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Exciton states and optical spectra in a pair of vertically stacked InGaAs/GaAs quantum dots are studied with
a proposed variation-diagonalization technique. The spectra obtained are in good agreement with experiments.
The tunnel coupling and the exciton entanglement are also investigated. It is found that at short barrier widths,
the entanglement is small due to the coupling between the intradot and interdot orbitals. At large barrier widths,
large entanglement appears in coupled identical quantum dots; however, such an entanglement can be easily
destroyed by the broken symmetry because of the weak tunneling of the hole.
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I. INTRODUCTION

Semiconductor quantum dots �QDs� are regarded as “ar-
tificial atoms” due to their characteristic discrete energy
spectra and controllable physical properties. Corresponding
to the similarity between a quantum dot and an atom, a pair
of vertically or laterally coupled quantum dots �CQDs� is
called a quantum dot molecule. Many efforts have been
made to investigate the optoelectronic properties of coupled
quantum dots and some moleculelike behaviors induced by
the quantum tunneling have been found in these structures.
Besides being valuable for the basic physics, coupled quan-
tum dots are of high interest for the physical implementation
of solid-state quantum computation.

It has been proposed that the quantum bits �qubits� can be
represented by either electron spin states1–4 or exciton
states5,6 in QDs, and the CQDs can be used as a quantum
logical gate to entangle the qubits. Compared with the quan-
tum computation schemes of trapped atoms �ions�,7 nuclear
magnetic resonance,8 cavity quantum electrodynamics9 and
Josephson junctions,10 the solid-state qubits have relatively
long coherence time11,12 and are suitable for large integra-
tion. Recently, with the development of the “indium flush”
grow technique,13 vertically stacked quantum dots of high
quality have been fabricated and large interaction-induced
energy splittings of exciton states have been observed in the
photoluminescence �PL� spectra.6,14 It has been demonstrated
that the coupling of exciton states in CQDs can be controlled
by an external electric field15,16 and an anticrossing induced
by the electric field has been directly observed in the PL
spectra.16

Though the splittings and coupling of exciton states in
CQDs have been observed in the PL spectra, so far the ex-
citon entanglement has not been proved directly. In the the-
oretical analysis of Bayer et al.,6,17 exciton states with large
entanglement have been predicted within a symmetric
model. In the atomistic pseudopotential calculations of
CQDs with consideration of strain modification and alloy
fluctuation,18,19 the entanglement of exciton states has been
found to be very small at both small and large interdot sepa-
rations. Such small entanglement is caused by the broken
symmetry induced by the strain and alloy fluctuation. In fact,
the entanglements of qubits in CQDs may be influenced by

many factors, such as composition fluctuations, dot size dif-
ferences, and applied external fields. Studying the effects of
these factors is important for us to find stable and control-
lable entanglement in qubits.

In this paper we study exciton states and their entangle-
ments in vertically coupled quantum dots which resemble the
experimental system by Bayer et al.6 Under the framework
of the effective mass approximation, we provide a variation-
diagonalization method to efficiently calculate the exciton
states. The evolutions of exciton spectra with varying barrier
width and with an external electric field are given and com-
pared with the experimental results. With the analysis of the
orbital occupations, the entanglement of exciton states is
clearly shown and well explained. The effects of the symme-
try, the barrier width, and the external field on the entangle-
ments are systematically studied.

II. MODEL HAMILTONIAN AND VD METHOD

The Hamiltonian of an exciton in vertically coupled
InGaAs/GaAs QDs with an electric field can be written as

H = �
i=e,h

� p� i
2

2mi
* + qF� · r�i + Ui� −

e2

4��0�r�r�e − r�h�
, �1�

where the one-band model is used for the hole. qh�qe�
=e�−e�, and F� is an external electric field along the vertical
direction. The confining potential Ui is written as

Ui=e,h = �0 in QDs,

Vi in surrounding matrix.
� �2�

As shown in Fig. 1�a�, Wb is the barrier width, R0,1 and Wd
are dot radii and height, respectively, and Ve and Vh are the
conduction and valence band offsets, respectively. In our cal-
culation, Wd depends on the barrier width as shown in Fig.
1�b� and the reason is given in Sec. III.

To efficiently solve the Hamiltonian H of Eq. �1�, we
propose a variation-diagonalization �VD� method. In the VD
method, a trial zeroth-order Hamilton H0�� ,� ,…�, which
includes the effective confining potentials Ui

* and effective
Coulomb term UC

* with variational parameters �, �, and so
on, is introduced and H is rewritten as

PHYSICAL REVIEW B 72, 165346 �2005�

1098-0121/2005/72�16�/165346�7�/$23.00 ©2005 The American Physical Society165346-1

http://dx.doi.org/10.1103/PhysRevB.72.165346


H = H0��,�,…� + H���,�,…� . �3�

In polar coordinate, H0 can be written as

H0 = H0z + H0�� �4�

with

H0z = �
i=e,h

� pzi
2

2mi
* + qFzi + Uzi

*� �5�

and

H0�� = �
i=e,h

� p��i
2

2mi
* + U�i

* � + UC
* . �6�

Uzi
* , U�i

* , and UC
* are as follows:

Uzi
* = �0 for 0.5Wb � �zi� � Wd + 0.5Wb,

Vi else,
� �7�

U�i
* = �i�i

2, �8�

and

UC
* = −

�e2

4��0�r���e − ��h�
, �9�

respectively. H0�� can be separated into center-of-mass and
relative motion terms:

H0�� = H0CM + H0rel, �10�

with

H0CM =
p���CM

2

2M
+ ��e + �h��CM

2 �11�

and

H0rel =
p���rel

2

2�
+

�emh
*2 + ahme

*2

M2 �rel
2 −

�e2

4��0�r�rel
, �12�

where M =me
*+mh

* and �=me
*mh

* / �me
*+mh

*�. The solutions of
H0CM can be obtained analytically, and those of H0z and H0rel

are exactly obtained by the series expansion method.20,21

Then a set of variational basis, which can reflect the effects
of confining potentials, Coulomb interaction, and external
field, is constructed by using the eigenstates of H0. The
variational basis, the eigenstates of the total Hamiltonian H,
and the minimal ground state energy are simultaneously de-
termined by both the variation method and the exact diago-
nalization.

Once the exciton states are obtained, we can calculate
directly the measurable properties, such as the linear optical
susceptibilities of the CQDs, whose imaginary part is related
to optical transition intensity. In theory, the linear optical
susceptibility is proportional to the dipole matrix elements
between the exciton states � j and the vacuum state, which in
turn are proportional to the oscillator strengths Fj. In the
dipole approximation, they are given by22–24

Fj = 	
 d��CMd��reldzedzh� j���CM,��rel,ze,zh�	���rel�


	�ze − zh�	2

. �13�

Then the frequency dependence of the linear optical suscep-
tibility ���� can be expressed as22–24

���� 
 �
j

Fj

�� − Eg − Ej − i�
, �14�

where Eg and Ej are, respectively, the semiconducting band
gap of QDs and energy levels of the exciton, and � has been
introduced as a phenomenological broadening parameter.
The Coulomb interaction energies EC

j of exciton states � j are
defined by

EC
j = �� j�

e2

4��0�r�r�e − r�h�
�� j� . �15�

It is helpful for better understanding of the level structures
of exciton states in CQDs to use the Coulomb energies EC

j

and the electron and hole tunnelling energies ti=e,h= 1
2 �Ei

−

−Ei
+�. Here, Ei

+ and Ei
− are energies of single-carrier bonding

and antibonding states, respectively.
We use the von Neumann entropy of entanglement to

quantify the degree of entanglement. Then wave functions
�i�ze ,zh , p�CM , p� rel� are further expanded in the basis of the
direct products of electron and hole orbitals in single dot:

�i = c1�00� + c2�01� + c3�10� + c4�11� , �16�

where the first �second� index of �ij� gives the position of the
electron �the hole�. �00� and �11� correspond to intradot or-
bital states where both the electron and hole are in the same
QD; �01� and �10� correspond to interdot ones where the
electron and the hole are in different QDs. With the use of
the expansion coefficients ci, the reduced density matrix �e
��h� of electron �hole� can be deduced and then the von Neu-
mann entropy25 of entanglement can be obtained

S = − Tr�e log2 �e = − Tr�h log2 �h. �17�

FIG. 1. �a� Schematic illustration of the InGaAs/GaAs coupled
quantum dots of radii R0 and R1 with height Wd and interdot barrier
width Wb; �b� slightly variable Wd as a function of Wb.
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III. ENERGY LEVELS AND OPTICAL TRANSITIONS

To compare the calculated results of heavy-hole excitons
with the experiments,6 we take the material parameters of
InGaAs/GaAs CQDs as me

*=0.043me, mh
*=7me

*, �r=13.5,
Ve=0.53 eV, Vh=0.175 eV, and Eg=0.814 eV. The size of
QDs is chosen to resemble the experimental system where
Wd
2 nm and R0,1
10 nm, as shown in Fig. 1.

Four s-shell exciton states �1–4 and two p-shell ones �5,6
in coupled identical QDs with R0=R1=10 nm are calculated.
The wave functions of �1–4 in the CQDs of Wb=6 nm are
shown in Fig. 2. It can be seen that the symmetric bonding
and antisymmetric antibonding exciton states are formed.
�1,2 are intradot s exciton states with the main components
of �00� and �11�, while �3,4 are interdot ones with the main
components of �01� and �10�. �5,6 are intradot p exciton
states. In Fig. 3�a�, energy levels are plotted as functions of
barrier width Wb for �1–4 and �5,6 in the CQDs. Two kinds
of energy splittings can be seen between exciton states. The
small ones, such as those between �1 and �2, are only sev-
eral meV for small Wb and decrease to zero with increasing
Wb. The large ones, such as those between �1 and �4, can
be several tens meV for small Wb and remain large values
even for large Wb. With decreasing Wb, the intradot exciton
states �1,2 and �5,6 show similar red shifts, while the inter-
dot ones �3,4 show blueshifts. It is found that the values of
the red and blue shifts are very sensitive to the variation of
Wd with Wb. As Wb changes from 8 to 4 nm, the calculated
blue shift of �4 �24 meV� is much larger than the experi-
mental one �3 meV�6 if the fixed Wd=2 nm is taken. Both the
calculated redshifts �40 meV� and blue ones �3 meV� can be
in good agreement with the experimental ones as shown in
Fig. 3�a� if the variation of Wd with Wb shown in Fig. 1�b� is
considered. In Fig. 3�b�, the spectra are plotted for Wb=4, 5,
6, 7, and 8 nm, respectively. It can be seen that only the
symmetric states �1, �4, and �5 are optically active; the
antisymmetric ones are optically inactive. Thus, the splittings
between the bright and dark states cannot be seen in the

spectra. With increasing Wb, the transition intensity of the
intradot exciton state �1 remains unchanged while that of
the interdot exciton state �4 decreases.

In order to better understand the spectrum structures of
CQDs, both the tunneling and Coulomb energies are given as
functions of Wb in Fig. 4. The electron tunneling energy te is
much larger than the hole one th since me

* is much less than
mh

*. At Wb=4 nm, for example, te=27 meV and th
=1.8 meV. With increasing Wb, both te and th decrease ex-
ponentially. Coulomb energies EC

1 �EC
3 � and EC

2 �EC
4 � of the

intradot �interdot� exciton states are almost equal. For small
Wb, the differences �EC

1,4 ��EC
2,3� between EC

1 �EC
2 � and EC

4

�EC
3 � are much smaller than te so that the electron tunneling

strongly influences the exciton levels. As Wb increases, EC
1

and EC
2 enhance slowly while EC

3 and EC
4 decrease rapidly. As

Wb�6.8 nm, �EC
1,4 ��EC

2,3� are larger than te and the Cou-
lomb interaction exhibits a more important role for the spec-
trum structures of CQDs. The large splittings between �1,2
and �3,4 are just the results of the competition between the
electron tunneling and the Coulomb interactions. The small

FIG. 2. Wave functions of �1–4 in CQDs of R0=R1=10 nm
with Wb=6 nm as functions of electron and hole coordinates in z
direction.

FIG. 3. �a� Energy levels of �1–6 for CQDs of R0=R1=10 nm
as functions of barrier width Wb. The solid and dashed lines corre-
spond to the model with a variable Wd as shown in Fig. 1�b� and
with a fixed Wd=2 nm. The filled circles are experimental data
extracted from Ref. 6. �b� Optical spectra for Wb=4, 5, 6, 7, and 8
nm, respectively.

FIG. 4. Electron and hole tunneling energies te and th �solid
lines�, Coulomb energies EC

j �dashed lines�, and the differences
�EC

i,j =EC
i −EC

j �dotted lines� as functions of barrier width Wb.
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splittings, such as those between �1 and �2, roughly come
from the hole tunneling.

As the symmetry of the CQDs is broken, the energy levels
and optical spectra can be greatly changed. For example, we
give the variation of exciton levels and spectra with the dot
radius difference �R=R0−R1 in Figs. 5�a� and 5�b�. With the
increase of �R, the splittings, such as those between �1 and
�2, can be obviously enhanced due to the orbital energy
differences. Most importantly, �1–6 are all optically allowed
because of the mixture of the bright and dark states and
additional transition peaks can be seen on the optical spectra
as �R�0.2 nm. In the PL spectra measured by Bayer et al.,6

such splittings have not been observed, so the radius differ-
ence between the two dots should be less than 0.2 nm. The
corresponding difference of the band gap between the two
dots will be less than 2 meV if the broken symmetry only
induced by the composition fluctuation or the strain modifi-
cation is considered.18,19

For exciton states in CQDs, the electric field can be used
to tune the energy levels and optical transitions. In Fig. 6�a�,
energy levels of �1–4 in the CQDs of R0=R1=10 nm with
Wb=8 nm are plotted as functions of electric field F. The

interdot exciton states �3,4 exhibit strong Stark effects due to
their large dipole moments, while the intradot exciton states
�1,2 exhibit weak ones due to their small dipole moments. A
coupling between �1 and �3 is induced and enhanced by
increasing F, and the energy of �2 shows a slight increase.
At F=15 kV/cm, an anticrossing of 10.34 meV occurs be-
tween �1 and �3. The variation of the optical spectra with F
is given in Fig. 6�b�. Four s-shell states are all optically
allowed due to the broken symmetry induced by the electric
field. As shown in Fig. 6�b�, �2 splits from �1 and exhibits
a large transition intensity as F�5 kV/cm. With increasing
F, the intensity of �1 decreases and that of �3 increases, and
it can be understood by noting the variation of the coupling
and the anticrossing at F=15 kV/cm between them. As a
matter of fact, the splitting between�1 and �2 and the anti-
crossing between �1 and �3 under an external electric field
have been respectively observed by Ortner et al.15 and Kren-
ner et al.16

IV. ENTANGLEMENT OF EXCITON STATES

A. Entanglement entropy

Entangled exciton states are important for the realization
of quantum computation using CQDs. In the basis of single-
carrier orbital products, the maximally entangled exciton
states, i.e., the Bell states can be written as �2/2��00�± �11��
and �2/2��01�± �10��. Those states, such as �00�,
�2/2��0�± �1���1�, 1 /2��0�± �1����0�± �1��, and so on, are
completely unentangled ones. Any deviation from the Bell
states corresponds to a decrease of entanglement. The degree
of entanglement can be quantified by the von Neumann en-
tropy of Eq. �17�. The entangle entropy of a maximally en-
tangled exciton state is 1, and that of a completely unen-
tangled state is 0. Based on the calculation of the
entanglement entropy, the effects of the symmetry, size, and
electric field on the entanglement of exciton states in CQDs
can be well investigated.

In Fig. 7�a�, the entanglement entropies S1–4 are plotted as
functions of Wb for four s-shell exciton states �1–4 in CQDs

FIG. 5. Variation of energy levels �a� and optical spectra �b�
with the dot radius difference �R for CQDs of R1=10 nm with
Wb=6 nm.

FIG. 6. �a� Energy levels of �1–4 in CQDs of R0=R1=10 nm
with Wb=8 nm as functions of electric field F. �b� Corresponding
optical spectra.

FIG. 7. �a� Entanglement entropies S1–4 of �1–4 in CQDs of
R1=10 nm with �R=0, 0.01, 0.1, and 1 nm as functions of barrier
width Wb. �b� Those in CQDs of R0=R1=10 nm with Wd=8 nm as
functions of electric field F.
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of R1=10 nm with �R=0, 0.01, 0.1, and 1 nm, respectively.
There are few differences between the entropies S1–4. As Wb
is small, the S1–4 are small for both coupled identical and
nonidentical CQDs. For coupled identical QDs, the S1–4 in-
crease monotonously with increasing Wb and exceed 0.9 as
Wb�10 nm. However, the large entanglement for coupled
identical QDs of large Wb is very fragile and easily destroyed
by the broken symmetry. For coupled nonidentical QDs of
�R=0.01 nm, the S1–4 achieve their maximum of about 0.4
at Wb=7 nm, and decrease rapidly with further increasing
Wb. The S1–4 can be greatly reduced by increasing �R.

The entanglements of exciton states in CQDs can be
strongly destroyed by the broken symmetry induced by an
electric field F, as shown in Fig. 7�b�. The F of 1.5 kV/cm
makes S1,2 decrease to 0.1 while the F of 0.2 kV/cm makes
S3,4 decrease to 0.1. It is because of quite different Stark
effects of the intra- and interdot exciton states. The exciton
states are almost unentangled at the F=Fanti where the anti-
crossing between �1 and �3 appears.

Here, only the entanglements of the heavy-hole exciton
states are involved. For light-hole exciton states, the en-
tanglement of both bonding and antibonding states can be
notably changed by the enhancement of the hole tunneling.
Therefore, the entanglements of low-lying exciton states may
be somewhat influenced by the heavy- and light-hole mixing
which strongly depends on the size and barrier width of the
CQDs. However, the hole ground state of CQDs resembling
the experimental system of Bayer et al.6 is dominantly
heavy-hole-like.19 The influence of the heavy- and light-hole
mixing in our studies is small. Nevertheless, the mixing
needs to be considered for CQDs with larger size and smaller
barrier width.

B. Evolution of orbital occupations

The behavior of entanglements in CQDs mentioned above
can be well understood from the variation of the orbital oc-
cupations of the exciton states. In Fig. 8�a�, the expansion
coefficients of �1–4 in Eq. �16� are plotted as functions of Wb
for the coupled identical QDs. It can be clearly seen that the
same kinds of orbital states contribute the same strength to
an exciton state due to their identical orbital energies. As Wb
is small, the intradot orbital states �00� and �11� and the in-
terdot ones �01� and �10� are all mixed into an exciton state.
It leads to a large deviation from the Bell exciton states so
that small entanglements are shown. It is interesting to note
that the coupling of the intra- and interdot orbital states, for
example, that of �00� and �10�, depends strongly on both the
electron tunneling energy te and the difference of Coulomb
interaction energies between them. With increasing Wb, such
couplings decrease because of the decrease of te and the
increase of �EC

i,j as shown in Fig. 4. As Wb�7 nm ��EC
i,j

� te�, the main component of �i is larger than 83 % and the
four s states are close to the exciton Bell states. However,
such large entanglements for large Wb are very fragile be-
cause of mh

*�me
*. This can be well understood if we notice

that the exciton tunelings between �00� and �11� or between
�01� and �10� are mainly determined by the hole �the heavy
carrier� tunneling, which is very weak, as shown in Fig. 4.
This makes the couplings of the same kinds of orbital states
easily destroyed by even a small orbital energy difference.
Such an effect is clearly shown in Fig. 8�b� for coupled non-
identical QDs of R0=10.1 nm and R1=10 nm. For short Wb,
the four orbital states are mixed into an exciton state with
various probabilities. With increasing Wb, the couplings be-

FIG. 8. Expansion coefficients c1–4 of �1–4 in the basis of orbital products as shown in Eq. �16� for CQDs of R1=10 nm with R0=10 �a�
and R0=10.1 �b� as functions of barrier width Wb, and for that of R0=R1=10 nm with Wb=8 nm �c� as functions of electric field F. The
coefficients c1, c2, c3, and c4 are represented by the solid lines, dash lines, circles, and filled circles, respectively. For �3 and �4 in �c�,
breaks at F=0.2 kV/cm have been taken to clearly show the variation of the coefficients in the region of small F.
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tween �00� and �11� or between �01� and �10� decrease rap-
idly, and the hole comes to be localized in one of the two
QDs. As Wb�7 nm, �1–4 are respectively close to the four
simple orbital products which are unentangled.

The variation of orbital occupations of exciton states with
electric field F is given in Fig. 8�c�. With increasing F, the
large entangled exciton states �1–4 quickly approach the
simple orbital products. At F=1.5 kV/cm, �1 ��2� is close
to �11� ��00��, and at F=0.2 kV/cm, �3 ��4� is close to �01�
��10��. As F increases further, a coupling between �11� and
�01� appears in both �1 and �3. At F=15 kV/cm, �1 and
�3, respectively, approach �2/2��11�+ �01�� and �2/2��11�
− �01��, which corresponds to an anticrossing in the spectra
as shown in Fig. 6. It is clear that such a coupling only arises
from the electron tunneling while the hole remains localized
in the QD1. Then �1 and �3 are almost unentangled.

V. SUMMARY AND CONCLUSION

To efficiently calculate the exciton states in vertically
coupled InGaAs/GaAs QDs, a VD method is proposed. In
the method, a set of variational basis is formed by solving a
trial zeroth-order Hamiltonian which includes the variational
confining potential and effective Coulomb term. The appro-
priate basis, the eigensolutions of the total Hamiltonian and
the minimal ground state energy are simultaneously deter-
mined by both the variation method and the exact diagonal-
ization with use of the basis. Based on the method, the mea-
sured optical spectra can be well reproduced with the use of
reasonable band and structural parameters.

By considering the variation of dot height with barrier
width for coupled identical QDs, the exciton energy split-
tings and shifts of the calculated spectra with decreasing bar-
rier width are in good agreement with the measurements.6

For coupled identical QDs, the energy splittings are caused
by the carrier tunneling and the difference of Coulomb inter-

action energies between the intra- and interdot exciton states,
and only the bonding states are optically active. As the sym-
metry is broken, the splittings are enhanced and all four
s-shell states are optically allowed. The coupling of exciton
states is strongly influenced by an electric field. A resonant
tunneling between electron orbitals can appear at a specific
electric field, which corresponds to an anticrossing in the
spectra.

The entanglements of exciton states in CQDs are investi-
gated by calculating the entanglement entropies and analyz-
ing the orbital occupations. At small barrier widths, large
couplings between the intra- and interdot orbital states exist
in exciton states so that entanglements are small. For coupled
identical QDs, large entanglements can appear at large bar-
rier widths. However, such large entanglements are very
fragile because the couplings between the intradot orbitals or
between the interdot ones strongly depend on the hole �the
heavy carrier� tunneling, which is very weak. As the symme-
try is broken by the dot differences, a slight orbital energy
difference can reduce the couplings between the same kinds
of orbitals to cause the decrease of the entanglements. There-
fore, it is difficult to obtain large exciton entanglements in
coupled nonidentical QDs without controlled external fields
if the hole is much heavier than the electron.

Finally, we should point out that the effects of structural
and electronic parameters within a realistic multiband model
and those of external fields on the entanglement of the qubits
are worthwhile to investigate. How to realize stably and con-
trollably entangled qubits is one of the most important re-
search subjects in the development of solid-state quantum
computers.
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