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The carrier densities and mobilities have been measured for the first two populated subbands in a GaAs
double quantum wellsDQWd as a function of the top gate voltageVg. The densities and quantum mobilities
smi

q, i =1,2d were obtained from the de Haas-Shubnikov oscillations. The transport mobilitiessmi
td were deter-

mined from the semiclassical low-field magnetoresistance with intersubband scattering taken into account. At
0.32 K the experimental data on bothmi

t and mi
q, as a function ofVg, lie on two curves which cross at the

resonance point as expected from theoretical considerations. At 1.09 K and 4.2 K themi
t curves no longer cross

at resonance, but show a gap. The reason for this is not known. The mobilities have been calculated in the
low-temperature limit within the Boltzmann framework by assuming that they are limited by scattering due to
ionized impurities located at the outside interfaces. The assumption of short-range scattering is justified by the
relatively small value of the ratiomi

t /mi
q that is measured in the present system. The theoretical values obtained

for mi
t andmi

q are in reasonable agreement with the experiment for all values ofVg examined. We have also
calculated the resistivity and intersubband scattering rates of the DQW as a function ofVg and again find good
agreement with measured values.
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I. INTRODUCTION

The resistivity of double quantum wellssDQWsd coupled
by tunneling was investigated by Palevskiet al.1 in 1990 and
since that time there have been numerous further studies.
When the two wells in a DQW are adjusted to be symmetric
so that the energy levels in their bands coincide, the wave
functions in the wells are strongly mixed to form symmetric
and antisymmetric states separated by an energy gap that
depends on the barrier between the wells, and the electrons
have equal probabilities of being in either well. As the sys-
tem moves away from symmetry, the two bands become pro-
gressively localized in one or the other of the wells.

When such wells are connected in parallel they show a
“resistance resonance” around the symmetry point. This is
most pronounced when the electron-impurityse-id scattering
probabilities of the carriers in the two wells are very differ-
ent, as in the present experiments. Well away from reso-
nance, the carriers in each well contribute to the current es-
sentially independently, and those in the high-mobility well
dominate the current, thus keeping the parallel resistance
low. At resonance the carriers spend equal time in each well
sproviding the tunneling time is short compared to the scat-
tering timed so that the impurity-scattering rate for all carri-
ers is dominated by the rate in the low-mobility well. Thus
the resistivity rises at this point.

Such resonances have been extensively studied in a vari-
ety of DQWs.1–5 In some experiments the carrier densities in
the two bands have been determined using the de Haas-
ShubnikovsdeHSd oscillations in a perpendicular magnetic
field se.g., Refs. 4–6d, and this is the method we have fol-
lowed. The new feature of the present experiments is that we
have also measured the transport and quantum mobilities of
the carriers in each of the two bands of the DQW. The former
were obtained from the semiclassical magnetoresistance in

very low perpendicular fields, and the latter were obtained
from a detailed analysis of the deHS oscillations.

The densities in each band have been calculated using a
simple model based on the solution of Schrodinger’s equa-
tion for two coupled, square quantum wells. Despite the sim-
plicity of the model the agreement with measured values is
very good. We have also calculated the transport mobilities
of the two-band system at low temperatures within a Boltz-
mann framework. The calculations were made for a model in
which the impurities are located at the outer interfaces of the
DQW, because it was found that the distribution expected
from the growth sequence could not describe the measured
mobilities. From the calculated values of the densities and
the transport mobilities of each band we have estimated the
zero-field resistivity of the DQW. Finally, the quantum mo-
bilities for each band were calculated from Fermi’s golden
rule. All of the experimental results were reproduced reason-
ably well with the model.

II. SAMPLE

The present experiments made use of a sample with two
18-nm-wide GaAs wells separated by a 3.4 nm barrier of
Al0.67Ga0.33As. The electrons were provided by ad-doped Si
layer on each side of the wells and separated from them by
120 nm of Al0.67Ga0.33As. The relative energies of the wells
were adjusted by a top gate which comprised a gold film
insulated by 30 nm of SiO2. To a good approximation, when
both wells were occupied the gate raised or lowered the en-
ergy of only the well closest to the sample surfacesthe upper
welld with the carrier density in the bottom well being almost
constant. The gate allowed the density in the upper well to be
varied from zero to at least 2 times the density in the lower
well.
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III. EXPERIMENTAL TECHNIQUES AND RESULTS

The longitudinal resistivity was measured by standard dc
four-terminal methods with a resolution of a few nV s. Mea-
surements were made as a function of gate voltageVg and
magnetic fieldB at fixed temperatures ofT=0.32 K, 1.09 K,
and 4.2 K. The current was typically about 50 nA, chosen to
give no observable electron heating as determined from the
deHS oscillations. The resistivityr0 as a function ofVg and
the total carrier densitynT at 0.32 K and 4.2 K are shown in
Fig. 1. Both curves exhibit a resonance atVg
=−0.04±0.01 V snT=1.65±0.0531015 m−2d and, in agree-
ment with previous work, the resonance broadens as the tem-
perature is increased. The broadening is barely visible at
1.09 K, and so these data are not shown.

As Vg is decreased, the background resistivity rises
smoothly. This is primarily caused by the decreasing density
of carriers in the upper well that have a higher mobility than
those in the lower well away from the resonance. NearVg
=−0.35 V there is a small kink in the curve that corresponds
to the point at which the upper well is emptying. Charlebois
et al.5 show more data on the resistance resonance over a
wider range temperatures for another sample taken from the
same wafer.sNote that their gate had a thicker SiO2 layer.d

The resistivityrxx was also measured as a function of the
perpendicular magnetic fieldB at many different fixed values
of Vg. Some examples of data at 0.32 K are shown in Fig. 2.
For analysis purposes we consider each of these curves to be

the sum of a semiclassical backgroundrxx
sc plus a quantum-

oscillatory partrxx
osc. At Vg=0.2 V and −0.2 V, a clear mini-

mum in the resistivity atB=0 is seen for each curve; this is
due torxx

sc and arises from two groups of carriers with differ-
ent mobilities. However, atVg=−0.04 V si.e., at resonanced
where the wells have the same mobility, there is no observ-
able minimum. This is in accordance with expectations for
the behavior of the semiclassical magnetoresistance when
both groups of carriers have the same mobility, as will be-
come clearer in Sec. III B. Under these conditions a weak
maximum is visible, which we will also return to later. The
deHS oscillations, i.e., in the componentrxx

osc, become visible
in these data at,0.07 T, a field at whichrxx

sc is beginning to
saturate. At 1.09 K the oscillations are strongly damped, and
by 4.2 K they are negligible over the field range of interest.

A. Analysis of deHS oscillations

As expected, over practically the whole range of gate
voltage, the deHS oscillations indicate two oscillation fre-
quencies,f i, ignoring sum and difference frequencies and
harmonics. After removing most of the background, the re-
sulting oscillations were Fourier transformed and the densi-
ties ni of the electrons in the two bands were obtained from
the usual expressionni =2efi /h.

Although the random scatter onni obtained by Fourier
analysis was reasonably low, it was found that it could be
further reduced by directly fitting the oscillations to the stan-
dard expression,7,8

rxx
osc= o

i=1,2
AiDsXdexpS−

p

mi
qB
DcosS2pf i

B
+ fiD , s1d

where Ai and fi are constants andDsXd=X/sinhX is the
thermal damping factor withX=2p2kBT/"vc, kB being the

FIG. 1. The zero-field resistivity,r0, as a function of gate volt-
age Vg and total carrier concentrationnT. The resonance is near
Vg=−0.04 V. The filled and open circles are data at 0.32 K and
4.2 K, respectively. The line was calculated using the model de-
scribed in the text.

FIG. 2. Examples of data on the resistivityrxx, at 0.32 K as a
function of magnetic fieldB at various fixed gate voltagesVg. The
top curve is offset by +150V and the bottom by −200V.
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Boltzmann constant,vc being the cyclotron frequency, and
mi

q are the quantum mobilities. Clearly this analysis has the
additional advantage of allowing the quantum mobilities for
the two bands to be obtained. The term exps−p /mi

qBd ac-
counts for the broadening of the Landau levels due to impu-
rity scattering, and it is usually referred to as the Dingle
factor. The Dingle temperatureTD is another standard mea-
sure of Landau-level broadening and the Dingle factor is
often written as exps−2p2kBTD /"vcd.

The analysis procedure involved first removing any re-
sidual background by filtering, using Fourier transform
methods; at the same time any sum and difference
frequencies8 and harmonics were also removed. The fitting
was done using nonlinear least-mean-squares iterative tech-
niques with the parametersAi, f i, mi

q, andfi as unknowns. To
increase the sensitivity of the fitting to the low-field data, the
weighting of the data points was increased by a factor of 10
at fields ,0.22 T. The fits were always excellent over the
full-field range. Occasionally there were observable devia-
tions between the fitted curves and the data at the highest
fields, but this was expected, because Eq.s1d becomes inac-
curate when the oscillation amplitude is large; this was one
of the reasons for strongly weighting the low field oscilla-
tions. The same analysis was carried out for data at both
0.32 K and 1.09 K. Interestingly, at 1.09 K the Fourier trans-
forms did not have enough resolution to clearly separate the
two frequencies through the resonance region, but the direct
fits did allow this. By 4.2 K there were insufficient oscilla-
tions for an analysis to be made.

The values ofni and nT=n1+n2 as functions ofVg ob-
tained from this procedure are shown in Fig. 3. The various
curves forni appear to be very similar at the two tempera-
tures, but the higher temperature data give consistently
slightly higher values. At 0.32 K we findnT=s1.71±0.01d
+s2.08±0.02dVg 1015 m−2 with Vg in volts, and at 1.09 K,
nT=s1.74±0.01d+s2.08±0.04dVg 1015 m−2. The same figure
also shows some values ofnT obtained from the Hall data
that obey nT=s1.78±0.01d+s2.10±0.01dVg 1015 m−2 at
1.09 K.

The differences innT between the various data sets may or
may not be real. They could be due to minor irreproducibili-
ties in the impurity ionization on different cooldowns. It is
also possible that the quoted errors for the deHS evaluations
do not adequately reflect the true uncertainties. The fits at
0.32 K were made down to about 0.07 T. It is difficult to
control errors inB to better than 0.002 T, so the upper limit
on 1/B could be inaccurate by,2–3 %. On the other hand,
the Hall data are essentially linear inB, and small errors in
the field are much less of a problem.

The results onmi
q for the 0.32 K data are shown in Fig. 4

and, as expected, they are seen to have the form of two
smooth curves crossing at the resonance point. The corre-
sponding values ofTD are in the range of 0.1–0.5 K for
these data. The 1.09 K fitssnot shownd also yield values of
TD, but the uncertainties are much larger, typically
0.1–0.2 K, because of the reduced lengths of the data sets.
Within these uncertainties the results generally agree with
those obtained from the 0.32 K data.

B. Analysis of semiclassical background

The two-band model for the semiclassical magnetoresis-
tivity in a perpendicular magnetic field is well knownse.g.,
see Ref. 9d. It assumes that two groups of carriers exist with
densitiesni and transport mobilitiesmi

t si =1,2d, and that the
two groups carry current independently. If we associate the
two groups with the two bands in the DQW, then the last

FIG. 3. The carrier densities as functions of gate voltageVg. The
filled circles and open triangles are results evaluated from the deHS
data at 0.32 K and 1.09 K, respectively. The open squares are from
the Hall data at 1.10 K. The lines were calculated using the model
described in the text.

FIG. 4. The quantum mobilitiesmq as a function of gate voltage,
Vg. The open circles were obtained from the deHS data at 0.32 K.
The lines were calculated by using Eqs.s9d–s16d as explained in the
text.
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assumption is not satisfied around the resonance point, where
a significant fraction of the scattering is intersubband. It has
been shown10 that the two-band model can be modified to
take interband scattering into account. The resulting semi-
classical resistivityrxx

sc can be written

rxx
sc = r0F1 +

rn1n2m1
t m2

t sm1
t − m2

t d2B2

sn1m1
t + n2m2

t d2 + srnTm1
t m2

t d2B2G , s2d

wherer0 is the zero-field resistivity=1/sn1m1
t +n2m2

t de. The
dimensionless parameterr takes into account interband scat-
tering, and whenr =1 this equation reduces to the usual two-
band result for two independent bands. In a DQW we expect
r to approach unity well away from the resonance condition,
because then the wells behave almost independently. The
model predicts a positive magnetoresistivity which saturates
when the magnetic field satisfies the semiclassical, high-field
condition for both groups of carriers,mi

tB@1. Clearly, if the
two groups have exactly the same mobility, then there is no
magnetoresistance from this mechanism.

We have analyzedrxx
sc at low magnetic fields using Eq.

s2d. The usual technique reported in the literature for analyz-
ing such data has been to fit the relative resistivitysrxx

sc

−r0d /r0. However, we have fitted the full expression because
the absolute value ofr0 provides a much stronger constraint
on the allowed values of the mobilities than do the relative
resistivity values. In this regard, when measuring the dc volt-
age across the sample to obtain the resistivity during a field
sweep, there was always a small offset which was deter-
mined and eliminated from the signal. As a check, the resis-
tivity at the zero field was also measured, using current re-
versals to automatically eliminate the offset, and, if
necessary, these results were used to normalize the data ob-
tained during the field sweeps.

The values ofni for the two bands were taken directly
from the results of fitting the deHS oscillations at 0.32 K.
There are other points about the analysis that should also be
mentioned. Clearly in Fig. 2 the oscillations and semiclassi-
cal behavior overlap at 0.32 Ksbut this is not the case at
1.09 K where the oscillations are much weaker, nor at 4.2 K
where they are negligibled. When the deHS oscillations be-
came relatively large, the curve fitted to the semiclassical
part could be significantly affected, depending on precisely
where the data set was terminated on an oscillation. To mini-
mize this problem the 0.32 K data were smoothed to elimi-
nate the lowest field oscillations so that fits up to about
0.15–0.20 T became possible. This was done by averaging
the data around each point using Gaussian weighting,11 the
width of the Gaussian being chosen to eliminate the low-field
oscillations but to have no observable effect onrxx

sc.
To obtain the best fits it was also found necessary to in-

clude an extra resistivity contribution of the form,

rxx
ex= aB+ bB2. s3d

The first term was very smalls&1% of r0 over the field
range of interestd and it arose because the data were not
precisely even inB, presumably due to a small admixture of
the Hall resistivity. It was noticeable only when the mobili-
ties of the two bands were almost the same.

The coefficientb in the quadratic term was always nega-
tive. This term was usually not resolved with any accuracy,
and was not readily visible away from the resonance. The
magnitude is roughly 1.0±0.5V /T2 over most of the range
of gate voltages, but in the region around the resonance it
approximately doubles. A term of this type is often seen in
magnetoresistance experiments and has been ascribed to
Coulomb interactions.12 If this were the case here, it would
exhibit a logT dependence, but the scatter in our data does
not allow this to be tested. Note that Eq.s2d is also approxi-
mately quadraticsand positived nearB=0, but the factorbB2

gave a much smaller contribution, except close to resonance,
and in practice the two components were independent of
each other. Thus a full fit had five free parameters compris-
ing m1

t , m2
t , r, a, andb. However, the resulting values ofmi

t

were hardly changed when we seta=0=b, though the fitted
curves were visibly worse.

Some examples of thessmoothedd experimental data for
rxx and the fitted curves are shown in Fig. 5. The fitted
curves were always very good representations of the data.
We also tried fitting with the standard model9 with r =1. This
gave much poorer fits around the resonance region, as ex-
pected, because the interband scattering is strong here, but
well away from resonance any difference between the two
fits became very small. However, the transport mobilities
determined by both types of fit show a similar behavior over
the whole range of densities.

We note that Eq.s2d always allows two possible sets of
solutions13 when fitting any experimental curvesi.e., two dif-

FIG. 5. Examples of the experimental, semiclassical resistivity
rxx

sc at various fixed gate voltagesVg as a function of the magnetic
field B at 0.32 K. The filled circles are the measured values and the
lines are fitted curves using Eqs.s2d ands3d. The experimental data
have been smoothed to reduce the deHS oscillationssas explained
in the textd.
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ferent sets of coefficients formi
t and rd, and these two sets

give identical goodness-of-fits. The two sets of solutions
were readily found for all experimental curves. They gave
values forr andmi

t, which lie on different smooth curves, as
a function ofVg or nT, except at resonance where they merge,
because at this pointm1

t =m2
t . However, one set of solutions

had an unphysical behavior forr when the system was well
away from resonance, and it was discarded on this basis. The
correct set gave the expected limit ofr <1 under these con-
ditions, whereas the incorrect set had either a very large
value of r s,10d or a very small values,0.1–0.2d at Vg

< ±0.35 V, respectively. The data for the coefficientr at the
various fixed temperatures are shown in Fig. 6 as a function
of Vg, and they are seen to have a minimum near resonance
sVg=−0.04 Vd.

The values formi
t as a function ofVg at 0.32 K are shown

in Fig. 7. They lie on two smooth curves which appear to
cross at the resonance point just as the quantum mobilities do
in Fig. 4. The width of the resonance as seen in Fig. 7 cor-
relates well with that in Fig. 1. At the crossing pointsVg

=−0.04±0.01 Vd there is no sign of a dip in the measured
resistivity shown in Fig. 5, indicating that the two mobilities
are indeed identical here. The upper well has the higher mo-
bility across the whole range. However, at large negative
gate voltagess&−0.35 Vd the upper well empties and the
magnetoresistivity again shows no minimum.

The transport mobilities in Fig. 7 are always higher than
the quantum mobilities in Fig. 4, which is typical of
modulation-doped GaAs heterostructures.7 Often in GaAs
systems the ratiomt /mq is a factor of 10 or more, but here it
is typically 2–3, implying that the carriers are subject to
more large-angle scattering than was expected from the
modulation doping used. Furthermore, the upper well has a
consistently higher mobility than the lower well, which is
inconsistent with the symmetric doping used in the growth.
However, although the wells were designed to be symmetri-
cally modulation doped, in practice14 there is often a move-

ment of the dopant atoms with the growth front which results
in a tail of Si atoms from the lower doping layer extending to
both quantum wells, but with the higher density in the lower
well. This would explain both the higher mobility of the top
well and the low ratio ofmt /mq.

The same analysis was also carried out for the data at
1.09 K and 4.2 K, and the results are shown in Figs. 8sad and
8sbd. In both cases we used values ofni determined from the
analysis ofrxx

osc at 0.32 K. For comparison purposes we also
analyzed the 1.09 K data usingni determined fromrxx

oscat the

FIG. 6. The coefficientr in Eq. s2d as a function of gate voltage
Vg. The symbols are experimental data: open circles are 0.32 K,
filled circles are 1.09 K, and open squares are 4.2 K. The line was
calculated by using Eq.s17d, as explained in the text.

FIG. 7. The transport mobilitiesmt as a function of gate voltage
Vg. The open circles are the measured quantities at 0.32 K evalu-
ated from the semiclassical magnetoresistivities. The lines were cal-
culated by using Eqs.s7d–s15d, as described in the text.

FIG. 8. The experimental transport mobilitiesmt evaluated from
the semiclassical magnetoresistivities as a function of gate voltage
Vg at 1.09 Ksupper paneld and 4.2 Kslower paneld.
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same temperature; this made no obvious difference to the
resulting transport mobilities, except that the random scatter
was much higher.

At these higher temperatures the resulting curves no
longer cross at the resonance point. This is an unexpected
development, but it is confirmed by the simple observation
that Eq.s2d shows that a point of no positive magnetoresis-
tance only requiresm1

t =m2
t , the precise values ofn1 and n2

not being important. We can find such a point in the data at
0.32 K, but not at 1.09 K and 4.2 K. The low-field behavior
of the resistivity for various gate voltages around the reso-
nance condition is shown in Fig. 9 for the 4.2 K data, where
all the curves show positive magnetoresistance around the
origin, and for comparison also for 0.32 K at resonance,
where the curve shows no positive magnetoresistance. We
recall thatn1 and n2 show no unusual behavior as one in-
creases the temperature from 0.32 K to 1.09 Kssee Fig. 3d
suggesting that whatever causes the mobility gap at reso-
nance, it does not influenceni in a significant way.

Another interesting feature of the 4.2 K data in Fig. 8sbd
is that the width of the resonance is clearly wider than that
indicated by the 0.32 K data in Fig. 7. This temperature-
induced broadening correlates well with that of the resistance
resonance in Fig. 1. At 1.09 KfFig. 8sadg there is no notice-
able increase in the resonance width, and this is also the case
for the 1.09 K resonance datasnot shown in Fig. 1d.

IV. THEORETICAL RESULTS AND COMPARISON WITH
THE EXPERIMENTAL DATA

A. Electron densities of the first two subbands

The electron wave functions and the corresponding en-
ergy eigenvalues that describe the lowest two states in a
DQW are

Fiksx,y,zd = fiszdexpsk · r d/ÎA, s4d

and

Eik = Ei + "2k2/2m* , s5d

wherei =1,2 is thesubband index,k =skx,kyd is the electron
wave vector,r =sx,yd is the electron position in thexy-plane,
and A is the sample area. The subband energiesEi and the
electron wave functionsfiszd for the confining potential in
the z direction were calculated by solving Schrodinger’s
equation for two square quantum wellssQWsd of width
18 nm separated by a potential barrier of width 3.4 nm.
When the applied gate voltage is zero the two wells of the
DQW are symmetric and their height is taken to beV1
=310 meV. The potential barrier of the top well varies lin-
early with the applied gate voltage, according to the relation-
ship DV1=aVg. The proportionality constanta was deter-
mined by matching the change of the density of the top well
to the change of the barrier potential, where tunneling be-
tween the wells is ignored.

The wave functions for the symmetric wells are strongly
mixed to form symmetric and antisymmetric states separated
by an energy gap that depends on the barrier between the
wells, and the electrons have equal probabilities of being in
either well; this is the resonance condition. By varying the
gate voltage in the top well the system moves away from
resonance and the two bands become progressively localized
in one or the other of the wells. Examples of calculated wave
functions at various valuesVg for the present sample are
shown in Fig. 10, where the solid lines correspond to the
symmetric state and the dashed lines to the antisymmetric
state. Note that in the calculations the resonance condition
occurs atVg=0 V, while in the experiments it occurred at
Vg=−0.04 V.

For degenerate systems the electron density in theith sub-
band is given byni =sm* /p"2dsEF−Eid where EF is the
Fermi level.EF can be readily estimated from the relation-
ship,

EF =
nTp"2

2m* +
E1 + E2

2
, s6d

wherenT=n1+n2 is the total density. In order to estimate the
individual band densitiesn1 andn2 we put in Eq.s6d the total
electron density obtained from the Hall measurements.

The calculated values of the electron densitiesni for each
subband are shown in Fig. 3. For comparison with the ex-
perimental results, the theoretical curves have been shifted
by −0.04 V along the horizontal axis, so that the resonance
position coincides with that experimentally observed.

FIG. 9. The solid circles in the four topmost curves are the
experimentalrxx data at 4.2 K at various fixed gate voltagesVg

around the resonance pointsVg=−0.04 Vd as a function of the mag-
netic field. The lowest curve shows the experimental data at 0.32 K
sopen circlesd at the resonance point. The solid lines are fits to the
4.2 K data using Eqs.s2d and s3d. The dashed lines are fits at both
temperatures, which assume thatm1

t =m2
t so that Eq.s2d yields only

r0. This latter form gives an adequate fit to the 0.32 K data, show-
ing that at resonancem1

t =m2
t . In contrast, all the 4.2 K curves show

a minimum at the origin, which implies that there is no point at
which m1

t =m2
t . The asymmetry in the data is due to the termaB in

Eq. s3d.
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B. Transport and quantum mobilities of the individual
subbands

The transport mobility of theith subband ismi
t=eti

t /m* ,
whereti

t is the elastic relaxation time due to electron scatter-
ing by ionized impurities. The relaxation timesti

t were ob-
tained by solving the Boltzmann equation for a system with
two occupied subbands. We have evaluated the results only
in the low-temperature degenerate limit, where only elec-
trons at the Fermi surface contribute to the relaxation times
and conductivity. We obtainedti

tsEFd by solving the follow-
ing system of two linear equations:10,15,16

t1
t K11 + t2

t K12SEF2

EF1
D1/2

= 1,

s7d

t2
t K22 + t1

t K12SEF1

EF2
D1/2

= 1,

whereEFi =EF−Ei andKij are the components of the scatter-
ing matrix K given by

Kij = o
k=1

2

Gik
0 di j − Gi j

1 . s8d

The transition ratesGi j
0 and Gi j

1 are given by the
expressions,17

Gi j
0 =

m*

p"3 E dznNimpszndE
0

p

duuVijsq,zndu2, s9d

and

Gi j
1 =

m*

p"3 E dznNimpszndE
0

p

du cosuuVijsq,zndu2, s10d

with u being the scattering angle between the initial and the
final statesk and k +q of the transition,Nimpsznd being the
distribution of the ionized impurities, andVijsq,znd being the
Fourier transform of the Coulomb interaction. From the con-
servation of energy and momentum we have17

q = S2m*

"2 D1/2

sEFi + EFj − 2ÎEFiEFj cosud1/2. s11d

The Fourier transform of the Coulomb interaction is given by

Vijsq,znd = o
kl

Vkl
baresq,zndekli j

−1 sqd, s12d

where

Vkl
baresq,znd =

e2

2k0kq
E

−`

`

fkszdflszde−quz−znudz. s13d

k0 is the permittivity of free space, andk is the permittivity
of GaAs. In Eq.s12d ekli j

−1 sqd are the components of the in-
verse dielectric matrix in the random-phase approximation.
The matrix elementsekli j

−1 sqd are given by

ekli jsqd = dkidl j +
e2

2k0kq
FklijsqdPi j , s14d

whereFklijsqd are the screening form factors,

Fklijsqd =E dzE dz8fkszdflszde−quz−z8ufisz8df jsz8d,

s15d

and Pi j is the polarization function. In the long-wavelength
limit Pi j <m* /p"2.

The quantum mobilities of the two subbandsmi
q=eti

q/m*

are determined by the quantum lifetimesti
q, which, for two

occupied subbands, are obtained from Fermi’s golden rule,

1

ti
q = o

j=1

2

Gi j
0 . s16d

In principle there are no unknowns in the calculation ofti
t

andti
q, given the ionized impurity distribution appropriate to

the growth sequence of the sample. However, the experimen-
tal data on the mobilities cannot be reproduced, assuming
that the only scattering comes from the ionizedd-doped Si
layers 120 nm from the wells. We recall two experimental
points noted in Sec. III B. The first is that the experimental
ratio mt /mq is typically 2–3, whereas our calculations show
that if all scattering originated from thed-doped layers, then
mt /mq,100 because of the preponderance of small angle
scattering. This clearly indicates that scattering centers closer
to the two-dimensional electron gass2DEGd must be present.

FIG. 10. Examples of calculated wave functions in the DQW at
three fixed gate voltagesVg. The solid lines correspond to the sym-
metric state and the dashed lines to the antisymmetric state. The
locations of the two wellssand their relative depths, not to scaled
are indicated by gray lines.
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The second is that the wells exhibit quite different mobilities,
which is inconsistent with an identical distribution of charge
on each side of the wells. As noted earlier, these effects are
probably mainly due to the diffusion of the dopant Si atoms,
though the resulting impurity distribution is not known in
any detail.

For these reasons we made the simple assumption that the
ionized scatterers were located at the outer interfaces of the
DQW, i.e., at distancesz1=−19.7 nm andz2=19.7 nm from
the center of the DQWsz=0d. We calculatedmi

t andmi
q as a

function of the gate voltage by using Eqs.s7d–s16d and the
standard material parameters for GaAs. The subband ener-
giesEi and the electron wave functionsfiszd were calculated
for each value ofVg as described in Sec. IV A. The best
overall fits of bothmi

t and mi
q were obtained withNimpsz1d

=0.1131015 m−2 slower interfaced and Nimpsz2d=0.015
31015 m−2 supper interfaced. Clearly these values cannot ac-
count for the electronic densities in the 2DEG, but at this
time we are unable to obtain a more realistic distribution.
The results of the model calculations are shown as solid lines
in Fig. 4 for mi

q and in Fig. 7 formi
t. The theoretical results

are shifted by −0.04 V along the horizontal axis to match the
experimental location of the resonance point. The resistivity
r0 was evaluated fromr0=1/esn1m1

t +n2m2
t d, and the results

are shown in Fig. 1 as the solid line. The gate voltages for
the calculated data are again shifted by −0.04 V. In all cases
there is reasonable agreement with the experiment showing
that the basic features of the model calculation are correct.

The effect of intersubband scattering is introduced both
by the off-diagonal elements and the transition ratesG12

0 that
appear in the diagonal terms of theK matrix. In order to
examine this effect we calculate ther parameter that appears
in Eq. s2d. This parameter is given by the expression,10

r =
t̄1t̄2

t1
t t2

t , s17d

wheret̄ 1
−1 and t̄ 2

−1 are the eigenvalues of theK matrix,10

t̄ 1,2
−1 =

1

2
sK11 + K22d ±

1

2
ÎsK11 − K22d2 + 4K12

2 . s18d

We see by the inspection of Eqs.s7d and s8d and Eqs.s17d
and s18d that r becomes unity when the transition rates
Gi jsi Þ jd are set to zero. We expect that away from resonance
the effect of intersubband scattering should be small. This is
verified from the numerical calculations ofr as T→0 K,
shown by the solid line in Fig. 6. The theoretical values ofr
are in reasonable agreement with the experimental results.

V. DISCUSSION

The calculations described in Sec. IV give a good account
of all the measured quantities in the low-temperature limit.
The only unknown in the theory was the microscopic distri-
bution of the ionized impurities that gives rise to the scatter-
ing of the electrons, and so we used a model which gave the
observed ratio of transport to quantum lifetime. Interestingly,
the model also gave a good account of the intersubband scat-
tering, a quantity which has been rather difficult to determine
in a quantitative fashion.

Berk et al.3 described the resistance resonance and the
effects of an applied magnetic field parallel to the plane of
the 2DEG by using an alternative microscopic model based
on the Kubo formula. The model defines two lifetimes for
each band, the single-particle, small-angle lifetimeti and the
transport lifetimeti

tr. These appear to be identical to those
that define the quantum mobility and transport mobility that
we use here, i.e.,mi

q=eti
q/m* and mi

t=eti
t /m* . As T→0 all

lifetimes are determined by elastic scattering. Berket al. ob-
tained the transport lifetimes from measurements of the re-
sistivity and the Hall coefficient well away from resonance.
The broadening of the resonance as the temperature rises was
ascribed by Berket al. to a decreasingti. They extractedti
by fitting the experimental resistivity as a function of the
parallel magnetic field to theory and, from the resulting tem-
perature dependence and absolute magnitude, identified the
decrease as being due to electron-electronse-ed scattering
that obeys 1/tee<3.0skBTd2/"«F.

The present data have been analyzed in a way which gives
mi

t andmi
q independently. Using the above estimate oftee for

our sample would translate into a contribution to the quan-
tum mobility due to e-e scattering ofmee

q =etee/m
*

=240/T2 m2/V s at the resonance point. At 1.1 K this would
result in an,6% decrease tomq sor an equivalent increase of
6% in TDd between 0.32 K and 1.1 K, which is below our
resolution. However, it is not clear that e-e scattering should
affect TD at all. Although the effect of e-e interactions on
quantum oscillations in three-dimensionals3Dd metals is
known and has a long history,18,19 we have not been able to
find any information with respect to the effect of e-e scatter-
ing on TD for either 3D or 2D systems. Experimentally, no
significant temperature dependence ofTD has been detected
in 3D metals.18–20 It is known that inelastic electron-phonon
scattering does not contribute toTD, and it is possible that e-e
scattering behaves in a similar way.

It is interesting that the calculation of the mobilities and
the resistance resonance by the Boltzmann equation in the
elastic-scattering limit, as outlined in Sec. IV, provides an-
other theoretical approach to this problem. The two relax-
ation times emerge naturally, and tunneling is not introduced
in any direct way, yet the results are in reasonably good
agreement with the experiment. We also draw attention to
similar calculations by Heisz,21 which also gave good agree-
ment with the experiment for the case of a parallel magnetic
field.

An unexpected feature of the present experimental data is
that the mobility curves do not cross at 1.09 K and 4.2 K.
One possibility is that this results from the effects of the
broadening of the Fermi function. We would expect this to
have an effect when the thermal broadeningkBT is of the
same order of magnitude as the tunneling gap. The latter is
known22 to be about 6.3 K, and so it seems likely that the
4.2 K data could be affected. Detailed calculations would be
required to determine the temperature at which any effects
would become visible and what form they might take.

VI. CONCLUSIONS

The present work shows that the Boltzmann approach
provides a good explanation of the low-temperature transport
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results measured in the present system. It would be of inter-
est to extend it to other systems, and in particular to deter-
mine what happens when the tunneling time becomes long
compared to the transport relaxation times. It would also be
interesting to extend the Boltzmann calculations to finite
temperatures to determine if they might provide an explana-
tion for the broadening of the resistance resonance and the
gap in the mobility curves. The alternative theory of Berket
al.3 has successfully described the temperature variation of
the resistance resonance and the quenching of the resonance
in a parallel magnetic field by invoking e-e scattering. It is
not clear whether it can also give a detailed account of the
present data. Finally, we note that the present experimental

and theoretical methods may also be applied to DQWs in a
parallel magnetic field by using a small perpendicular field
component. This would provide a detailed microscopic view
of the destruction of the resonance by the field.
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