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The energy spectrum and the wave functions of an electron in a quantum dot~QD! are computed using the
effective-mass approximation. The case of a shallow, hydrogenlike center in a quantum dot is also considered.
We use the spherical shape approximation in the belief that the basic results are more sensitive to the dimen-
sions than to the shape of the confining potential. The wave functions for the discrete bound states and for the
continuum states are obtained in a closed form. We show that resonances of the Breit-Wigner type occur in the
continuum, due to the local potential of the microstructures. The lifetimes of the resonant states are computed
and their impact on the optical properties of the QD material is discussed. As an example, we give detailed
results for the GaAs/Ga12xAl xAs QD, where the basic properties~band mismatch, effective masses, dielectric
constants! are well known. We find that the optical excitation spectrum, with or without the impurity center,
depends dramatically on the dot radius.@S0163-1829~96!01127-7#

I. INTRODUCTION

Recent improvements in microstructure technology have
made it possible to prepare quantum dots~QD’s! character-
ized by confining potentials in all directions;1 for instance,
QD’s prepared by using molecular-beam epitaxy~MBE!
techniques with Ga12xAl xAs alloys2 or semiconductors of
spherical shape in glasslike materials.3,4

The relevance of such materials, both for the fundamental
study of electronic states and for technological applications,
is evident, considering that zero dimensionality in transla-
tional symmetry may produce discrete levels whose energies
can be varied just by changing the size of the QD. These
levels act as traps for electrons and holes, which can be
introduced into the crystal either by doping with donor or
acceptor impurities or by the absorption of electromagnetic
radiation in the interband transition region. In addition to
bound states, the local potential of the microstructure can
also produce resonant states in the continuum, which may
have considerable influence on the properties of QD materi-
als.

The electron bound states of an electron in a quantum dot
have been calculated for various types of confining poten-
tials, such as steplike barriers,5,6 parabolic potentials which
produce equally spaced levels,7 and potentials due to strain
interactions.8 Various QD shapes have been considered,9,10

though the spherical shape has been preferred in the theoreti-
cal approach because of its calculational simplicity. Also the
discrete states of a hydrogenlike impurity located inside the
dot have been computed in the case of infinite11 and
finite12,13 potential barriers. The dependence of the energy
spectrum on the donor position has also been discussed.14,15

In this paper we study the electron states of a QD within
the spherical shape approximation, on the assumption that
the basic results are sensitive to the dimension, but not to the
shape, of the confining potential. We are interested not only
in discrete levels, but also in the states of the continuum, and

particularly in resonant states of the type introduced by Breit
and Wigner16,17 in nuclear physics and by Fano18 in atomic
and condensed matter physics. We give a recipe on how to
compute bound states and free states in the continuum using
the envelope function approach and a steplike confining po-
tential, and show how they depend on the radius of the quan-
tum dot. We apply the standard scattering theory to compute
the wave functions in the continuum and to identify the reso-
nances. The lifetimes of some of the resonant states are long
enough to qualify them as Breit-Wigner resonances.

Bound states influence the statistical distribution of elec-
trons in the conduction band, since they compete with impu-
rity states as local traps. We study the infrared absorption
spectrum of electrons in the QD’s and show that strong
peaks arise due to transitions to discrete and resonant levels.

We consider also the case when the QD contains an im-
purity or has trapped either an electron or a hole, so that a
Coulomb-like potential is superimposed on the confining po-
tential of the neutral zero-dimensional structure. When this
potential is repulsive outside the dot, the total potential is
very similar to the nuclear potential considered by Breit and
Wigner for thea decay.17 For this reason we use the notion
of Breit-Wigner resonances.16

In Sec. II we apply the envelope function method to com-
pute bound and continuum states for an electron in a QD,
without and with an additional electric charge. We show how
to find the resonances and their lifetimes and how to calcu-
late the oscillator strengths for optical transitions from the
ground state. In Sec. III we present the detailed results for a
GaAs/Ga12xAl xAs QD, where the basic parameters~band
mismatch, effective masses, dielectric constants! are well
known. Conclusions are given in Sec. IV.

II. THEORY

We compute the electron trapping states in a spherical
quantum dot with radiusR in three cases: without an internal
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charge and with a positive or negative Coulomb charge at the
center of the dot. We use the effective-mass approximation
assuming that the Bloch functions at the minima of the con-
duction band are the same outside and inside the dot, which
is a typical assumption for materials like GaAs/
Ga12xAl xAs. We take the conduction band to be parabolic
in k space. In our treatment we neglect any effect of the
electron on its own potential. In some calculations a term
accounting for different polarizabilities of the material inside
the QD and outside the barrier has been calculated,17,20–22

but we choose not to take this effect into account because
only a self-consistent calculation which takes into account
the dependence of the polarizability on the wave function of
the electron would give an improvement. In addition, for the
sake of convenience, we have not considered the image
charge potential of the impurity; this is a minor effect which
can modify only the numerical details. With the above ap-
proximations, the calculation can then be performed in the
framework of standard quantum mechanics scattering
theory.23

Let the effective masses of the electron bem1 inside the
dot andm2 outside the dot and the dielectric constants be
«1 and«2 , respectively. We choose as units of energy and
length the effective Rydberg Ry*5m1e

4/2\2«1
2 and the ef-

fective Bohr radiusa*5\2«1 /m1e
2, defined with the pa-

rameters of the material inside the dot. Due to the spherical
symmetry, the envelope wave functions have the general
form of

CE,l ,m~r !5FE,l~r !Yl ,m~q,w!. ~1!

For the kinetic part of the Hamiltonian we adopt the widely
used Hermitian form:

2¹
1

m~r !
¹, ~2!

so that the radial effective-mass equation reads

F2
1

r 2
d

dr

r 2

m~r !

d

dr
1
l ~ l11!

m~r !r 2
1U~r !2

2Z

«~r !r GFE,l~r !

5ElFE,l~r !, ~3!

where

m~r !5H 1, r,R

m2

m1
, r.R,

«~r !5H 1, r,R

«2
«1
, r.R,

~4!

andZ is the charge of the impurity located in the center of
the dot.U is the confining potential of the dot:

U~r !5H 2U0 , r,R

0, r.R.
~5!

The Hermiticity of the Hamiltonian forces the following
boundary conditions:

lim
«→0

FE,l~R2«!5FE,l~R1«!,

lim
«→0

FE,l8 ~R2«!5
1

m
FE,l8 ~R1«!. ~6!

In additionFE,l must be regular forr50. For the energies of
the discrete spectrum (E,0) the functionsFE,l(r ) must be
integrable, and we normalize them to 1. In the continuum
spectrum (E.0) we normalize our solutions tod(E82E)
and express them in the outside region as the sum of incom-
ing F2 and outgoingF1 spherical waves. For a given energy
Eq. ~3! has analytical solutions, which we denote as follows:

FE,l~r !5AFE,l
in ~r ! for r,R,

FE,l~r !5BFE,l
out~r ! for r>R and E,0, ~7!

FE,l~r !5FE,l
2 ~r !1e2id lFE,l

1 ~r ! for r>R and E>0.

The constantsA andB are given by boundary and normal-
ization conditions in the case ofE,0; A and the phase shift
d l are given by boundary conditions in the caseE>0. The
inside wave functions are

FE,l
in ~r !5 j l~kr ! for Z50,

FE,l
in ~r !5~2kr ! le2 ikr

1F1S l111 i
Z

k
,2l12,2ikr D
for ZÞ0, ~8!

wherek5AE1U0, j is the spherical Bessel function, and
1F1 is the Kummer function.24

It is easy to find the wave functions outside the dot when
m25m1 and«25«1 . In this case we denote the appropriate
radial wave functions byF̃out and F̃6. For Z50 we obtain

F̃E,l
out~r !5 i lhl

~1!~ ixr !

F̃E,l
1 ~r !5

1

2 S kp D 1/2hl~1!~kr !

F̃E,l
2 ~r !5

1

2 S kp D 1/2hl~2!~kr !
6 for Z50, ~9!

wherex5A2E (E,0), k5AE (E>0), andhl
(1,2) are the

spherical Hankel functions. ForZÞ0 we obtain the follow-
ing expressions in terms of the Kummer functions of type
U:

F̃E,l
out~r !5~2xr ! le2xrUS l112

Z

x
,2l12,2xr D ,

F̃E,l
6 ~r !52~22kr ! l2S kp D 1/2eZp/2ke6 is le6 ikr

3US l112 i
Z

k
,2l12,62ikr D

for ZÞ0. ~10!
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Herex5A2E (E,0), k5AE (E>0), ands l is the Cou-
lomb phase shift:

s l5argFGS l112 i
Z

k D G , ~11!

whereG indicates the Euler function.
Form2Þm1 and ~or! «2Þ«1 the effective Rydbergs and

the effective Bohr radii are not the same in both materials.
Still, the solutions in this case can be obtained from those
given in Eqs.~9! and ~10! by a simple scaling procedure:

uFE,l
out~r !u2r 2dr5uF̃E8,l

out
~r 8!u2r 82dr8,

and

uFE,l
6 ~r !u2r 2drdE5uF̃E8,l

6
~r 8!u2r 82dr8dE8, ~12!

wherera1*5r 8a2* , E3Ry1*5E83Ry2* , and the indices re-
fer to inner~1! and outer~2! Bohr radii and Rydberg units.
The above conditions express the fact that the probability of

finding the electron in a given spatial area~or spatial and
energetic area in the case of the continuum spectrum! does
not depend on the adopted units. We obtain from~12!

FE,l
out~r !5g3/2F̃bE,l

out ~gr !,

FE,l
6 ~r !5g3/2b1/2F̃bE,l

6 ~gr !, ~13!

where g5a1* /a2*5«1m2* /«2m1* and b5Ry1* /Ry2*
5«2

2m1* /«1
2m2* . The scaling factorg3/2 of the Fout function

can be included into theB constant of Eq.~7!, but we must
conserve the valueg3/2b1/2 in the expressions for theF6

functions, in order to preserve normalization in the energy
space.

The boundary conditions~6! give discrete levels in the
E,0 energy region. We denote the discrete energies and the
radial wave functions byEn,l andFn,l , respectively.

In the regionE.0 the asymptotic forms of the radial
wave functions of the continuum spectrum are

FE,l~r !→
r2`

eid l

ApAbE

sin~kr1d l2 lp/2!

r
for Z50,

FE,l~r !→
r2`

eid l

ApAbE

sin@AbEr2~Z/AbE!ln~2kr !1s l1d l2 lp/2#

r
for ZÞ0, ~14!

where now k5Am2 /m1E and s15arg@G( l112 iZ/
AbE)]. The phase shiftd l can be expressed as a sum of two
factors,d l5j l1r l . The first factor,j l , describes the phase
shift resulting from the hard-sphere scattering:

e2i j l52
FE,l

2 ~R!

FE,l
1 ~R!

, ~15!

while the second term,r l , depends on the potential inside
the dot. In the vicinity of the energiesEr , which are given
by

r l~Er !5~2n11!
p

2
, n50,1,2,. . . , ~16!

the phase shiftr l can be expressed through

e2ir l ~E!5
E2Er2

1
2 iG

E2Er1
1
2 iG

, ~17!

with

G52S dr l
dE UE5Er D 21

. ~18!

The resonances (Er2 iG/2) are then the poles of the scat-
tering matrixSl(E)5e2id l (E) in the complex energy plane.
They are of the Breit-Wigner type23 when the value ofG/2 is
small in comparison with (dr l /dE)

21 away fromEr . Reso-

nances of this type occur in many fields of physics; in optics
they are known as Fabry-Pe´rot resonances for interference of
electromagnetic waves in slab-shaped substances and as Mie
resonances for scattering on spherical particles.25

An approximate rule to decide when there exist well-
defined resonances can be found by expressing the radial
functions in the formF(r )5 f (r )/r , so that forf (r ) we have
a one-dimensional Schro¨dinger equation:

S 2
d

dr

1

m~r !

d

dr
1Vef~ l ,r ! D f E,l~r !5El f E,l~r !,

where

Vef~ l ,r !5U~r !1
l ~ l11!

m~r !r
2

2Z

«~r !
if r.0 ~19!

and

f E,l~0!50.

If Vef( l ,R).0 there is an energy barrier which produces
narrow resonant states in the continuum spectrum. We dis-
tinguish three cases depending on the presence of the
Coulomb-like potential.

~i! Z50 ~no impurity!; the barrier is given by the centrifu-
gal term and exists only forl.0.

~ii ! Z.0 ~donor impurity!; the barrier exists only if
l.0 andR,@ l ( l11)/2Z#(«2m1* /«1m2* ).
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~iii ! Z,0 ~compensated acceptor!; the barrier always ex-
ists, even forl50.

The optical~intersubband! transitions between the ground
and the excited states can be studied based on the computed
energies and wave functions. Since the ground state hass
symmetry (l50), only p-type states (l51) need to be con-
sidered within the standard dipole approximation. The oscil-
lator strength for an optical transition from the ground state
u0& to a stateun& is given by

f 0n5
C

DE
ZK nU a~r !m~r !

•¹1¹•
a~r !

m~r !
U0L Z2, ~20!

whereC is an appropriate constant required when using the
effective-mass approximation anda is the unit vector in the
polarization direction of the perturbing electric field, since
we apply the approximation«15«2 in the description of the
incident radiation. Choosing the polarization in thez direc-
tion and using the commutation relation
@H,z#52„1/m(r )…¹z2¹z1/m(r ) we obtain

f 0n5CDEz^nuzu0& z2. ~21!

The value of the constantC can be obtained by requiring that
the Thomas-Reiche-Kuhn sum rule

(
n

f 0n1E
0

`

f 0EdE51 ~22!

should apply, and turns out to be26

C5 K 0U 1

m~r !
U0L 21

. ~23!

We recall that the matrix element^0uzun& is not equal to zero
only for such final statesCn,1,0 for which l51,m50:

^0uzun&5E C0,0,0~r !zCn,1,0~r !d
3r

5
1

3E0
`

F0,0~r !Fn,1~r !r 3dr. ~24!

III. RESULTS FOR GaAs/Ga 12xAl xAs

Rather than discussing the general properties of electron
levels in QD’s and related optical effects, we chose to carry
out detailed calculations for the case of a material whose
two-dimensional and one-dimensional nanostructures have
been extensively investigated. Electron states in spherically
shaped GaAs/Ga12xAl xAs QD’s have been studied in the
approximation of infinite potential barriers.5,11 In the case of
finite barriers only the bound states have been
considered.6,12,15,27

The optical properties of electrons trapped inside quantum
dots by the confining potential and by the Coulomb potential
of the impurity strongly depend on the aluminum content in
the barrier and on the dot radius. For quantum dots the scat-
tering resonant states become of relevance, as we will show
in detail. We choose the matrix composition to be 20% of Al,
so that all the parameters needed for the calculations are
those of Table I.

We first consider the case of a QD without an impurity,

and report in Fig. 1 the energies of bound and resonant states
with l<3 versus inverse dot radius. It can be seen that bound
states exist only forR.27 Å. This is very close to the con-
dition R.p(/2AU0), which is obtained assuming that the
radial wave function vanishes at the boundary. As we in-
crease the size of the QD we observe that the binding energy
of the ground state increases and other bound states appear,
starting fromR555 Å ~the second one being thel51 state,
the third l52, then anotherl50, and so on!. In addition to
bound states, we find resonances in the continuum. Such
resonances are of the Breit-Wigner type when the broadening
is sufficiently small. We find that a convenient criterion for
such a classification is the requirement for the resonant en-
ergy to be lower than the peak of the potential barrier
Vef(R) as given by expression~19!. The states fulfilling such
a condition are indicated by the solid line in Fig. 1. It turns
out that the Breit-Wigner resonances are narrower and occur
in a larger positive-energy region as the value ofl increases.
We observe that there is a correspondence between bound
and resonant states. As the radius of the QD decreases the
bound states continuously transform into resonant states and
a critical value of the radius for this transformation can be
found for each state.

We have computed the optical transition probabilities
from the ground state to all excited states. In Fig. 2 we show
the oscillator strengths as a function of energy for three cho-
sen values of the dot radius. While the values in the entire
spatial region always satisfy the sum rule~21!, the peaks and
line shapes strongly depend on the dot size. For the three
cases reported in Fig. 2, most of the oscillator strength is
taken by the first transition (f 0,1.90%! when the dot size is
sufficiently large to have more than one bound state. As the
radius decreases, we observe that a resonant transition ap-
pears above the ionization energy. Finally, for very small
radii most of the oscillator strength is taken up by the first
resonance.

We have found that the results presented in Figs. 1 and 2
can be easily scaled to the case of different Al compositions
in the barrier. The impact of the composition on the value of
U0 of the potential barrier is much greater than the influence
on the effective mass. This condition allows us to use the
scaling procedure presented in Appendix A. We have found
that the scaling formulas~A4! and ~A5! reproduce the ener-
gies and the oscillator strengths almost exactly for various
potential depths.

We have also computed bound and resonant states, as
well as oscillator strengths for transitions from the ground
state, for a quantum dot containing a compensated acceptor
impurity (Z521) at the center. The results are similar to
those obtained for an empty QD, and are displayed in Figs. 3
and 4. It can be seen that in this case the widths of the
resonant states are narrower. The narrow resonant states exist

TABLE I. Material parameters for GaAs/Ga0.8Al 0.2As.

m150.0657m0 m250.0750m0 Ref. 28
«1512.4 «2511.84 Ref. 29
a*5a1*599.9 Å
Ry*5Ry1*55.81 meV
U050.178 eV530.6 Ry* Ref. 30
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even for l50. In general the role of resonant states in the
optical spectrum is increased, their peaks being narrower and
characterized by larger oscillator strength densities.

The case of a donor impurity in a QD (Z511) is quali-

tatively different, because an infinite set of bound states is
always present, irrespective of the value ofR. Still, the con-
fining potential produces two important effects, similar to
those presented above. The first is the increase of the binding
energies with increasing radius, where in our case the bind-
ing energy is defined relative to the ionization limit. The
ground state, for instance, changes from Ry2* for a very
small dot radius toU01Ry1* for very large dots, where small
and large refer to size as compared with the Bohr effective
radius. A similar change is observed for the excited-state
energies~small and large dots refer in this case to the mean

FIG. 1. Energies of the electron states in an empty GaAs/
Ga0.8Al 0.2As spherical QD as a function of the inverse of the dot’s
radius. The lowest states withl50, 1, 2, and 3 are presented. The
energy valuesE.0 correspond to resonant states in the continuum.
Breit-Wigner resonances with energies smaller than theVeq( l ,R)
barrier height are denoted by solid lines.

FIG. 2. Computed spectra of the transitions from the ground
state (l50) to the excitedp-type (l51) bound and continuum
states of an empty GaAs/Ga0.8Al 0.2As spherical QD. Results are
presented for three different dot radii. The finite widths of the dis-
crete level transitions are obtained by adopting a 0.04 Ry* wide
Lorentzian line shape. The energies refer to the ionization limit and
the dotted vertical lines denote the ground-state positions.

FIG. 3. The same as in Fig. 1, but for a compensated acceptor
impurity (Z521) at the center of a GaAs/Ga0.8Al 0.2As spherical
QD.

FIG. 4. The same as in Fig. 2, but for a compensated acceptor
(Z521) in the center of the dot. Results are presented for three
values of the QD radius.
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radius!. The second effect is the appearance of resonances
analogous to those for the empty QD, which do not appear in
the case of a purely Coulombic potential. They are much
weaker and satisfy our criterion of Breit-Wigner resonances
only in a small range ofR values. The resonant states appear
when the wave functions of the corresponding bound states
are predominantly outside the well. The above discussed re-
sults are summarized in Fig. 5.

In the case ofp states, the appearance of resonances af-
fects the optical spectra significantly. The oscillator strength
is transferred to the continuum, while the corresponding
bound-state transition loses almost all its intensity. This ef-
fect is shown quite clearly in Fig. 6, where the oscillator
strength for the transition from the ground state to the first
p state is compared with that for the transition to the con-
tinuum. It can be seen that, with decreasing dot radius, the
oscillator strength for the transition to the firstp bound state
increases initially from the hydrogen value of 0.42 to almost
1 whenR drops to about12a* , then it falls down to about 0

when the resonance appears, and increases again to the as-
ymptotic value of 0.42 when the wave function of the ground
state extends outside the confining region of the QD.

The existence of resonant states, in this case, changes the
excitation spectrum dramatically. In Fig. 7 we present the
calculated spectra for five different dot radii. ForR52a*
one strong absorption peak is visible while the second one is
orders of magnitude weaker. ForR5a* only one strong ab-
sorption peak occurs, since the secondp state has lost all its
oscillator strength. ForR50.48a* both discrete and con-
tinuum transitions are observed, with one peak correspond-
ing to the resonant state. The appearance of a resonant tran-
sition is well exemplified forR50.43a* , where a very broad
resonance with a peak at 1.5 Ry* in the continuum can be
seen. When the value ofR reaches 0.1a* , the hydrogenlike
spectrum is recovered because the notion of a quantum dot is
no longer valid. The confining potential corresponds now to
a central-cell correction to the impurity potential.

In the case of an impurity inside the dot (ZÞ0) the po-
tential cannot be scaled, in general, with the dot radius. We
have found, however, that the scaling formulas~A4! and
~A5! can be adopted, but only for dot radii for which the
confinement energy is greater than the Coulombic one.

In Table II we compare the widths of the resonant states
obtained in the three (Z50,21,1) cases discussed above. In
general, the attractive potential (Z51) makes the resonances
very wide; what makes them narrow is the additional repul-
sive potential (Z521). We can also observe that the widths
diminish as the value ofl increases.

A further comment is in order when more electrons are
considered in the confining potential of the quantum dot.
Neglecting the effects of exchange and correlation, which
have to be taken into account, the situation can be reduced to
the case of an electron in the confining potential of the QD
subjected additionally to the Coulomb repulsive potential of
the other electron trapped inside the QD. The resonances will

FIG. 5. The same as in Fig. 1, but for a donor impurity
(Z51) at the center of a GaAs/Ga0.8Al 0.2As spherical QD. The
presented states correspond to then<4 hydrogenlike bound states
in the bulk.

FIG. 6. Computed oscillator strengths for transitions from the
ground to the firstl51 state ~solid line! and to the continuum
~dashed line! for the case of a shallow donor inside the dot as a
function of inverse dot radius.

FIG. 7. The same as in Fig. 2, but for a shallow donor impurity
(Z51) in the center of the dot. Results are presented for five values
of the QD radius.
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be more pronounced the larger the number of trapped elec-
trons.

IV. CONCLUSIONS

The main results obtained in the present work can be sum-
marized as follows.

We have given analytical expressions for bound states in
QD’s, both empty and containing either a donor or an accep-
tor impurity. We have shown that resonant states appear in
the continuum, and their positions and energy widths depend
on the well size and on the values of the confining potentials.

The optical excitation spectrum of an electron for a given
barrier potential strongly depends on the size of the QD and
it shows strong resonance peaks in the continuum when the
radius of the QD is smaller than the Bohr radius. When de-
creasing the radius of a dot containing a donor impurity, we
proceed from a hydrogenlike spectrum to a situation where
almost all the absorption is in the continuum, with a broad
peak at the resonance energy.

The results presented here for a GaAs/Ga12xAl xAs dot
can easily be extended to other materials; the critical values
of the potential barrier and of the radii will change according
to the values of the material parameters. The case when more
electrons are considered is expected to produce an enhance-
ment of the resonance transition due to the repulsive long-
range Coulomb potential.
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APPENDIX: SCALING WITH THE POTENTIAL DEPTH

Let us consider the case of an empty dot@Z50 in Eq.
~3!#. Assuming that for a given potential depthU0 we know
the solutions of Eq.~3! and their dependence onR, we want
to find the solutions for a potentialbUR(r ), whereb is a
positive constant. We assume that the ratio of the effective
masses in~4! does not change withb. This approximation
can be applied either whenb is small enough, or when both
materials are very similar and the effective masses differ
only by a few percent. We will denote the solutions for dif-
ferentR andb by

El~R,b!, Cl,R,b~r !.

We add the indexR to describe the dependence of the
effective mass~4! and of the potential~5! on the dot radius.
Let us notice that bothUR(r ) andmR(r ) can be rewritten as
functions ofx5r /R; for example,

UR~r !5u~x!5H 2U0 , uxu,1

0, uxu>1.
~A1!

As a consequence, Eq.~3! can be given in the form

F2¹x

1

m~x!
¹x1R2bu~x!GClR,b~x•R!

5R2El~R,b!Cl,R,b~x•R!. ~A2!

It is easy to see that the operator inside the square brackets
will not change on replacingR by AbR and b by 1. The
equation~A2! becomes then

F2¹x

1

m~x!
¹x1bR2u~x!GCl,AbR,1~x•AbR!

5bR2El~AbR,1!Cl,AbR,1~x•AbR!. ~A3!

Hence the solutions can be scaled so that

El~R,b!5bEl~AbR,1!,

and

Cl,R,b~r !5CCl,AbR,1~Abr !. ~A4!

The value of the coefficientC is given by the normalization
condition for the wave function. If we normalize to 1 for the
discrete spectrum and tod(E2El) for the continuum, we
obtainC5b3/4 andC5b1/4, respectively.

The equations~A4! allow one to scale the matrix elements
of any operator. For example, the scaling of the oscillator
strengths is given by

f 0,n~R,b!5 f 0,n~AbR,1! ~discrete states!,

f 0,E~R,b!5
1

b
f 0,~1/b!E~AbR,1! ~continuum spectrum!.

~A5!

It is worth noticing that the scaling theorem~A4! and ~A5!
can be extended to any other quantum structure with reduced

TABLE II. Widths G of the resonant states~in effective Ryd-
berg units!, at the energy ofE51 Ry* . R is the dot radius for
which the resonance appears, given in units of effective Bohr ra-
dius.

Z50 Z521 Z51
l R G R G R G

0 0.26 14.9 0.37 0.14 0.19
0.83 4.48 0.94 0.32 0.74 11.80
1.39 2.67 1.51 0.50 1.28 5.11
1.95 1.90 2.07 0.63 1.83 3.14

1 0.53 0.83 0.61 0.049 0.46 6.74
1.10 1.48 1.19 0.15 1.02 4.92
1.66 1.54 1.75 0.28 1.57 3.21

2 0.77 0.12 0.83 0.011 0.71 0.80
1.34 0.38 1.43 0.044 1.28 1.71

3 1.00 0.03 1.05 0.021 0.95 0.11
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dimensionality, when the structure diameter can be param-
etrized by a single variable. The parameterR ~the radius of
the quantum dot! can be, for example, replaced by the radius
of the cross section of a quantum wire or by the width of a

quantum well. Finally, we notice that the scaling procedure
allows us to obtain results not only by considering the in-
crease of the potential but also by homogeneous enlargement
of the size of the structure.
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