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We present an analytical solution for the acousto-optical modulation of multiply scattered light in a medium
irradiated with a train of ultrasound pulses. Previous theory is extended to cases where the ultrasound-induced
optical phase increments between the different scattering events are strongly correlated, and it is shown that the
approximate similarity relation still holds. The relation between the ultrasound induced motions of the back-
ground fluid and the optical scatterers is generalized, and it is shown that correlation exists between the optical
phase increments that are due to the scatterer movement and the optical phase increments that are due to the
modulation of the optical index of refraction. Finally, it is shown that compared with the spectrum of ultra-
sound pulses, the power spectral density of acousto-optically modulated light is strongly attenuated at the
higher ultrasound frequencies.
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I. INTRODUCTION

The optical properties of soft biological tissues in the vis-
ible and near-infrared regions are related to the molecular
structure of the tissues. Radiation at these wavelengths is
nonionizing, and it has significant potential for the functional
imaging and detection of tissue abnormalities. Much effort
has been made to develop new soft tissue imaging modalities
based on visible and near-infrared radiation.

Ultrasound-modulated optical tomography is a hybrid
technique, proposed to provide better resolution for the opti-
cal imaging of soft biological tissues by combining ultra-
sonic resolution and optical contrast. In this technique �1,2�,
optical radiation, which has high temporal coherence, and
ultrasound are applied simultaneously to soft biological tis-
sue. The intensity of the ultrasound-modulated optical radia-
tion is measured to provide information about the optical
properties of the tissue region that is spatially localized by
the interaction between the ultrasonic and electromagnetic
waves.

In spite of a variety of different experimental configura-
tions that have been invented to efficiently measure the ul-
trasonically modulated component of the optical intensity
emerging from the biological tissue �2–15�, the exact nature
of the acousto-optical effect in a highly optically scattering
medium is still not totally understood due to the complicated
light-ultrasound interaction that occurs in the presence of
optical scatterers. Approximate theories in the optical diffu-
sion regime under a weak scattering approximation have
been developed �3,4,16–18� that include one or both of the
main mechanisms of modulation. Mechanism 1 is the optical
phase variations that are due to the ultrasonically induced
movement of the optical scatterers �3,4�, and mechanism 2 is
the optical phase variations that are due to ultrasonically in-
duced changes in the optical index of refraction. Mechanism
2 was first modelled by Wang �16� combined with mecha-
nism 1. Subsequently, the model was extended to account
for anisotropic optical scattering, Brownian motion, and
optical absorption �18�. Due to the limited number of physi-
cal configurations where the probability density function

of the optical pathlength is analytically known, only slab
transmission �16� and reflection �19� geometry have been
analytically studied so far. However, the model can be easily
incorporated into a Monte Carlo algorithm �17,18,20�,
offering the possibility of exploring a wide spectrum of ge-
ometries.

The existing theoretical model was developed for the in-
teraction of a plane, monochromatic �CW� ultrasound wave
with diffused light in an infinite scattering medium, neglect-
ing the polarization effects. It is assumed that the ratio of the
optical transport mean free path ltr to the ultrasonic wave-
length �a is large enough that the ultrasound induced optical
phase increments associated with different scattering events
are weakly correlated �4�. However, this assumption may not
be valid in cases where broadband pulsed ultrasound is ap-
plied, which is a promising option for the development of
soft tissue imaging technology based on the acousto-optical
effect �11,13,14�.

In this work, we extend present theory to cases where
broadband ultrasound pulses interact with diffused light. In
Sec. II A, we generalize the relation between the ultrasound
induced optical scatterer movement and the fluid displace-
ment in accordance with the analytical solution for a small
rigid sphere oscillation in a viscous fluid. In Sec. II B, we
develop an expression for the time averaged temporal auto-
correlation function of the electrical field component associ-
ated with the optical paths of length s in turbid media, when
an infinite train of ultrasonic pulses traverse the media. The
approximate similarity relation is valid for a broad range of
ltr /�a values. We show that, in general, a correlation exists
between the phase increments due to scatterer displacement
and phase increments due to index of refraction changes
even when the value of ltr /�a is large. In Sec. III, we explore
the influence of ultrasound frequencies on the behavior of
acousto-optically modulated optical intensity. We also com-
pare a simple heuristic Raman-Nath solution for the acousto-
optical effect in a clear medium with our solution for the
behavior of the modulated intensity. In Sec. IV, we present a
complete solution for acousto-optical modulation for a few
distinct profiles of ultrasound pulses in slab transmission and
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reflection geometry. Finally, a summary of the results is
presented.

II. TEMPORAL AUTOCORRELATION FUNCTION OF
THE ELECTRICAL FIELD

A. Ultrasound induced movement of the optical scatterers

In general, the equations governing the ultrasound in-
duced motion of a particle in a fluid are complex. In this
work, we consider the oscillations of a small rigid spherical
particle in a viscous flow, with no-slip conditions applied on
the surface of the particle. It is assumed that the Reynolds
number is much smaller than unity, and that the particle ra-
dius a0 is smaller than the smallest scale in the flow. The
Reynolds number is given by a0W /�k, where �k is the kine-
matic viscosity of the fluid, and W represents the amplitude
of the relative sphere velocity in respect to the velocity of the
surrounding fluid. These conditions are likely to be satisfied
by optical scatterers in biological soft tissues, if we assume
the ultrasound fields commonly generated in practice.

The equations derived for the general case of nonuniform
flow �21,22� can be simplified significantly if we consider
the plane ultrasonic wave and neglect the effect of gravity. In
the latter case, the relation between the Fourier transform of
fluid velocity ũ�f� and the Fourier transform of particle ve-
locity ṽ�f� is given by �23,24�

ṽ�f� = ũ�f�Y�fr,�� , �1�

where

Y�fr,�� =
1 − ifr − �i − 1��3fr/2�1/2

1 − i�2� + 1�fr/3 − �i − 1��3fr/2�1/2 . �2�

In Eq. �2�, the relative ultrasonic frequency, fr= f /�0, is cal-
culated in respect to �0=3�k / �2�a0

2�; i=�−1 is the imagi-
nary unit; and �= �̂ /� is the relative sphere density where �̂
and � are densities of the sphere and the fluid, respectively.
The Fourier transform of the function c�t� is given by

c̃�f� = �
−�

+�

c�t�exp�i2�ft�dt . �3�

As shown in Ref. �24�, when the relative density of a
particle such as an exogenous microbubble ultrasound con-
trast agent is low ��	1�, the amplitude of the particle oscil-
lation is greater than the amplitude of the fluid oscillation,
and the phase of the particle oscillation precedes the phase of
the fluid oscillation. However, in soft biological tissue, an
endogenous optical scatterer has a density just slightly
greater than the density of the surrounding medium. Also, the
kinematic viscosity should be greater than, or equal to, the
kinematic viscosity of water, which is approximately
10−6 m2 s−1 at room temperature. In that case, the amplitude
of the scatterer oscillation is slightly smaller than the ampli-
tude of the medium oscillation, and the phase of the scatterer
movement is slightly retarded in respect to the fluid move-
ment. Therefore, the movement of the optical scatterer is
expected to follow closely the movement of the surrounding

fluid, although this model might be too simple to fully ac-
count for the complexities of real biological tissue.

B. Temporal autocorrelation function for the train of
ultrasound pulses

In this model, we consider the independent multiple scat-
tering of temporarily coherent diffused light in a scattering
medium homogeneously filled with discrete optical scatterers
in a general case of anisotropic optical scattering. We neglect
the polarization effects and assume that the optical wave-
length �0 is much smaller than the scattering mean free path
l. We also assume that an ultrasonic plane wave is propagat-
ing unperturbed along the x axis without attenuation. The
acoustical pressure in the medium is given by P�r� , t�
= P0f�x , t�, where P0 is the pressure amplitude, and the pres-
sure propagation is represented by the function f�x , t�. Analo-
gous to previous work �25,26� where the acousto-optical ef-
fect caused by pulsed ultrasound is analyzed in a clear
medium, we assume that the pressure propagation function
f�x , t� represents an infinite train of ultrasound pulses

f�x,t� = �
n=−�

+�

f0�x − vat − nvaT� , �4�

where va is the ultrasonic speed, and T is the time period
between ultrasound pulses. The shape of the single ultrasonic
pulse is given by function f0�x−vat�.

The power spectral density �PSD� of the scattered light at
the position of a point detector can be represented as

P��� = �
−�

+�


���ei2���d� , �5�

where 
��� is the time averaged autocorrelation function of
the electrical field �27�.

We assume in this simple model that due to the weak
scattering approximation �l /�0�1�, the fields belonging to
different random paths add incoherently to the average and
that only photons traveling along the same path of length s
contribute to the autocorrelation function �3,28–31�. Conse-
quently, the time averaged autocorrelation function of the
electrical field can be written as


��� = �
0

�

p�s�
s���ds , �6�

where p�s� is the probability density function that the optical
paths have length s, and 
s��� is the time averaged autocor-
relation function of the electrical field associated with the
paths of length s. We further assume the independence of the
optical phase increments induced by the Brownian motion of
the scatterers and those induced by ultrasound through
mechanisms 1 and 2. Then, 
s��� can be represented as

s,U���
s,B���, where the indices B and U are associated with
the Brownian motion and the ultrasonic effects, respectively.
The influence of Brownian motion has been considered pre-
viously in the literature �18,19,28,29�, and it can be ex-
pressed as 
s,B���=exp�−2s� / �ltr�0��, where ltr is the optical
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transport mean free path, and �0 is the single particle relax-
ation time.

To obtain the value of 
s,U���, we first consider phase s

of the electrical field component accumulated along the op-
tical path of length s in optically diffusive media. The value
of the electrical field component in the analytic signal repre-
sentation is then proportional to exp�−i��0t−s��, where
�0=2�f0, and f0 is the optical frequency of the incident
monochromatic light.

We assume that the perturbation of the dielectric permit-
tivity of the medium due to the ultrasound is small and pro-
portional to the ultrasound pressure. Consequently, perturba-
tion of the optical index of refraction n�x , t� due to
ultrasound is also small and we have

n�x,t� � n0�1 + 1
2 Mf�x,t�� . �7�

In Eq. �7�, modulation coefficient M is equal to 2�P0 /�va
2,

and �=��n /�� is the elasto-optic coefficient �we assume for
water ��0.32�. For soft biological tissues and for com-
monly applied ultrasonic pressures, the value of the modula-
tion coefficient M is always much less than unity, which is in
good agreement with the approximation we arrived at in Eq.
�7�.

For an optical path of length s, which begins at r�0 and
ends at r�N+1 and has N scatterers at positions r�1 , . . . ,r�N, the
value of the accumulated optical phase calculated by inte-
grating the index of refraction along the path is approxi-
mately equal to �16,18�

s,N � k0n0�
i=0

N

	r�i+1 − r�i	 + k0n0�
i=1

N

��i − �i+1��i�t�

+ k0n0�
i=0

N
1

2
M�

r�i

r�i+1

f�x,t�dr . �8�

In Eq. �8�, integrations in the last term are performed along
the straight lines which connect consecutive scatterers; k0
=2� /�0 is the magnitude of the optical wave vector; �i+1
=cos��i+1� where �i+1 is the angle between ultrasound wave-

vector k�a and the vector l�i+1=r�i+1−r�i which connects two
consecutive scatterers; and � j�t� is the projection of the ul-
trasound induced displacement of the jth particle �� j�t� at
time t in the ultrasound propagation direction. Comparing
Eq. �8� with the previous derivations �18�, one more scatterer
is included along the optical path for the convenience of the
later averaging.

Several additional assumptions are included in Eq. �8�.
The ultrasound induced displacements of the scatterers are
neglected in the limits of the integrals in the last term on the
right-hand side of Eq. �8�, which is a reasonable approxima-
tion when k0n0M	�� j�t�	�2 and at the same time 	�� j�t�	� l. In
that way, the phase error due to the approximation is much
smaller than one radian for each integral between two scat-
terers, and the total value of the error in each integration is
much smaller than the integral itself, except in some cases
where the value of the integral approaches zero due to in-
creased phase cancellation when integrating occurs along the
direction close to the ultrasound propagation direction. How-

ever, these cases contribute little to the total phase value. We
also assume that the distance between consecutive scatterers
can be approximated with li+1+�i+1��i+1�t�−�i�t��, which is
the case when k0n0�i

2�t��2l, and 	�i�t�	� l. Finally, the ac-
cumulated phase s,N is calculated by integrating the optical
phase increments along the straight lines which connect the
scatterers along the optical path. Therefore, it is assumed that
the distortion of the optical waves along the path between
two consecutive scatterers due to ultrasound induced change
in the optical index of refraction is negligible. Analogous to
the Raman-Nath case of acousto-optical diffraction in clear
media �32�, we write this condition as Q�RN�1, where Q
= lka

2 /k0 and �RN=k0ln0M /2 are the Klein-Cook parameter
and the Raman-Nath parameter, respectively. For the optical
wavelengths in the visible and near-infrared regions in soft
biological tissues and for common ultrasound pressures, the
applied approximations limit the range of the ultrasound fre-
quency values between �1 kHz and several tens of MHz.
This can also be considered as a lower limit for the kal prod-
uct between 10−2 and 10−3, and an upper limit for the kal
product around 100, depending on the precise values of the
parameters.

We also assume in Eq. �8� that �0�t�=�N+1�t�=0, i.e., the
displacements of the first and last scatterer �source and de-
tector� are zero. It will be shown that this assumption is valid
when the number of the scattering events along the path is
very large, regardless of the value of the kal product. How-
ever, when the kal product is small, and N is as small as 10,
ultrasound induced movement of the source and detector
leads to a significant difference in effect due to mechanism 1.

Since the time invariant part associated with 	r�i+1−r�i	 in
Eq. �8� has no influence on the spectral properties of light,
we consider only the other two terms, and write the ultra-
sound induced optical phase increment along the path as

s�H,t� = k0n0�
i=1

N

��i − �i+1��i�t� +
1

2
k0n0M�

i=0

N �
r�i

r�i+1

f�r�,t�dr ,

�9�

In Eq. �9�, term H represents the set of random variables


r0
� ,�1 , l1 , . . . ,�N+1 , lN+1� associated with the paths of length

s with N scatterers. The probability density functions �PDF�
of the first scatterer position and the cosines of the
starting angle �1 are uniform. Also the PDF of the optical
pathlength between two scattering events is given by p�lj�
= l−1 exp�−lj / l�, where l is the mean optical free path. Fi-
nally, the probability density of scattering a photon traveling

in direction e�i= l�i / li into direction e�i+1= l�i+1 / li+1 is described
with the phase function g�e� j ·e� j+1� which does not depend on
the azimuth angle or the incident direction. The development
of the phase function g�e� j ·e� j+1� over the Legendre polyno-
mials Pm�e� j ·e� j+1� is given by

g�e� j · e� j+1� = �
m=0

�
2m + 1

2
gmPm�e� j · e� j+1� , �10�

where g0=1, and g1 is the scattering anisotropy factor.
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Now, we calculate the power spectral density of the opti-
cal intensity as a Fourier transform of the time averaged
autocorrelation function �27�. It is interesting to note at this
point that the random process associated with the sample
functions s�H , t� is not wide sense stationary unless the di-
ameter of the whole scattering volume is much larger than
the ultrasound wavelength. In that case, averaging over r�0
cancels the time dependence of the autocorrelation function.

We adopt the notation �s=s�H , t+��−s�H , t�, such
that the time averaged autocorrelation function 
s,U��� is ex-
pressed as


s,U��� = exp�− i�0���exp�i�s�t,H. �11�

In Eq. �11�, � t,H represents averaging over time, and aver-
aging over all of the random variables in H.

We proceed by representing the �s with the help of Eq.
�9�, as

�s = �s,n + �s,d. �12�

In Eq. �12�, �s,n is associated with index of refraction
changes along the optical path

�s,n =
1

2
k0n0M�

i=0

N �
r�i

r�i+1

�f�r�,t,��dr , �13�

where �f�r� , t ,��= f�r� , t+��− f�r� , t�. Similarly, term �s,d on
the right-hand side of Eq. �12� is associated with the ultra-
sound induced movement of the scatterers

�s,d = k0n0�
j=1

N

�� j − � j+1��� j�t,�� , �14�

where �� j�t ,��=� j�t+��−� j�t�.
Function f�r� , t� represents the acoustical pressure propa-

gation �Eq. �4��. Its representation using the Fourier spectral
components is given by

f�x,t� =
1

vaT
�

n=−�

+�

f̃0� n

vaT
�exp�− in�kax − �at�� , �15�

where ka=2� / �vaT� and �a=2� /T are, respectively, the ul-
trasonic wave vector magnitude and the angular frequency
associated with the period between ultrasonic pulses T. In

Eq. �15�, the Fourier transform f̃0��� of the ultrasonic pulse
shape function f0�x−vat� is

f̃0��� = �
−�

+�

f0�u�exp�i2��u�du . �16�

To obtain the expression for the displacement of the scat-
terers, we assume that at each ultrasonic frequency f in a
spectrum of the infinite train of ultrasonic pulses, the relation
given by Eq. �1� is satisfied. For simplicity, we represent the
variable Y�fr ,�� as a product Y�fr ,��=S�fr�exp�i��fr��,
where S�fr� is the amplitude and ��fr� is the phase of the
scatterer velocity deviation from the fluid velocity. Then, the
relation between the Fourier transforms of the scatterer ve-
locity and the fluid velocity becomes

ṽ�f� = ũ�f�S�fr�exp�i��fr�� . �17�

In further derivations, we will denote with Sn and �n the
values of S�fr� and ��fr� at ultrasound frequencies equal to
fn=n /T.

Using Eqs. �17� and �16�, and assuming that the velocity
of the fluid is given by P�x , t� / ��va�, we express the dis-
placement of the jth scatterer as

� j�t� = −
iP0

2��va
2 �

n=−�

n�0

+�

f̃0� n

vaT
�Snexp�− i�n�

n

�exp�− in�kaxj − �at�� . �18�

In Eq. �18�, we assumed that no streaming is present in
the fluid, so the spectral component associated with n=0 �dc
component� is excluded from the spectrum. Since the dc
component is not playing any role in mechanism 2, it is also
excluded from the solution for the phase term �s,n.

By combining Eqs. �13�–�15� and �18�, we obtain expres-
sions for the values of the phase terms �s,n and �s,d for
the train of ultrasound pulses

�s,n = i
�

4�
�

n=−�

n�0

+�
�

n
f̃0� n

vaT
�exp�in�at��exp�in�a�� − 1�

� �
j=0

N
1

� j+1
�exp�− inkaxj+1� − exp�− inkaxj�� , �19a�

�s,d = − i
�

4�
�

n=−�

+�

n�0

Sn exp�− i�n�
n

f̃0� n

vaT
�exp�in�at�

��exp�in�a�� − 1��
j=1

N

�� j − � j+1�exp�− inkaxj� ,

�19b�

where �=2n0k0P0 / ��va
2�.

Since the phase increments associated with the different
components of the optical path are correlated in general, it is
not appropriate to use the approach of a Gaussian random
variable for calculation of �exp�i�s�t,H. To simplify the
task of averaging the autocorrelation function, we assume,
like in the previous work �16�, that the total phase perturba-
tion �s due to the ultrasound is much less than one radian.
In that case, it is sufficient to consider only the first two
terms in the development of the exponential function from
Eq. �11�. The linear term ��st,H in the development is zero
for any pulse shape function f0�u�, so, finally, we have

�exp�i�s�t,H � 1 − 1
2 ��s

2t,H. �20�

Note that in the approximation of the small values of �s,
expression exp�−��s

2t,H /2� is also a good approximation
for �exp�i�s�t,H, but it cannot be used for estimation of the
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higher harmonics unless the phase increments are uncorre-
lated. This task could be accomplished, for example, by tak-
ing into account more terms in Eq. �20�.

To obtain the expression for ��s
2t,H, we first split the

whole term into three parts associated with the ultrasound
induced optical index of refraction changes, with the dis-
placements of the scatterers, and with the correlations be-
tween these two mechanisms,

��s
2t,H = ��s,n

2 t,H + ��s,d
2 t,H + �2�s,n�s,dt,H.

�21�

Among the terms �s,d
2 , �s,n

2 , and 2�s,d�s,n, after av-
eraging over time, only those which contain products

f̃0�n / �vaT�� f̃0�m / �vaT�� where n+m=0 survive. As a result,
we have

��s,n
2 t = � �

2�
�2

�
n=−�

n�0

+�

sin2�1

2
n�a���2

n2 � f̃0� n

vaT
��2

� �
j=0

N

�
k=0

N
exp�inkaxk+1� − exp�inkaxk�

� j+1�k+1

��exp�− inkaxj+1� − exp�− inkaxj�� , �22a�

��s,d
2 t = � �

2�
�2

�
n=−�

n�0

+�

sin2�1

2
n�a��Sn

2

n2� f̃0� n

vaT
��2

� �
j=1

N

�
k=1

N

�� j − � j+1���k − �k+1�

�exp�− inkaxj�exp�inkaxk� , �22b�

�2�s,d�N,nt = − � �

2�
�2

�
n=−�

n�0

+�

sin2�1

2
n�a���Sn exp�i�n�

n2

�� f̃0� n

vaT
��2

�
j=0

N

�
k=1

N
�k − �k+1

� j+1
exp�inkaxk�

��exp�− inkaxj+1� − exp�− inkaxj�� . �22c�

For each frequency n /T, averaging over all free path
lengths lj between consecutive scatterers and averaging over
all scattering angles � j can be done in the same way as in
Ref. �18�, to obtain

��s,n
2 t,H =

�2

�2 �
n=1

+�

sin2�1

2
n�a���2

n2 � f̃0� n

vaT
��2

� �kanl�2 Re��N + 1�Ĵn�Î − Ĵn�−1

− �Ĵn
2 − Ĵn

N+3��Î − Ĵn�−2�0,0, �23a�

��s,d
2 t,H =

�2

�2 �
n=1

+�

sin2�1

2
n�a��Sn

2

n2� f̃0� n

vaT
��2

��N
1 − g1

3
−

�1 − g1�2

�kanl�2 �1 − Re �Ĵn
N−1�0,0�� ,

�23b�

�2�s,d�N,nt,H =
�2

�2 �
n=1

+�

sin2�1

2
n�a��2�Sn cos��n�

n2

�� f̃0� n

vaT
��2

�1 − g1�

�
− N + Re �Ĵn�Î − Ĵn
N��Î − Ĵn�−1�0,0� .

�23c�

In Eq. �23�, Î is the identity matrix; the �i , j� element of the

matrix Ĵn is defined as

�Ĵn��i,j� = gi
1/2gj

1/2�2i + 1

2
�2j + 1

2
�

−1

1

Tn�x�Pi�x�Pj�x�dx ,

�24�

where Tn�x�= �1− ikanlx�−1; Pj�x� is the jth Legendre poly-
nomial; Re� �0,0 represents the real part of the �0,0� element
of the matrix; and the gm’s are the coefficients in the phase
function development from Eq. �10�.

For a large number of scattering events N along the path
of length s in diffusion regime, we can approximate Eq. �23�
by replacing the N with its average value s / l. We finally have

��s,n
2 t,H = �

n=1

+�

sin2�n��

T
�Cn�n� , �25a�

��s,d
2 t,H = �

n=1

+�

sin2�n��

T
�Cd�n� , �25b�

�2�s,n�s,dt,H = �
n=1

+�

sin2�n��

T
�Cn,d�n� , �25c�

where the C terms �Cn�n�, Cd�n�, and Cn,d�n��, represent the
amplitudes of the average of the squares of the phase terms
at each ultrasound frequency,

Cn�n� =
�2

�2� f̃0� n

vaT
��2�2

n2 �kanl�2Re �� s

l
+ 1�Ĵn�Î − Ĵn�−1

− Ĵn
2�Î − Ĵn

s/l+1��Î − Ĵn�−2�
0,0

, �26a�

Cd�n� =
�2

�2� f̃0� n

vaT
��2Sn

2

n2� s

l

1 − g1

3
−

�1 − g1�2

�kanl�2

�Re�Î − Ĵn
s/l−1�0,0� , �26b�
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Cn,d�n� =
�2

�2� f̃0� n

vaT
��22�Sn cos��n�

n2 �1 − g1�

��−
s

l
+ Re�Ĵn�Î − Ĵn

s/l��Î − Ĵn�−1�0,0� .

�26c�

It can be shown by numerical calculation that for a given
path length s, the value of each C term in Eq. �26� is approxi-
mately independent from particular values of the optical
mean free path l and anisotropy factor g1, as long as the
transport mean free path l / �1−g1� remains constant. This
extends the conclusion about the similarity relation made in
the case of large kal values �18� to the case of small kal
values, too. For simplicity, in future analysis we will con-
sider only isotropic scattering, noting that the anisotropic
case can be approximately reduced to isotropic by replacing
the l in the isotropic equations with the value of ltr= l / �1
−g1�. Also, we will frequently refer to the transport mean
free path when making observations about the kal depen-
dence of the C terms, although the mean free path will be
used in isotropic equations for simplicity. In the isotropic

case, matrix Ĵn reduces to its �0,0� element, Gn
= �nkal�−1 arctan�nkal�, and the values of the C terms become

Cn�n� =
�2

�2� f̃0� n

vaT
��2�2

n2 �kanl�2�� s

l
+ 1� Gn

1 − Gn

−
Gn

2�1 − Gn
s/l+1�

�1 − Gn�2 � , �27a�

Cd�n� =
�2

�2� f̃0� n

vaT
��2Sn

2

n2� s

3l
−

1 − Gn
s/l−1

�kanl�2 � , �27b�

Cn,d�n� =
�2

�2� f̃0� n

vaT
��22�Sn cos��n�

n2 �−
s

l
+

Gn�1 − Gn
s/l�

�1 − Gn�
� .

�27c�

III. AUTOCORRELATION FUNCTION DEPENDENCE ON
ULTRASOUND FREQUENCY

A broadband ultrasound pulse has energy spread over a
wide range of ultrasonic frequencies. In this section, we
present a more detailed analysis of the ultrasound frequency
dependence of the acousto-optical signal in optically diffu-
sive media.

We focus here on the single frequency component in a
general solution obtained in Sec. II B. For conciseness, we
look at the special case of the train of ultrasonic pulses when
it represents an actual monochromatic plane ultrasound wave
�CW�. The CW case solution can be obtained from Eq. �27�
if we first select the pulse shape function f0�u� to be equal to

zero everywhere except in the interval �−� / k̂a ,� / k̂a�, where
it is equal to one sinusoidal cycle

f0�u� = �sin�k̂au� , u � �− �/k̂a,�/k̂a� ,

0, elsewhere.
� �28�

Then, we take the limit k̂a→ka, where ka is the magnitude of
the ultrasonic wave vector associated with the period be-
tween ultrasonic pulses. In the limiting case, the pressure
propagation function, f�x , t� defined in Eq. �4�, is reduced to
a pure sinusoidal function. The Fourier transform of f0�u� for

discreet frequencies �=n / �vaT� and in a limiting case k̂a

→ka, is zero for all n except when n=1. For n=1, we have

f̃0�1/ �vaT��= ivaT /2, and the set of Eqs. �27� simplifies to the
solution for the CW case

��s,n
2 t,H = sin2� 1

2�a��Cn, �29a�

��s,d
2 t,H = sin2� 1

2�a��Cd, �29b�

�2�s,n�s,dt,H = sin2� 1
2�a��Cn,d, �29c�

where

Cn = �2�2

ka
2 �kal�2�� s

l
+ 1� G

1 − G
−

G2�1 − Gs/l+1�
�1 − G�2 � ,

�30a�

Cd = �2S2

ka
2� s

3l
−

1 − Gs/l−1

�kal�2 � . �30b�

Cn,d = �22�S cos���
ka

2 �−
s

l
+

G�1 − Gs/l�
1 − G

� . �30c�

In Eq. �30�, the subscript n is removed from Gn, Sn, and �n,
since all of them are calculated at the same ultrasound fre-
quency, i.e., when n=1. These expressions are generaliza-
tions of the previously derived theory �16,18� to cases where
the optical transport mean free path is smaller than the ultra-
sonic wavelength. Therefore, in Eq. �30�, not only the parts
that are linear with s / l are presented, but, also, the terms that
are a result of strong correlation among the optical phase
increments due to the different scattering events and among
the optical phase increments due to the different optical free
paths between consecutive scatterers. Another important dif-
ference is that we have significant correlation between the
phase increments due to mechanism 1 and mechanism 2,
unless the cosines of the phase lag between the ultrasound
induced movement of the scatterers and the fluid is exactly
zero. This correlation is represented in the mixed term given
by Eq. �29c�, and it is not zero even for large values of the
kal product when the correlations vanish between phase in-
crements due to only mechanism 1 or only mechanism 2.
This result can be explained in the following way: at each
scatterer position, the phase increment that is due to dis-
placement can be approximated as a sum of the two terms
associated with the incoming and outgoing scattering direc-
tions. Each free path between two consecutive scatterers is
associated with two such displacement terms. The phase of
the sum of these two displacement terms differs from the
phase of the index of refraction term associated with the
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corresponding free path by exactly �+�, where � is the
phase lag between the fluid and the scatterer movement.
Therefore, the product of these terms is negative, and its
average is not zero unless cos���=0. The strength of the
correlation is proportional to the cos���, as can be seen from
Eq. �30c�. For smaller kal values, when the length of the
ultrasound wave increases in respect to the optical transport
mean free path, correlations also appear between the optical
phase increments associated with several consecutive dis-
placement and index of refraction terms.

Figure 1 presents the ultrasound frequency dependence of
C terms in Eq. �30� for several values of the average number
of scattering events s / l along the optical path. The values of
the C terms at s / l=10 are presented for completeness, al-
though the applied approximations may not be valid for such
a small average number of scattering events along the optical
path. The parameters used in the calculation are optical mean
free path l=1 mm; elasto-optic coefficient of water at room
temperature �=0.32; �=1 m−1; and it is assumed that the
scatterers are exactly following the fluid displacement �S
=1,�=0�. The term Cn,d is multiplied by −1 to be presented
on the same graph with the other two terms, although its
value is negative and it actually cancels out, to some extent,
the phase accumulations due to the individual contributions
of the two mechanisms of modulation. It is important to no-
tice that each C term in Eq. �30� is not an explicit function of
only the kal product, regardless of the specific values of ka
and l. However, the ratio between each two C terms in Eq.
�30� for a given s / l ratio depends only on the kal product, up
to a multiplication constant which depends on �, S, and
cos���.

The index of refraction term Cn, and the displacement
term Cd have quite different behaviors at the opposite ends of
the kal range, as can be seen from Fig. 1. When the ultra-
sound pressure amplitude is constant, except for some inter-
mediate interval of the kal values, Cd is proportional to the
square of the scatterer displacement amplitude �i.e., inversely
proportional to the square of the ultrasound frequency�.
When the kal product is small, scatterers along the optical
path occupy a space volume where the ultrasound phase is
nearly the same, unless the value of s / l is very large. The Cd

term in that region depends very little on l and s. When the
scatterers are within the same ultrasound phase, we have a
cancellation of the optical phase increments due to mecha-
nism 1 which share the same free path between consecutive
scatterers. Then, only increments from the first incoming di-
rection �1, and the last outgoing direction �N+1 contribute to
Cd, and it behaves as if it was caused by only one scatterer.
In contrary, if we choose the source and detector positions to
move with the ultrasound, then, we essentially have cancel-
lation between all of the displacement contributions in the
limit of low kal values. On the other side of the kal range,
when the optical transport mean free path is greater than the
ultrasound wavelength, the phase increments between differ-
ent scattering events are uncorrelated. In that region, the Cd
term is equal to the sum of the individual scattering contri-
butions, which are all proportional to ka

−2.
The behavior of the Cn term is particularly interesting

since the correlations between the phase increments from
different free paths are present for much higher ultrasound
frequencies than in the case of the Cd term. Figure 2 presents
the Cn dependence on the ultrasound frequency for �s / l�
=103. We present the Cn as a sum of three terms, Cn1+Cn2
+Cn3, which are given by

Cn1 = �2�2

ka
2 �kal�2�� s

l
+ 1�G� , �31a�

Cn2 = �2�2

ka
2 �kal�2�� s

l
+ 1� G2

1 − G
� , �31b�

Cn3 = �2�2

ka
2 �kal�2�−

G2�1 − Gs/l+1�
�1 − G�2 � . �31c�

The first two terms Cn1 and Cn2 were derived previously
�16,18� for the case where the kal values were large enough
that we could neglect the terms which were not linearly pro-
portional to s / l. The term Cn1 �dotted line in Fig. 2� is the
result of averaging the individual squares of the phase accu-
mulations along the free paths. It is proportional to the aver-
age number of free paths s / l+1, and it has a transition from
a weak dependence on kal �in a low kal region� to �kal�−1

dependence for large kal. The term Cn2 �dashed line on Fig.

FIG. 1. Dependence of the C terms on the ultrasound frequency.
Index of refraction term Cn, displacement of the scatterers term Cd,
and mixed term Cn,d multiplied by −1, are presented for three dif-
ferent s / l values. The values of the parameters used are l=1 mm,
�=1 m−1, �=0.32, S=1, and �=0.

FIG. 2. Dependence of the components of the Cn term on the
ultrasound frequency, for s / l=103. The values of the parameters
used are l=1 mm, �=1 m−1, �=0.32, S=1, and �=0.
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2� is proportional to s / l+1, and it is a part of the result of
averaging the products between the phase accumulations
along the different free paths. This term has approximately
�kal�−2 dependence. Finally, term Cn3 is nonlinear with the
s / l part of the result of averaging the products between the
phase accumulations along the different free paths. It is a
result of strong correlation between the phase accumulations
along the different free paths for low kal values. It has a
negative value, so the dashed-doted line in Fig. 2 presents
the kal dependence of −Cn3. The term Cn1 eventually domi-
nates all of the other contributions to Cn when kal is suffi-
ciently large, suggesting that the optical phase increments
from the different free paths that are due to mechanism 2 are
completely uncorrelated. For the lower kal values, the corre-
lations between the phase accumulations along the different
free paths begin to dominate in the Cn term—first through
term Cn2 which is proportional to s / l, and then combined
with the Cn3. When kal is low enough that all of the scatterers
occupy space with the similar ultrasound phase, then the in-
crements from the different free paths add constructively.
The Cn term in that limit becomes less dependent on ka and
l and more dependent on the square of the total path length
s2.

Finally, in a case of Cn,d, when kal is sufficiently large, we
also have an absence of correlation between the phase incre-
ments due to mechanisms 1 and 2 for the components of the
optical path that do not share the same free path. However, as
described earlier, the correlation between the phase incre-
ments due to mechanisms 1 and 2 for the same free path
between two consecutive scatterers is always present, unless
the cosines of the phase lag between the ultrasound induced
movement of the scatterers and the fluid is exactly zero.

It is interesting to compare the intensities of the first side-
bands of the acousto-optically modulated light when it
propagates the same length L in optically clear and optically
turbid media. In particular, with the optically clear media, we
assume that the light and the ultrasound are traveling along
the x and z directions, respectively, and that conditions for
the Raman-Nath diffraction are satisfied. In a formal Raman-
Nath approach �32�, the phase of the electrical field accumu-
lated along the interaction length L is equal to

�t� = k0n0L�1 + 1
2 M cos��at − kaz�� . �32�

In Eq. �32�, �a=2�fa, where fa is the ultrasound frequency,
and M =2�P0 / ��va

2� is, like in Eq. �7�, related to the optical
index of refraction change that is due to the ultrasound. We
proceed with developing the electrical field in analytic signal
representation, using Bessel functions and calculating the au-
tocorrelation function 	E�t+��E*�t��t. It is assumed that
the amplitude of the electrical field is unity and that the
phase disturbance is small enough that the Bessel functions
can be approximated with the linear and quadratic terms. If
we limit the solution to only the first harmonics, the expres-
sion for the power spectral density P��� is

P�f� = �1 − 1
4CRN���f − f0� + 1

8CRN��f − f0 + fa�

+ 1
8CRN��f − f0 − fa� . �33�

In Eq. �33�, f0 is the frequency of unmodulated light; �� � is

the Dirac delta function; and the parameter CRN is equal to
�2L2�2 /2.

In the optically multiple scattering regime described in
Eq. �29�, based on Eqs. �11� and �20�, the power spectral
density for the path of length L is given by the same type of
equation as Eq. �33�, where parameter CRN is replaced with
the sum C=Cn+Cd+Cn,d and pathlength L is substituted for
s. For low kal values, Cd is the dominant term in the sum. In
that range of kal values, G�1− �kal�2 /3, and, consequently,
Cd��2S2 / �3ka

2�. This result implies that the Cd term be-
haves like a displacement contribution from a single scat-
terer. It is, therefore, dependent on ka

−2, and only slightly
dependent on pathlength L. In the same regime of low kal
values, Cn�CRN. This is in agreement with the fact that in
the limit of low kal values, all of the scatterers are within a
space with almost the same phase of the ultrasound field, and
the contributions from mechanism 2 add constructively, re-
gardless of different scattering directions. On the contrary,
when kal is large, the values of the C terms are significantly
lower than CRN due to the increased cancellation of the phase
increments. In that regime, G�� / �2kal� and all of the C
terms are well described with their parts linearly proportional
to s / l. The Cn term is then proportional to ka

−1, and it is lower
than CRN by a ratio of s /�a, where �a is the ultrasound wave-
length. Compared to the Cn term, the Cd and Cn,d terms are
lower by another l /�a ratio, discarding the parameters �, S,
and cos��� involved in their expressions. Both parameters
depend on ka

−2, and their contribution to the sum C is not
important compared to Cn.

Finally, we plot in Fig. 3 the ultrasonic frequency depen-
dence of the sum C of the optical phase accumulation terms,
Cn, Cd, and Cn,d, for two different relative mass densities of
the optical scatterers ��=1 and �=3� and three different val-
ues of s / l. We choose the mean optical scattering free path to
be l=1 mm and the radius of the optical scatterers as a0
=1 �m. For this set of chosen parameters, in the range of the
small kal values, the particles are following the fluid dis-
placement in amplitude and phase �S�1 and ��0�, and
there is no noticeable difference between the values of the C
term for the different � values. With a large kal, the C term
follows the behavior of the index of refraction term Cn, and

FIG. 3. Ultrasound frequency dependence of the sum of the C
terms, for two different values of the mass density ratio �. Values of
the parameters are scatterer radius a0=1 �m, optical mean free path
l=1 mm, kinematic viscosity of water �k=10−6 m2 s−1, elasto-optic
coefficient of water �=0.32, and �=1 m−1.
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the influence of the Cd term is small. Therefore, only in the
range of intermediate kal values, where both a phase and an
amplitude difference between the scatterers and fluid motion
exist �for �=3�, and where the Cd term contributes signifi-
cantly to the value of C, does a discrepancy appear between
the values of the C term for different � values. We expect
that � is just slightly different from unity in most situations
in real biological soft tissues, in which case the observed
discrepancy is not significant.

We mentioned earlier that when kal is large, the C term is
dominated by the value of the index of refraction term Cn,
and it is dependent on the ka

−1. Interestingly, when kal is
small, the value of the elasto-optic coefficient � in water is
such that a large cancellation occurs when summing the C
terms, due to the negative value of Cn,d. As a result, in a low
kal limit, the C term behaves like the Cd term at low values
of s / l, i.e., as if it is caused by the displacement contribution
of only one scatterer.

Note that the value of the � parameter is proportional to
the acoustic pressure amplitude P0, and, consequently, the
modulated intensity has a P0

2 dependence. From Fig. 3, in the
CW regime, when kal is small, pressure amplitude values as
low as P0=1 kPa are sufficient to produce values of the C
term that are close to unity, which is at the edge of accep-
tance for our theory based on the small phase approximation.
When propagating ultrasound pulses, we can apply signifi-
cantly higher peak ultrasound pressures without violating the
assumption of small phase increments.

IV. TRANSMISSION AND REFLECTION OF THE
ACOUSTO-OPTICALLY MODULATED LIGHT INTENSITY

IN A SLAB GEOMETRY

A. Slab equations

In this section, we present the analytical expression for an
acousto-optical signal produced by a train of ultrasound
pulses in the case of an infinitely wide optically scattering
slab. Since it is possible to find a reasonably good analytical
expression for the pathlength probability density function for
both transmission and reflection slab geometry, a slab has
been considered previously for various problems
�3,16,17,28,33–35�. We choose the Z axis of the coordinate
system to be perpendicular to the infinitely wide slab of
thickness d. The indices of refraction of both the surrounding
and scattering media are n0. A plane ultrasonic wave propa-
gates within the slab �in the X-Y plane� and is assumed to fill
the whole slab. We consider two cases. In the first case,
which we will refer to as the transmission case, one side of
the slab is irradiated by a plane electromagnetic wave, and a
point detector measures the optical intensity on the side of
the slab opposite to the light source. By solving the diffusion
equation for this geometry, it is possible to find an expression
�16,33,35� for the photon pathlength probability density
function p�s�. For the transmission case, we follow the deri-
vation of p�s� from �16,33� by applying an infinite number of
image sources and introducing extrapolated-boundary condi-
tions �33,35�. We assume isotropic scattering, in which case,
�s�=�s. By virtue of the similarity relation described in Sec.
II B, we can extend the conclusions obtained from the iso-

tropic case to anisotropic scattering also. The final expres-
sion for the probability density function pT�s� for the path of
length s in the transmission geometry is

pT�s� = KT�s��
n=1

+� ���2n − 1�d0 − z0�exp�−
��2n − 1�d0 − z0�2

4Ds
�

− ��2n − 1�d0 + z0�exp�−
��2n − 1�d0 + z0�2

4Ds
�� , �34�

where

KT�s� =
sinh�d0

��a/D�

sinh�z0
��a/D�

s−3/2 exp�− �as��4�D�−1/2. �35�

In Eq. �34�, the diffusion constant is given by D= �3��a

+�s��−1; d0 is the distance between the two extrapolated
boundaries of the slab; and z0 is the location of the converted
isotropic source from the extrapolated incident boundary of
the slab. The distance between the extrapolated boundary
and the corresponding real boundary of the slab is l�*, where
�*=0.7104 and l is the scattering mean free path �l=1/�s�.
The converted isotropic source is one isotropic scattering
mean free path into the slab. Therefore, d0=d+2l�*, and z0
= l�1+�*�.

In the second �reflection� case, the point detector and the
point source of light are positioned on the same side of the
slab, and separated from each other by a distance � in the
X-Y plane. We also assume in this case that the slab is infi-
nitely thick. Similarly to the transmission case, we obtain the
solution for the pathlength probability density function pR�s�
in the reflection geometry,

pR�s� =
2�−1/2��z0

2 + �2�/�4D��3/2

�1 + 2��a�z0
2 + �2�/�4D��

exp�2��a�z0
2 + �2�
4D

�
� s−5/2 exp�− �as�exp�−

�2 + z0
2

4Ds
� . �36�

The following expressions are needed in order to perform
averaging of the terms in Eq. �26� over the pathlength prob-
abilities:

Ts = �
0

+�

pT�s�sds ,

Rs = �
0

+�

pR�s�sds ,

�37�

Texp,n = �
0

+�

pT�s�exp�− Qns�ds ,

Rexp,n = �
0

+�

pR�s�exp�− Qns�ds ,

where Qn=−ln�Gn� / l. After calculating the integrals in Eq.
�37�, we have
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Ts =
d0 coth�d0

��a/D� − z0 coth�z0
��a/D�

2��aD
,

Rs =
�2 + z0

2

2D�1 + ��a��2 + z0
2�/D�

,

Texp,n =
sinh�d0

��a/D�

sinh�z0
��a/D�

sinh�z0
���a + Qn�/D�

sinh�d0
���a + Qn�/D�

, �38�

Rexp,n =
1 + ���a + Qn���2 + z0

2�/D

1 + ��a��2 + z0
2�/D

�
exp�− ���a + Qn���2 + z0

2�/D�

exp�− ��a��2 + z0
2�/D�

.

If we denote with �Cn�n�s,T, �Cd�n�s,T, and �Cn,d�n�s,T

the averages of the appropriate C terms in Eq. �26� over all
of the pathslengths in the transmission geometry, we have,
with the help of Eq. �38�,

�Cn�n�s,T =
�2

�2� f̃0� n

vaT
��2�2

n2 �kanl�2� Gn

1 − Gn
�Ts

l
+ 1�

−
Gn

2�1 − GnTexp,n�
�1 − Gn�2 � , �39a�

�Cd�n�s,T =
�2

�2� f̃0� n

vaT
��2Sn

2

n2�Ts

3l
−

1 − Gn
−1Texp,n

�kanl�2 � ,

�39b�

�Cn,d�n�s,T =
�2

�2� f̃0� n

vaT
��22�Sn cos��n�

n2

��−
Ts

l
+

Gn�1 − Texp,n�
1 − Gn

� . �39c�

The expressions for the terms �Cn�n�s,R, �Cd�n�s,R, and
�Cn,d�n�s,R averaged in the reflection configuration are iden-
tical with the expressions in Eq. �39�, with Ts and Texp,n
replaced with Rs and Rexp,n, respectively.

B. Various pulse shapes

We present the effects of acousto-optical modulation for
two distinct types of the ultrasound pulse shapes. The Gauss-
ian pulse shape �pulse 1� is used as a representative of a
pulse with the spectrum centered at the zero frequency. Al-
though just an idealization of the ultrasonic pulse generated
in realistic conditions, this is a useful example of acousto-
optically modulated light dependence on ultrasound fre-
quency. The second pulse shape function �pulse 2� is pro-
duced by modulating the pulse 1 profile with the cosines
function, and it is a more realistic example of commonly
generated ultrasound pulses. Figure 4�a� presents the time
profiles of the pulse shape functions, whose expressions are

f0,P1�u� = exp�−
u2

2��vaT�2� , �40a�

f0,P2�u� = exp�−
u2

2��vaT�2�cos�kuu� . �40b�

In Eq. �40�, va=1480 ms−1 is the ultrasound velocity in wa-
ter; T=20 �s is the time period between pulses; and �=2.5
�10−3 is the constant which controls the relative width of
each pulse compared to the distance between consecutive
pulses, such that both pulses have similar bandwidths
�5.3 MHz. In Pulse 2, ku is the magnitude of the ultrasound
wave vector associated with the 8 MHz central frequency.

Figures 4�c� and 4�d� present the squares of the Fourier
transforms of the ultrasound pulse profiles f0,P1�u� and
f0,P2�u�, for different ultrasound frequencies n /T, respec-
tively,

f̃0,P1� n

vaT
� = �vaT�2� exp�− 2n2����2� , �41a�

f̃0,P2� n

vaT
� = �vaT�2�exp�− 2n2����2�

�exp�− 2���
T

Tu
�2�cosh�4n����2 T

Tu
� ,

�41b�

FIG. 4. Frequency spectra of pulses 1 and 2. �a� Pulse time
dependence; �b� ultrasound frequency dependence of the scaling
terms; �c� power spectrum of the pulse 1 before and after multipli-
cation with the scaling term; �d� power spectrum of the pulse 1
before and after multiplication with the scaling term; parameters
used in calculation are index of refraction in water n0=1.33; optical
wavelength �0=0.5 �m; ultrasonic pressure amplitude P0=105 Pa;
speed of sound in water va=1480 ms−1; scattering mean free path
l=1 mm; elasto-optic coefficient �=0.32; relative scatterer density
�=1; period between consecutive pulses T=20 �s; pulse 2 central
ultrasound frequency Tu

−1=8 MHz; �=2.5�10−3.
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In calculating the acousto-optical effect, we use the opti-
cal wavelength �0=0.5 �m, the optical index of refraction
n0=1.33, and the elasto-optic coefficient in water �=0.32.
We also use the scattering mean free path l=1 mm, and the
optical absorption coefficient �a=1 cm−1, which are in
agreement with the typical optical transport mean free path
and absorption coefficient in soft tissue. Since it is expected
that in reality scatterers closely follow the ultrasound in-
duced fluid motion, we use a relative scatterer density �
equal to one. For equal values of the scattering slab thickness
in transmission geometry d=4 cm, and the distance between
the source and the detector in reflection geometry �=4 cm,
and for the particular values of the other parameters used, the
probability of the pathlength is almost equal for both the
transmission and reflection configurations. Therefore, we
present only the transmission case results. We use an ultra-
sonic pressure amplitude P0 equal to 105 Pa, which is much
higher than the allowed CW ultrasound pressure amplitude
used in the approximation of small ultrasound modulation.
The parameters are also chosen such that the larger ultra-
sound wavelength in a spectrum is comparable with the slab
thickness �or the source-detector distance�, and the approxi-
mations involved in Eq. �8� are satisfied.

We define the scaling coefficient Csc�n�, and the total scal-
ing coefficient �Csc�n�s,T in transmission geometry, at each
ultrasound frequency n /T as

Csc�n�� f̃� n

vaT
��2

= Cn�n� + Cd�n� + Cn,d�n� , �42a�

�Csc�n�s,T� f̃� n

vaT
��2

= �Cn�n�s,T + �Cd�n�s,T + �Cn,d�n�s,T.

�42b�

Based on Eq. �27�, the scaling coefficient Csc�n� scales the
power spectral density of the ultrasound pulse train for each
particular value of the optical pathlength s. The black
squares on Fig. 4�b� present the value of Csc�n� for the dif-
ferent ultrasound frequencies and for three different values of
s. The scaling coefficient Csc�n� behaves similarly to the sum
of the C terms in the CW case �Sec. III�. The open squares in
Fig. 4�b� present the frequency dependence of the total scal-
ing coefficient �Csc�n�s,T, which is the result of path length
averaging of the scaling coefficient Csc�n�. At each ultra-
sound frequency, the power spectrum of the acousto-
optically modulated intensity is obtained by scaling the
power spectrum of the train of pulses with this coefficient.
The �Csc�n�s,T behaves similarly to some Csc�n� term at the
average value of the pathlength s. In a high frequency range,
it is inversely proportional to the ultrasonic frequency, and in
a low frequency range, depending on the average pathlength
value, it might become inversely proportional to the ultra-
sound frequency squared.

The open squares in Figs. 4�c� and 4�d� present the ultra-
sound frequency dependence of the power spectrum of the

modulated light, given by 	 f̃�n / �vaT��	2�Csc�n�s,T, in trans-

mission geometry for the pulse 1 and pulse 2 cases, respec-
tively. Compared with the power spectra of the pulse shape
functions �black circles�, both pulses are more attenuated at
the higher ultrasound frequencies due to the decay of the
total scaling coefficient �Csc�n�s,T. Pulse 1 is attenuated
strongly at higher frequencies, and it suffers a large reduction
in bandwidth. The present theoretical model is not valid for
very low values of the kal product, and the concept of infinite
train of pulses allows us to avoid this part of the spectrum
even in a case where the single pulse shape function has very
low frequency components, as in the pulse 1 case. Conse-
quently, based on this model, it is difficult to predict the
spectrum of the optical intensity after interaction with only
one pulse with a similar shape. However, based on the pre-
sented theoretical derivations, it looks reasonable to us to
expect a large bandwidth reduction for a pulse with a spec-
trum centered at zero frequency. In the case of pulse 2, due to
the frequency dependence of the total scaling coefficient, the
frequency spectrum of the acousto-optically modulated light
is slightly broadened for �0.3 MHz, and the central fre-
quency is left-shifted by 0.7 MHz. Note, also, that the value
of the total scaling coefficient �Csc�n�s,T at the central fre-
quency of pulse 2 is several times smaller than its value at
the lowest frequency in the spectrum.

V. CONCLUSION

In conclusion, we have presented an extension of the
theory of acousto-optical modulation of multiply scattered
diffused light toward the small kal values, where a strong
correlation exists between the ultrasound induced optical
phase increments associated with different components of
the optical path. It is shown that an approximate similarity
relation is valid for this extended range of kal values. For
large kal values, an inverse linear dependence of the modu-
lated signal on the ultrasound frequency is a consequence of
the dominating effect of mechanism 2, while in the low kal
range, depending on the particular values of the average
number of scattering events along the pathlength, the signal
has a tendency to be even inversely proportional to the
square of the ultrasound frequency. The theory is also ex-
tended to account for complex scatterer movement in respect
to surrounding fluid displacement. It is expected that in cases
involving the commonly used ultrasound pressures in medi-
cine, the movement of the optical scatterers in soft biological
tissues should not differ significantly from the movement of
the surrounding tissue. In this situation, even for large values
of the kal product, a significant correlation between the con-
tributions of mechanism 1 and 2 exists. Finally, we derived
an analytical solution for acousto-optical modulation when
the train of the ultrasound pulses traverses the scattering me-
dia. Examples of two characteristic pulse shapes with zero
and nonzero central frequencies are presented in the trans-
mission and reflection geometries. It is shown that the ultra-
sound frequency dependence of the optical phase variations
due to mechanisms 1 and 2 produces a nonuniform deviation
of the pulse spectra, as well as decay of the modulated light
power in the higher ultrasound frequency ranges.
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