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Relativistic treatment of harmonics from impurity systems in quantum wires
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Within a one-particle approximation of the Dirac equation we investigate a defect system in a quantum wire.
We demonstrate that by minimally coupling a laser field of frequencyv to such an impurity system, one may
generate harmonics of multiples of the incoming frequency. In a double defect system one may use the distance
between the defects in order to tune the cutoff frequency.
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I. INTRODUCTION

Since the early 1990s, the generation of high-order h
monics of a strong, low-frequency laser field has attracte
lot of attention in the atomic physics community; see, e
Refs. 1 and 2 for a fairly recent review. Indeed, hig
harmonic generation has opened a wide range of possibil
for obtaining high-frequency coherent sources, convert
infrared input radiation of frequencyv into light in the ex-
treme ultraviolet regime whose frequencies are multiples
v ~even up to order;1000; see, e.g., Ref. 2 for a rece
review!.

In gases, composed of atoms or small molecules, this p
nomenon is well understood and, to some extent, even
trollable in the sense that the frequency of the highest h
monic, the so-called ‘‘cutoff,’’ can be tuned as well as t
intensities of particular groups of harmonics. In more co
plex systems, however, as for instance solids, or larger m
ecules, high-harmonic generation is still an open proble
This is due to the fact that, until a few years ago, such s
tems were expected not to survive the strong laser fie
involved. However, nowadays, with the advent of ultrash
pulses, there exist solid-state materials whose damage th
old is beyond the required intensities of 1014 W/cm2.3 As a
direct consequence, there is an increasing interest in s
materials as potential sources for high harmonics. In f
several groups are currently investigating this phenome
in systems such as thin crystals,4,5 carbon nanotubes,6 or or-
ganic molecules.7,8

Prototype solid-state devices are quantum wires, wh
nowadays do not only serve as a theoretical test ground
may even be studied experimentally, e.g., Ref. 9. With reg
to the previously outlined problematic it is of great interest
investigate how such devices interact with laser light. In p
ticular, the question of whether such systems are suita
high-harmonic sources has not been dealt with up to n
This is the central question which we shall be answer
positively in this manuscript.

A useful particularity of quantum wires is that they are t
physical realization of models involving only one spatial d
mension. Considering theories in one space dimension
the further virtue that it allowed for the development of va
ous powerful nonperturbative techniques, which exploit
integrability of the models. For instance, one may comp
0163-1829/2003/67~12!/125405~9!/$20.00 67 1254
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the conductance of quantum wires in this fashion, see, e
Ref. 10, and references therein. This also suggests tha
exact relativistic treatment of the electrons in the wire in t
presence of the laser field is possible. Therefore such a tr
ment constitutes an advantage over most approaches ad
in the literature, in the context of atoms in strong laser fiel
which involve a series of approximations. The first, and m
general approximation performed in this context is tha
proper field-theoretical treatment is usually not taken in
account. Furthermore, when dealing with a relativistic situ
tion, the Dirac equation is solved mostly by numerical me
ods, which by themselves involve a series of approximat
and exhibit a good convergence only for high-frequen
fields.11 Further approximations include the expansion12 of
the Dirac equation for the weakly relativistic case, the so
tion of the Klein-Gordon equation13,14 or of the relativistic
Schrödinger equation, or purely classical treatments.15 For
some recent general reviews see, e.g., Ref. 16.

In this paper, we solve the Dirac equation for an electr
in a quantum wire subject to an external laser field, includ
a single and multiple defects. We investigate in various d
ferent regimes the radiation emitted by an electron in t
system in connection with the transmission at the defects
demonstrate that the generation of harmonics is possibl
such systems.

II. DEFECT SYSTEMS IN LASER FIELDS

Since the work of Weyl,17 one knows that matter may b
coupled to light by means of a local gauge transformati
which reflects itself in the usual minimal coupling prescri
tion, i.e., ]m→]m2 ieAm , with Am being the vector gauge
potential. For a free Fermion with massm this yields to the
Lagrangian density

LA5c̄~ igm]m2m1egmAm!c. ~1!

We adopt here relativistic units 15c5\5m'e2137 as
mostly used in the particle physics context rather than ato
units 15e5\5m'c/137 useful in atomic physics. As com
mon conventions we abbreviated herec̄5c†g0 and use the
following realization for the gamma matrices:
©2003 The American Physical Society05-1
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g05S 0 1

1 0D , g15S 0 1

21 0D , g55g0g1. ~2!

In the absence of the laser field the equations of motion
the free Fermion may be solved by the well-known Four
decomposition,

c j
f~x,t !5E du

A4p
@aj~u!uj~u!e2 ipW j •xW1a

̄

†
~u!v j~u!eipW j •xW#.

~3!

We parametrize the momentum as common through the
pidity u by pj

05mjcoshu, pj
15mj sinhu and denote the an

tiparticle ~positron! of the Fermion~electron! j by ̄ . For the
Weyl spinors we employ the normalization

uj~u!52 ig5v j~u!5Amj

2 S e2u/2

eu/2 D , ~4!

and the creation and annihilation operatorsai(u), ai
†(u) for

a particle with rapidityu obey the usual Fermionic anticom
mutation relations $ai(u1),aj (u2)%50, $ai(u1),aj

†(u2)%
52pd i j d(u12u2). When the laser field is switched on, w
can solve the equation of motion associated to Eq.~1!,

~ igm]m2m1egmAm!c50, ~5!

by a Gordon-Volkov type solution,18

c j
A~x,t !5expF ieEx

dsA1~s,t !Gc j
f~x,t !, ~6!

5expF ieE t

dsA0~x,s!Gc j
f~x,t !. ~7!

Using now a linearly polarized laser field along the directi
of the wire, the vector potential can typically be taken in t
dipole approximation to be a superposition of monoch
matic light with frequencyv, i.e.,

A~ t !ªA1~ t !5
1

xE0

t

dsA0~s! ~8!

52
1

2E0

t

dsE~s!52
E0

2 E
0

t

ds f~s!cos~vs! ~9!

with f (t) being an arbitrary enveloping function equal
zero fort,0 andt.t, such thatt denotes the pulse length
In the following we will always takef (t)5Q(t)Q(t2t),
with Q(x) being the Heaviside unit step function. The se
ond equality in Eq.~8!, A0(x,t)5xȦ(t), follows from the
fact that we have to solve Eqs.~6! and ~7!.

One comment is due with regard to the validity of t
dipole approximation in this context. It consists usually
neglecting the spatial dependence of the laser field, whic
justified whenxv,c51, wherex is a representative scale o
the problem considered. In the context of atomic physics
is typically the Bohr radius. In the problem investigated he
this approximation has to hold over the full spatial range
which the Fermion follows the electric field. We can estima
12540
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this classically, in which case the maximal amplitude
eE0 /v2 and therefore the following constraint has to hold

S eE0

v D 2

54Up,1, ~10!

for the dipole approximation to be valid. Due to the fact th
x is a function ofv, we have now a lower bound on th
frequency rather than an upper one as is more common in
context of atomic physics. We have also introduced here
ponderomotive energyUp for monochromatic light, that is
the average kinetic energy transferred from the laser field
the electron.

The solutions to the equations of motion of the free s
tem and the one which includes the laser field are then
lated by a factor similar to the gauge transformation from
length to the velocity gauge

c j
A~x,t !5exp@ ixeA~ t !#c j

f~x!. ~11!

In an analogous fashion one may use the same minimal
pling procedure also to couple in addition the laser field
the defect. One has to invoke the equation of motion in or
to carry this out, since as in Ref. 10, we assume here also
the defect is linear in the fieldsc̄ and c. The Lagrangian
density for a complex free Fermionc with , defects
D a(c̄,c,Am) of typea at the positionxn subjected to a lase
field then reads

LAD5LA1 (
n51

,

D an~ c̄,c,Am!d~xn!. ~12!

Considering for simplicity first the case of a single defe
situated atx50, the solution to the equation of motion re
sulting from Eq.~12! is taken to be of the form

c j
A~x,t !5Q~x!c j ,1

A ~x,t !1Q~2x!c j ,2
A ~x,t !. ~13!

This means we distinguish here by notation the solutions~11!
on the left and right of the defect,c j ,2

A (x,t) andc j ,1
A (x,t),

respectively. This is also reflected in the corresponding c
ation and annihilation operatorsaj ,1(u), aj ,2(u), etc. One
may then proceed according to standard potential scatte
theory and notes that these functions are not independe
each other. Substitution of Eq.~13! into the equation of mo-
tion yields the constraints

ig1@c j ,1
A ~x,t !2c j ,2

A ~x,t !#Ux505
]DAD~ c̄,c,Am!

]c̄ j
A~x,t !

U
x50

.

~14!

These restrictions~14! serve to determine the transmissio
and reflection amplitudes. The extension to multiple defe
that is having equations of the type~14! for each defect situ-
ated at positionx5xn , follows in an analogous straightfor
ward manner.

A. Transmission and reflection amplitudes

Substituting the Fourier decomposition~3!, together with
the free Fermion solution minimally coupled to a laser fie
5-2



n

s

pl
n

r
rr
la

le
tw
o

o

ot
on
c

r-

th
e

or

w

in
t

ca

as

re-
ul
s
r the

ng

om-

f-

i.e.,

fre-

the

as

RELATIVISTIC TREATMENT OF HARMONICS FROM . . . PHYSICAL REVIEW B67, 125405 ~2003!
~11! into the constraint~14!, one can determine the reflectio
and transmission amplitudes from the left to the right,R and
T, respectively. They are defined in an obvious manner a

aj ,2~u!5R
j
~u!aj ,2~2u!1T

j
~u!aj ,1~u!. ~15!

When parity invariance is broken, the corresponding am
tudes from the right to the left do not have to be identical a
are defined as

aj ,1~2u!5T̃
j
~u!aj ,2~2u!1R̃j~u!aj ,1~u!. ~16!

In this way the laser field parametersE0 andv will be quan-
tities on which theR’s andT’s depend upon at a particula
time t. When iterating these equations one obtains the co
sponding expressions for multiple defect systems, e.g., p
ing for instance the defectDa left from D b one obtains the
well-known expressions

Ti
ab~u!5

Ti
a~u!Ti

b~u!

12Ri
b~u!R̃i

a~u!
, ~17!

Ri
ab~u!5Ri

a~u!1
Ri

b~u!Ti
a~u!T̃i

a~u!

12Ri
b~u!R̃i

a~u!
. ~18!

From our previous comment on the validity of the dipo
approximation it is clear that the distance between the
defects introduces a new scale in the system, which has t
constrained asy,v21. In addition, to justify that the mul-
tiple defect system can be treated effectively as a single
requires that the sum of they’s is much smaller than the
length of the wire. Similar expressions, which we will n
need in what follows, hold for the parity reversed situati
and for more defects; see, e.g., Ref. 10 and referen
therein.

In addition with regard to the application of high ha
monic generation, we shall be interested in the spectrum
frequencies which are filtered out by the defect while
laser pulse is nonzero. The Fourier transforms of the refl
tion and transmission probabilities provide exactly this inf
mation:

T~V,u,E0 ,v,t!5
1

tE0

t

dtuT~u,E0 ,v,t !u2cos~Vt !,

~19!

R~V,u,E0 ,v,t!5
1

tE0

t

dtuR~u,E0 ,v,t !u2cos~Vt !.

~20!

When parity is preserved for the reflection amplitudes,
haveuTu21uRu251, and it suffices to considerT in the fol-
lowing.

1. Type-I defects

Taking the laser field in form of monochromatic light
the dipole approximation~9!, we may naturally assume tha
the transmission probability for some particular defects
be expanded as
12540
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uTI~u,Up ,v,t !u25 (
k50

`

t2k~u!~4Up!ksin2k~vt !. ~21!

We shall refer to defects which admit such an expansion
‘‘type-I defects.’’ Assuming that the coefficientst2k(u) be-
come at most 1, we have to restrict our attention to the
gime 4Up,1 in order for this expansion to be meaningf
for all t. Note that this is no further limitation, since it i
precisely the same constraint as already encountered fo
validity of the dipole approximation~10!. The first coeffi-
cient is always the transmission probability for vanishi
laser field, that ist0(u)5uT(u,E050)u2. The functional de-
pendence of Eq.~21! will turn out to hold for various explicit
defects considered below. Based on this equation, we c
pute for such type of defect

TI~V,u,Up ,v,t!5 (
k50

`
~2k!! ~Up!ksin~tV!t2k~u!

tV)
l 51

k

@ l 22~V/2v!2#

.

~22!

It is clear from this expression that type-I defects will pre
erably let even multiples of the basic frequencyv pass,
whose amplitudes will depend on the coefficientst2k(u).
When we choose the pulse length to be integer cycles,
t52pn/v5nT for nPZ, the expression in Eq.~22! reduces
even further. The values at even multiples of the basic
quency are simply

TI~2nv,u,Up!5~21!n(
k50

`

t2k~u!~Up!kS 2k

k2nD , ~23!

which becomes independent of the pulse lengtht. Notice
also that the dependence onE0 andv occurs in the combi-
nation of the ponderomotive energyUp . Further statements
require the precise form of the coefficientst2k(u) and can
only be made with regard to a more concrete form of
defect.

2. Type-II defects

Clearly, not all defects are of the form~21! and we have to
consider also expansions of the type

uTII ~u,E0 /e,v,t !u25 (
k,p50

`

t2k
p ~u!

E0
2k1p

v2k
cosp~vt !sin2k~vt !.

~24!

We shall refer to defects which admit such an expansion
‘‘type-II defects.’’ In this case we obtain
5-3
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TII ~V,u,E0 /e,v,t!5 (
k,p50

`

(
l 50

p S p

l D V sin~tV!

~21! l 11tv212k

3S ~2k12l !! t2k
2p~u!

)
q50

k1 l F ~2q!22S V

v D 2G
1

~2k12l !! t2k
2p11~u!E0

)
q51

k1l11 F~2q21!22SVvD2GD E0
2k12p .

~25!

We observe from this expression that type-II defects w
filter out all multiples ofv. For the pulse being once aga
of integer cycle length, this reduces to

TII ~2nv,u,Up ,E0!5 (
k,p50

`

(
l 50

p S 2k12l

k1 l 2nD
3~21! l 1n

t2k
2p~u!

22l 22p
~Up!k1pE0

2pS p

l D
~26!

and

TII „~2n21!v,u,E0 /e…

5 (
k,p50

`

(
l 50

p

~21! l 1n11
t2k
2p11~u!

22l 22p11

3~Up!k1pS p

l D ~2k12l !! ~2n21!E0
2p11

~ l 1k2n11!! ~ l 1n1k!!
~27!

which are again independent oft. We observe that in this
case we cannot combine theE0 andv into a Up . The ana-
lytical expressions presented in this section will not on
serve as a benchmark for our analytical computation, but
be used in addition to extract various structural informat
as we see below.

B. One-particle approximation

In spite of the fact that we are dealing with a quantu
field theory, it is known that a one-particle approximation
the Dirac equation is very useful and physically sensi
when the external forces vary only slowly on a scale of a f
Compton wavelengths; see e.g., Ref. 19. We may there
define the spinor wave functions

C j ,u,u~x,t !ªc j
A~x,t !

uaj
†~u!&

A2p2pj
0

5
e2 ipW j •xW

A2ppj
0

uj~u!, ~28!

C j ,v,u~x,t !†
ªc j

A~x,t !†
uaj

†~u!&

A2p2pj
0

5
e2 ipW j •xW

A2ppj
0 v j~u!†.

~29!
12540
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With the help of these functions we obtain then for the def
system

Ci ,u,u
A ~x,t !ªc i

A~x,t !
uai ,2

† ~u!&

A2p2pi
0

5Q~2x!@C i ,u,u~x,t !

1C i ,u,2u~x,t !Ri* ~u!#1Q~x!T
i
* ~u!

3@C i ,u,u~x,t !1C i ,u,2u~x,t !R̃
i
* ~2u!# ~30!

and the same function withu→v. Since this function re-
sembles a free wave it cannot be normalized properly and
have to localize the wave in form of a wave packet by m
tiplying with an additional function,g̃(p,t) in Eq. ~3! and its
counterpartg(x,t) in Eq. ~30!, typically a Gaussian. Then fo
the functionFi ,u,u

A (x,t)5g(x,t)Ci ,u,u
A (x,t), we can achieve

that iFi51.

III. HARMONIC GENERATION

As mentioned above, harmonic generation has attrac
large attention in the atomic physics community in rece
years. It is the nonlinear response of a dipole moment
general atomic, to an external laser field. Here we wan
investigate whether such responses also exist for defect
tems. We carry out our treatment relativistically. The tim
dependent dipole moment is given by

xj ,u,u~ t !5^Fj ,u,u
A ~x,t !†xFj ,u,u

A ~x,t !& ~31!

such that the emission spectrum is the absolute value of
Fourier transform of the dipole moment

Xj ,u,u~V!5U E
0

t

dt xj ,u,u~ t !expiVtU. ~32!

We localize now the wave packet in a region much sma
than the classical estimate for the maximal amplitude
electron will acquire when following the laser field. W
achieve this with a Gaussiang(x,t)5exp(2x2/D), whereD
!eE0 /v2. Placing the defect at the origin and neglecting
extension, the computation of Eq.~31! with Eq. ~30! then
boils down to the evaluation of

xi ,u,u~ t !

5E
2`

0
xF11uRi~u!u212 Re

e2ix sinhuRi~u!

coshu G
2pe(2/D)[x1eA(t)] 2 dx1E

0

`

3

xuTi~u!u2F11uRi~u!u212 Re
e2ix sinhuRi~u!*

coshu G
2pe(2/D)[x1eA(t)] 2 dx.

~33!
5-4
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The expressions for theR’s andT’s depend of course on th
form of the defect and further generic statements canno
made at this point. We therefore turn to a concrete exam

IV. ENERGY OPERATOR DEFECT

Localizing sharply the energy operator«(x)5gc̄c(x) ,
with g being a coupling constant, yields a defect which h
been studied extensively in the absence of a laser field
should be noted that this is only a particular example and
may also consider other type of defects in a analogous f
ion; see Ref. 10 and references therein. One of the virtue
this defect is that it is real, thus preserving parity invarian

Coupling the vector potential minimally to this type o
defect yields

DAD~ c̄,c,Am!5gc̄~11e/mgmAm!c, ~34!

by invoking the equation of motion.

A. Transmission and reflection amplitudes

We are now interested in determining the reflection a
transmission amplitudes associated to this defect by the
tential scattering method as outlined in Sec. II A. Taki
from now onm51, we compute for the various reflectio
amplitudes

Ri~u,g,A/e,y!

5R̃i~u,g,2A/e,2y!5Rı̄~u,g,A/e,2y!

5R̃ı̄~u,g,2A/e,y!

5
@yȦ2coshu#e22iy sinhu

@12yȦ coshu#2 i
g

4 F 4

g2
111A22y2Ȧ2Gsinhu

.

~35!

We denoted the differentiation with respect to time by a d
The transmission amplitudes turn out to be

Ti~u,g,A/e,y!

5T̃i~u,g,2A/e,2y!5Tı̄~u,g,2A/e,y!

5T̃ ı̄~u,g,A/e,2y!

5

i F12y2Ȧ21S A2
2i

g D 2Gsinhu

4

g
@12yȦ coshu#2 i F 4

g2
111A22y2Ȧ2Gsinhu

.

~36!

Locating the defect aty50, the derivative ofA does not
appear anymore explicitly in Eqs.~35! and~36!, such that it
is clear that this defect is of type I and admits an expans
of the form Eq.~21!. With the explicit expressions~35! and
~36! at hand, we can determine all the coefficientst2k(u) in
12540
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Eq. ~21! analytically. For this purpose let us first bring th
transmission amplitude into the more symmetric form,

uTi~u,g,A/e!u25
ã0~u,g!1a2~u,g!A21a4~u,g!A4

a0~u,g!1a2~u,g!A21a4~u,g!A4
,

~37!

with

a0~u,g!516g21~41g2!2sinh2u, ~38!

ã0~u,g!5~g224!2sinh2u, ~39!

a2~u,g!52g2~41g2!sinh2u, ~40!

a4~u,g!5g4sinh2u. ~41!

We can now expanduT(u,g,A)u2 in powers of the fieldA(t)
and identify the coefficientst2k(u,g) in Eq. ~21! thereafter.
To achieve this we simply have to carry out the series exp
sion of the denominator in Eq.~37!. The latter admits the
following compact form:

1

a0~u,g!1a2~u,g!A21a4~u,g!A4
5 (

k50

`

c2k~u,g!A2k,

with

c0~u,g!51/a0~u,g!

and

c2k~u,g!52
c2k22~u,g!a2~u,g!1c2k24~u,g!a4~u,g!

a0~u,g!
,

for k.0. We understand here that all coefficientsc2k with
k,0 are vanishing, such that from this formula all the co
ficientsc2k may be computed recursively. Hence, by comp
ing with the series expansion~21!, we find the following
closed formula for the coefficientst2k(u,g):

t2k~u,g!5@ ã0~u,g!2a0~u,g!#c2k~u,g! k.0. ~42!

The first coefficients then simply read

t0~u,g!5
ã0~u,g!

a0~u,g!
5uT~u,E050!u2, ~43!

t2~u,g!5
a2~u,g!

a0~u,g!
@12t0~u,g!# ~44!

5
8g4~41g2!sinh22u

~16g21~41g2!2sinh2u!2
, ~45!

t4~u,g!5Fa4~u,g!

a2~u,g!
2

a2~u,g!

a0~u,g!G t2~u,g!, ~46!
5-5
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and so on. It is now clear how to obtain also the higher ter
analytically, but since they are rather cumbersome we do
report them here.

B. Harmonic generation

With the coefficientst2k , we can compute the series~22!
and~ 23! in principle to any desired order. For some concr
values of the laser and defect parameters the results of
evaluation are depicted in Fig. 1.

The main observation is that the defect acts as a fi
selecting higher harmonics of even order of the laser
quency. Furthermore, from the zoom of the peak regions,
see that there are satellite peaks appearing near the
harmonics. They reduce their intensity whent is increased,
such that with longer pulse length the harmonics beco
more and more pronounced.

We also investigated that for different frequenciesv the
general structure will not change. Increasing the field am
tudeE0 , simply lifts up the whole plot without altering ver
much its overall structure. We support these findings in t
alternative ways, either by computing directly Eq.~19! nu-
merically or, more instructively, by evaluating the sums~22!
and ~23!.

Let us now carry out a similar analysis for a double def
system. We place one of the defects atx50 and the other a
x5y. The distance emerges now as a new scale in the
tem and note from our comment on the validity of the dipo
approximation that is restricted asy,v21. In additiony has
to be much smaller than the total length of the wire. T
double defect amplitudes are computed directly from E
~17! and ~18! with the expression for the single defect~35!

and ~36!. Since now bothA and Ȧ appear explicitly in the
formulas forR’s andT ’s, it is clear that the expansion of th
double defect cannot be of type I, but it turns out to be
type II, i.e., of the form~24!. Hence we will now expect tha
besides the even also the odd multiples ofv will be filtered
out. This is confirmed by our explicit computations for tw
identical defects as depicted in Fig. 2.

FIG. 1. Absolute value squared of the Fourier transform of
transmission probability for a single defect withE052.0, g53.5,
u51.2, v50.2.
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Here we have only plotted a continuous spectrum foy
50.5, whereas for reasons of clarity, we only drew the e
veloping function which connects the maxima of the h
monics for the remaining distances. We observe that now
only odd multiples of the frequency emerge in addition
harmonics, but also that we obtain much higher harmon
and the cutoff is shifted further to the ultraviolet. Furthe
more, we see a periodic pattern in the enveloping functi
which appears to be independent ofy. Similar patterns were
observed before in the literature, as for instance in the c
text of atomic physics described by a Klein-Gordon form
ism ~see Fig. 2 in Ref. 14!.

With varying distancey the new structures can be mod
lated, i.e., we can control the intensity of certain peaks a
also shift the cutoff. Clearly for a concrete application o
would like the control mechanism to be as simple as poss
and therefore it is interesting to investigate precisely how
emission amplitude and the cutoff behave as functions oy.
Unfortunately, this function turns out to be not very simp
as can be seen from Fig. 3, where we present our analysi
varying y and particular fixed harmonics. Nonetheless, th
is a universal shape common to all harmonics of the sa
type. As expected from the analytical expressions the ove
pattern for the odd and even harmonics differs. We confi
our previous observation, namely that for small values of
distancey, which corresponds to the limit of a single defec
there are no odd harmonics emerging.

Let us now come to the main point of our analysis and
how this structure is reflected in the harmonic spectrum. T
result of the evaluation of Eq.~33! is depicted in Fig. 4.

We observe a very similar spectrum as we have alre
computed for the Fourier transform of the transmission a
plitude, which is not entirely surprising with regard to th
expression~33!. The cutoff frequencies are essentially ide
tical. From the comparison betweenX and the enveloping
function for T we deduce that the term involving the tran
mission amplitude clearly dominates the spectrum.

Let us now turn to the computation of the emission sp
trum for a double defect system coupled to a laser field.
depict the results of our analysis in Fig. 5.

e FIG. 2. Absolute value squared of the Fourier transform of
transmission probability for a double defect withE052.0, g53.5,
u51.2, v50.2, and varyingy.
5-6
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Once again, we observe a qualitatively similar behavio
for T, in particular the occurrence of even and odd ord
harmonics. We remark that in our approach for larger val
of y the normalization of the wave function becomes som
what inaccurate and therefore the relative height in the in
sities is not very precise. In principle this could be compe

FIG. 3. Absolute value squared of the Fourier transform of
transmission probability for a double defect withE052.0, g53.5,
u51.2, for even and odd multiples ofv50.2 and varyingy.

FIG. 4. Harmonic emission spectrum for a single defect w
E052.0, g53.5, u51.2, v50.2, D56.
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sated, but for the conclusions we are trying to reach here
is not important. The important general deduction from the
computations is of course that harmonics of higher order
emerge in the emission spectrum of a defect system.

C. Relativistic versus nonrelativistic regime

In the previous sections we have been working in an
tensity regime which is close to the damage threshold o
solid, according to the experimental observations in Ref
This allowed us to see the maximum effect with regard
harmonic generation which at present might be visible fr
experiments. However, it is also interesting to investig
situations which are not experimentally feasible at pres
and of course lower intensity regimes.

In order to judge in which regime we are working an
whether there are relativistic effects, let us carry out vario
limits. First of all we recall a standard estimation accordi
to which the relativistic kinetic energy is close to the clas
cal one when one is dealing with velocitiesv2!3/4c2. This
is the same as saying that the kinetic energy is much sm
than the rest massEkin!m0c2. Making now a rough estima
tion for the system under consideration, we assume that
total kinetic energy is the one obtained from the laser fie
i.e., the ponderomotive energyUp . We also ignore for this
estimation any sophisticated corrections, such as poss
Doppler shifts in the frequency, etc. Then the nonrelativis
regime is characterized by the conditionUp!1.

Based on our previous observation thatT andX exhibit a
very similar behavior, it will be sufficient here to study on
the T in the different regimes, which will be easier than a
investigation of the full emission spectrum~33!. From our
analytic expression~23!, we see that for a type-I defect th
quantityTI becomes a function ofUp , such that the regime
will be the same when we rescale simultaneouslyE0 andv.
Accordingly we evaluate numerically the Fourier transfo
~19!, or equivalently compare against our analytical expr
sion ~23!, and depict our results in Fig. 6.

We observe that when passing more and more towards
relativistic regime the cutoff is increased. The other feat
one recognizes is that the modulating structure in the en

e

FIG. 5. Harmonic emission spectrum for a double defect w
E052.0, g53.5, u51.2, v50.2, D56.
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oping function of the harmonics becomes more pronounc
One should also note, in regard to Eq.~10!, that the multi-
pole structures might become more and more importan
the relativistic regime.

Let us now perform a similar computation for the doub
defect. From the expressions~26! and ~27! we see that now
TII is not just a simple function ofUp and therefore even
being in the same regime the behavior will be different wh
E0 andv are rescaled. We alter in that case the regimes
rescalingE0 and keeping the frequency fixed. Our results a
depicted in Fig. 7.

Similar as for the single defect we see that the cutof
increased and the modulating structure in the envelop
function becomes more emphasized when we move tow
the relativistic regime. In addition we note that the differen
between the even and odd harmonic becomes larger
increasingUp . This effect is more extreme for the low orde
harmonics. As a general observation we state that there
not any effects which seem to be special to the relativi
regime, but the transition to that regime seems to be ra
smooth.

V. CONCLUSIONS

We have minimally coupled a laser field to an impur
system in a quantum wire described with the Dirac equat
Using a free field expansion for the free Dirac Fermion,

FIG. 6. Absolute value squared of the Fourier transform of
transmission probability for a single defect for various values ofUp

with g53.5, u51.2.
.
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computed by means of standard potential scattering the
the reflection and transmission amplitudes associated to
type of defect. The amplitudes become functions of the
fect coupling constantg, their separationy, and the laser field
parametersE0 , v, and t. We employed these amplitudes
order to evaluate the emission spectrum of a dipole mom
in such a system. Our findings for a single defect, taken to
the energy operator coupled minimally to the laser field,
that even multiples of the driving frequencyv are emitted.
Investigating a double defect system of two of such defe
we observe the emission of odd as well as even multiple
the original frequency. These features may already be
served qualitatively on the Fourier expansion of the tra
mission amplitude, even analytically. When carrying out t
nonrelativistic and extreme relativistic limit we do not o
serve any special effect, the transition seems to be ra
smooth.

There are various questions left for further investigatio
As an interesting application one may for instance comp
the conductance in a similar fashion as in Ref. 10 and e
ploy the laser to control it.
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