d) 2.251 2.217 2.053 2.277 2.135 2.226 2.017 2.285 1.912 2.362 0.0002
B3PW91/6-311G(2d,p) 2.302 2.212 2.032 2.296 2.135 2.233 2.000 2.303 1.879 2.403 0.0004
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values of their root mean square deviation, v2, from the correlation
function of Eq. (13) obtained using X-ray data.

To the first group we assigned theoretical points with v2 values
less than or equal to 0.0005 (see Fig. 2 and Tables 2 and 3), which
are comparable in magnitude with v2 �0.0003 characteristic of the
crystalline complexes 1–4.

Regardless of the basis set size, all DFT computational schemes
(B3LYP, BP86, B3PW91, M05-2X) applied give the gas phase struc-
tures which deviate insignificantly (v2

6 0.0005) from the curve of
Eq. (13). In the continuum PCM/UA0 model, good theoretical points
for 1a, 2a, and 3a–b in the low and high polarity solutions were ob-
tained only when the MP2 method was used. The less complicated
Onsager model in a conjunction with the DFT methods (B3LYP,
B3PW91) also leads to the solvated structures 1a, 2a, and 3a–b
belonging to this group. Judging by the v2 values, (O–Si)chelates
1a, 2a, and 3a–b, deformed by hydrogen bonds with CHCl3 (effect
Fig. 2. Position of the ab initio and DFT optimized structures 1a, 2a, and 3a–b with
the root mean square deviation v2

6 0.0005 with respect to the curve of Eq. (13).
of specific solvation; see Chart 2), are grouped along the curve of
Eq. (13) at the MP2 level of theory and markedly deviate from this
curve at the B3PW91 level (see Fig. 3 and Table 3).

The location of ab initio and DFT calculated points on the curve
of Eq. (13) suggests that some levels of theory adequately repro-
duce the experimentally established inverse correlation character
of the interdependence between the axial Si–O and Cl–Si compo-
nents in the ClSiC3O coordination center. However, it is clear that
this does not yet guarantee a good quality for each of the pair of
the interrelated dSi–O and dCl–Si values. Indeed, the analysis of data
from Tables 2 and 3 shows that the (dCl–Si, dSi–O) point which cor-
responds to complex 1a can considerably move along the curve
of Eq. (13) (within 0.12 Å in the dSi–O coordinate) depending on
the computational methods of the first group (v2

6 0.0005).
Fig. 3. Position of the MP2 and B3PW91 optimized H-complexes of 1a, 2a, and 3a–b
with respect to the curve of Eq. (13).



Fig. 5. Scatter plot of Cl–Si versus Si–O bond distances for calculated gas-phase,
solution and experimental crystal structures of complexes 1–4 (v2

6 0.0005).

Fig. 4. Position of the MP2 and DFT optimized structures 1a–b, 2a, and 3a–b with
the root mean square deviation v2 greater than 0.0005 with respect to the curve of
Eq. (13).
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The second group of structures is characterized by the v2 values
greater than 0.0005 (see Fig. 4). Their respective points signifi-
cantly deviate from the curve of Eq. (13).

The most ‘bad’ lengths of the Si–O and Cl–Si bonds were ob-
tained when combining the solvation PCM/UA0 model with the
DFT methods regardless of the value of dielectric constant e (see Ta-
ble 3 and Fig. 4). It seems likely that the PCM/UA0 parameters, i.e. the
UFF radii of atomic spheres, are not optimal for predicting the geom-
etry of (O–Si)chelates 1–4 in solution at the PCM/DFT level of the-
ory.5 The PCM/UAHF model, which uses the HF optimized atomic
radii, is considerably more preferable for the DFT methods. The best
results are obtained at the PCM/UAHF-B3PW91 level of theory. The
geometry parameters of the ClSiC3O CC of 1a–b, 2a, and 3a–b, calcu-
lated with this computational scheme, are excellently described by
the correlation (Eq. (13)) (see Table 3 and Fig. 2). The v2 value is mark-
edly lowered (by a factor �10, see Table 3) also when PCM/UAHF is
combined with the B3LYP functional. However, the PCM/UAHF-
B3LYP/6-31G(d) solution points (dCl–Si, dSi–O) still remain ‘bad’. For
the MP2/6-31G(d) method the use of the PCM/UAHF model instead
of PCM/UA0 had no effect on the accuracy of the geometry calculation
for 1a–b, 2a, and 3a–b in solutions (see Table 3).

A noticeable deviation of the DFT (especially B3LYP) calculated
(dCl–Si, dSi–O) points, which correspond to the structures 1a–b, 2a,
and 3a–b solvated specifically in the SM model (B3PW91:
v2 = 0.0009; B3LYP: v2 = 0.0038), from the curve of Eq. (13) (see
Fig. 3 and Table 3) may be a consequence of the uncertainties in
reproducing the energetics of the formation of weak intermolecu-
lar complexes by the density functional theory methods [51].

The MP2 optimized species 1a–b, 2a, and 3a–b in the isolated
state fell into the second group of structures. The increase in the
basis set size from 6-31G(d) to 6-311++G(d,p) results in the de-
crease in the v2 value (see Table 2), however, the situation does
not become better fundamentally. At the same time this ameliora-
tion seems quite possible when using other type basis sets (for
example, the Dunning-Huzinaga ones [52]).

The substantial deviation of ab initio and DFT optimized struc-
tures from the curve of Eq. (13) may be a warning of the unreliable
5 The performance of the PCM model depends on the parameters characterizing a
solvent cavity in which a solute is enclosed. Among these are the radii of spheres
around atoms as well as the type of molecular surface representing the solute-solven
boundary (solvent excluding, solvent accessible or van der Waals surface) [14,36]
Such parameters, optimized for certain basis sets and quantum mechanical levels o
theory, work not so good with other basis sets and theory levels, and the performance
of the PCM model with given parameters depends on the molecular properties
studied [14].
t
.
f

estimation of one or another theoretical axial bond length. For
example, judging from Fig. 4, the MP2 method overestimates the
Cl–Si or Si–O contact in the isolated state of species 1a–b, 2a,
and 3a–b. It is necessary to increase the dCl–Si value by �0.03 Å
(leaving the dSi–O value unaltered!) or the dSi–O value by �0.06 Å
(without changing the dCl–Si value) for improving drastically the
position of corresponding points (dCl–Si, dSi–O) with respect to the
curve of Eq. (13).

Fig. 5 shows clearly that the major part of ‘good’ theoretical
points (v2

6 0.0005) corresponding to (O–Si)chelates 1a–b, 2a,
and 3a–b with the gas phase and solution geometry falls into the
region of large internuclear dSiO distances (>2.1 Å), which is poorly
filled with crystalline structures 1–4. Thereby, the use of these
structures undoubtedly aids in a more realistic description of the
SN2 substitution reaction coordinate at SiIV.

The use of the values of deviations v2 from the correlation func-
tion of Eq. (13), obtained with X-ray data, for the estimation of the
reliability of ab initio and DFT calculated gas phase and solution
structures 1–4 has led to reasonable rather then discouraging re-
sults. For example, unsatisfactory reproduction of the experimen-
tal GED values of Hal–Si bond lengths (Hal = F, Cl) with the MP2
method has been mentioned in the literature [53–55]. The ob-
served distinction between the optimal parameters of the PCM
model for different calculation methods was reported well [14].

Among the used MP2 and DFT calculation methods, only at the
B3PW91 level of theory we succeeded to describe adequately all
array of the gas-phase and solution (SCRF, PCM/UAHF approaches)
dCl–Si and dSi–O values for 1a–b, 2a, and 3a–b with the crystal struc-
ture correlation function of Eq. (13). Basing on the criterion
(v2
6 0.0005), one should note also the excellent results of the

MP2 method in establishing the geometry of complexes 1–4 in
solutions using the PCM and SM approaches. The MP2 and
B3PW91 results suggest with confidence that the deformation of
the ClSiC3O coordination center in the series of 1–4, caused by
the change in its intramolecular environment and medium effects,
is really governed by the general regularity of Eq. (13) and corre-
sponds to that expected in the course of the SN2 reaction.

4. Conclusions

Using a representative series of the X-ray studied intramolecu-
lar complexes 1–4 (N-dimethylchlorosilylmethyl derivatives of
amides, lactams, carbamides, and hydrazides of carbon acids) pos-
sessing an identical ClSiC3O coordination center, a mapping of the
SN2 substitution reaction at SiIV has been performed with the
structural correlation method. It is possible to obtain a classic
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analytic representation of the reaction coordinate (10�ðDdCl—Si=0:679Þþ
10�ðDdSi—O=0:679Þ ¼ 1) using the nonlinear least squares method. The
value of the root mean square deviation v2 of the theoretical points
(dCl–Si, dSi–O) from the crystal structure correlation function of Eq.
(13) was suggested to use (in the absence of experimental data)
as an indicator of the reliability of calculated geometries of related
compounds in their isolated state and in solutions. The MP2 and
DFT (B3LYP, BP86, B3PW91, M05-2X) gas phase and solution (SCRF,
PCM, SM) values of the axial Cl–Si and Si–O bond lengths in com-
plexes 1a–b, 2a, and 3a–b are analyzed in the framework of this
criterion. The results obtained suggest that the deformation of
the ClSiC3O coordination center of complexes 1–4, induced by
the change in its intramolecular environment and medium effects,
may be well described by one function of Eq. (13). This corrobo-
rates the SCM hypothesis of the unified character of the change
in the reaction center geometry parameters of related structures
under the influence of internal and external factors. Among the
used MP2 and DFT methods, only at the B3PW91 level of theory
we succeeded to describe adequately all the array of the gas-phase
and solution (SCRF, PCM/UAHF approaches) dCl–Si and dSi–O values
for 1a–b, 2a, and 3a–b with the crystal structure correlation func-
tion of Eq. (13). Excellent results for the geometry of the complexes
1–4 in solutions were obtained using the MP2 method with the
PCM/UA0, PCM/UAHF, and SM approaches. Basing on the criterion
(v2
6 0.0005) we established that the combination of the PCM/UA0

model with the DFT methods lead to the unreliable geometries of
the complexes 1–4 in polar solutions. The use of the DFT calcula-
tion schemes with the polarizable continuum model in the PCM/
UAHF version is preferable for obtaining the solution structural
parameters of the studied (O–Si)chelates.
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