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Bound and resonant electron states in quantum dots: The optical spectrum
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The energy spectrum and the wave functions of an electron in a quantui@dpare computed using the
effective-mass approximation. The case of a shallow, hydrogenlike center in a quantum dot is also considered.
We use the spherical shape approximation in the belief that the basic results are more sensitive to the dimen-
sions than to the shape of the confining potential. The wave functions for the discrete bound states and for the
continuum states are obtained in a closed form. We show that resonances of the Breit-Wigner type occur in the
continuum, due to the local potential of the microstructures. The lifetimes of the resonant states are computed
and their impact on the optical properties of the QD material is discussed. As an example, we give detailed
results for the GaAs/Ga Al ,As QD, where the basic propertiésand mismatch, effective masses, dielectric
constantsare well known. We find that the optical excitation spectrum, with or without the impurity center,
depends dramatically on the dot radi{S0163-18206)01127-7

[. INTRODUCTION particularly in resonant states of the type introduced by Breit
and Wignet®!’in nuclear physics and by Falfdn atomic
Recent improvements in microstructure technology haveéind condensed matter physics. We give a recipe on how to
made it possible to prepare quantum d@@®’s) character- compute bound states and free states in the continuum using
ized by confining potentials in all directiofsfor instance, the envelope function approach and a steplike confining po-
QD's prepared by using molecular-beam epita@yBE) tential, and show how they depend on t_he radius of the quan-
techniques with Ga_,Al As alloy$ or semiconductors of tum dot. We apply the standard scattering theory to compute
spherical shape in glasslike materiafs. the wave functions in the continuum and to identify the reso-
The relevance of such materials, both for the fundamentdtances. The lifetimes of some of the resonant states are long
study of electronic states and for technological applications¢nough to qualify them as Breit-Wigner resonances.
is evident, considering that zero dimensionality in transla- Bound states influence the statistical distribution of elec-
tional symmetry may produce discrete levels whose energigions in the conduction band, since they compete with impu-
can be varied just by changing the size of the QD. Theséity states as local traps. We study the infrared absorption
levels act as traps for electrons and holes, which can b&Pectrum of electrons in the QD's and show that strong
introduced into the crystal either by doping with donor or P€aks arlse_due to transitions to discrete and resonant Ie\_/els.
acceptor impurities or by the absorption of electromagnetic We consider also the case when the QD contains an im-
radiation in the interband transition region. In addition toPurity or has trapped either an electron or a hole, so that a
bound states, the local potential of the microstructure cafFoulomb-like potential is superimposed on the confining po-
also produce resonant states in the continuum, which maigntial of the neutral zero-dimensional structure. When this
have considerable influence on the properties of QD materiPotential is repulsive outside the dot, the total potential is
als. very similar to the nuclear potential considered by Breit and
The electron bound states of an electron in a quantum ddiVigner for thea decay:” For this reason we use the notion
have been calculated for various types of confining potenof Breit-Wigner resonance$.
tials, such as steplike barriet§,parabolic potentials which In Sec. Il we apply the envelope function method to com-
produce equally spaced levélgnd potentials due to strain Pute bound and continuum states for an electron in a QD,
interaction$’ Various QD shapes have been considéred, without and with an additional electric charge. We show how
though the spherical shape has been preferred in the theorelf find the resonances and their lifetimes and how to calcu-
cal approach because of its calculational simplicity. Also thdate the oscillator strengths for optical transitions from the
discrete states of a hydrogenlike impurity located inside th@round state. In Sec. Il we present the detailed results for a
dot have been computed in the case of infifitand GaAs/Ga_,Al,As QD, where the basic parametetsand
finite'>12 potential barriers. The dependence of the energynismatch, effective masses, dielectric constaate well
spectrum on the donor position has also been discuiéséd. known. Conclusions are given in Sec. IV.
In this paper we study the electron states of a QD within
the spherical shape approximation, on the assumption that Il THEORY
the basic results are sensitive to the dimension, but not to the
shape, of the confining potential. We are interested not only We compute the electron trapping states in a spherical
in discrete levels, but also in the states of the continuum, anduantum dot with radiuR in three cases: without an internal
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charge and with a positive or negative Coulomb charge at the lim Fg (R—e)=Fg (R+e),
center of the dot. We use the effective-mass approximation £—0

assuming that the Bloch functions at the minima of the con-
duction band are the same outside and inside the dot, which
is a typical assumption for materials like GaAs/
Ga;_,Al,As. We take the conduction band to be parabolic
in k space. In our treatment we neglect any effect of then additionFg; must be regular for=0. For the energies of
electron on its own potential. In some calculations a ternmthe discrete spectrunE(<0) the functionsFg (r) must be
accounting for different polarizabilities of the material inside integrable, and we normalize them to 1. In the continuum
the QD and outside the barrier has been calcul&é¥,?  spectrum E>0) we normalize our solutions t6(E’ — E)

but we choose not to take this effect into account becausand express them in the outside region as the sum of incom-
only a self-consistent calculation which takes into accouning F~ and outgoing=" spherical waves. For a given energy
the dependence of the polarizability on the wave function ofEq. (3) has analytical solutions, which we denote as follows:
the electron would give an improvement. In addition, for the

1
lim F,’EJ(R—s):;FéJ(R-l-e). (6)

e—0

sake of convenience, we have not considered the image Fe (r)=AFg,(r) for r<R,
charge potential of the impurity; this is a minor effect which
can modify only the numerical details. With the above ap- FEJ(r):BFg‘,‘l‘(r) for r=R and E<O0, (7)

proximations, the calculation can then be performed in the ‘
framework of standard quantum mechanics scattering Fg (r)=Fg,(r)+e?°Ff (r) for r=R and E=0.
theory® ' ’ '

Let the effective masses of the electrontbeinside the ~ 1h€ constantg\ andB are given by boundary and normal-

dot andm, outside the dot and the dielectric constants bgZation conditions in the case &<0; A and the phase shift
e, ande,, respectively. We choose as units of energy and®! &€ given by boundary conditions in the case0. The
length the effective Rydberg Ry=m,e*/2%2:2 and the ef- NSide wave functions are

fective Bohr radiusa* =#%2¢,/m;e?, defined with the pa- in oy _

rameters of the material inside the dot. Due to the spherical Fei(n)=ji(kr) for 2=0,

symmetry, the envelope wave functions have the general

. 4 z
form of FE((r)=(2kr)'e ™ Fy| 1+ 141,21 +2,2kr
Ve m(M=Fei(NY)m(d,¢). (1) for Z#0, (8)
For the kin(_eFic part of the Hamiltonian we adopt the widely wherek= E+U,, j is the spherical Bessel function, and
used Hermitian form: 1F; is the Kummer functiof?
It is easy to find the wave functions outside the dot when
1 m,=m; ande,=e€;. In this case we denote the appropriate
N M(r)v' 2 radial wave functions by andF~. For Z=0 we obtain
= : : \
so that the radial effective-mass equation reads Fcélff(f)=|'h|(l)(l)(f)
1/2
1d r2 d I(I+1) 27 4 _1(k) )
o= el - el(N=5—| h7(kn) _
r2 dr M(r) dr + ,u(r)rz +U(r) 8(r)r FE,I(r) 2\ for Z=0, (9)
=E/Fe (1), &) . 1/ k\Y2
nE Fein=5(=] h@xn
' 2\ )
where
wherexy=\—E (E<0), k=\E (E=0), andh{*? are the
1, r<R 1, r<R spherical Hankel functions. F&+0 we obtain the follow-
ing expressions in terms of the Kummer functions of type
m(=91 m, e(r=9 e, 4 U
—, >R, —, I>R,
m; €1

N z
FRl(r=(2xr)'e XUl I+1- ;,2| +2,2Xr),

andZ is the charge of the impurity located in the center of

the dot.U is the confining potential of the dot: 12

~ k ) .
Fé,l(r): _(_Zkr)|2<_> eZw/Zkeila'|etlkr
~U,, r<R m

u(r= 0, r>R.

5
XU

4
I+1—iE,2l+2,i2ikr>

The Hermiticity of the Hamiltonian forces the following
boundary conditions: for Z#0. (10
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Herex=+—E (E<0), k=\E (E=0), ando, is the Cou- finding the electron in a given spatial aréar spatial and
lomb phase shift: energetic area in the case of the continuum spedtdmes
not depend on the adopted units. We obtain frdr®)
m=arg{f‘

wherel" indicates the Euler function.

For my#m, and (or) e,#¢, the effective Rydbergs and Fe(n=v28YF 5 (yr), (13
the effective Bohr radii are not the same in both materials.
Still, the solutions in this case can be obtained from thosavhere —y=aj/a;=g;m;/e,m; and B=Ryj/Ry;

Z
I+1—i—”, (11 ~
k FRI) =y F%8 (yr),

given in Eqs.(9) and(10) by a simple scaling procedure: ~ =&3m3/eZmj . The scaling factor®? of the F° function
_ can be included into thB constant of Eq(7), but we must
[Fi(r)2r2dr=Fg) (r)|?r2dr, conserve the value®?8Y2 in the expressions for the=
and functions, in order to preserve normalization in the energy
space.
|F§,|(r)|2r2drdE=|—|5i,',(r’)|2r’2dr’dE’, (12) The boundary condition§6) give discrete levels in the

E<O0 energy region. We denote the discrete energies and the
whereraf =r’'a3 , EXRy; =E’XRyj;, and the indices re- radial wave functions b¥,,, andF,, respectively.
fer to inner(1) and outer(2) Bohr radii and Rydberg units. In the regionE>0 the asymptotic forms of the radial
The above conditions express the fact that the probability oivave functions of the continuum spectrum are

e'd  sin(kr+ & —1m/2)
Fei(r) —

- \mJBE r

€% sinBEr—(Z/\BE)In(2kr)+ o+ 8 — /2]
FE,I(r)rj; \/Tﬁ_E r

for Z=0,

for Z+0, (14)

where now k=ym,/mE and o,=ard['(I+1—iZ/ nances of this type occur in many fields of physics; in optics

VBE)]. The phase shiff; can be expressed as a sum of twothey are known as Fabry-Rét resonances for interference of
factors, 8= &+ p, . The first factor,,, describes the phase €lectromagnetic waves in slab-shaped substances and as Mie

shift resulting from the hard-sphere scattering: resonances for scattering on spherical parti¢les.
An approximate rule to decide when there exist well-
%ie Fe i (R) defined resonances can be found by expressing the radial
e Fei(R)’ (15  functions in the formF(r)=f(r)/r, so that forf (r) we have

a one-dimensional Schdimger equation:
while the second ternmp,, depends on the potential inside

the dot. In the vicinity of the energids, , which are given d d
by _amaﬂLVef(',r) fe(r)=Efg,(r),
p(E)=(2n+1)5, n=012..., (g “her
the phase shifp; can be expressed through Ved1,1)=U(r) + M_ 2_2 if r>0 (19
pu(ryr  e(r)
_E —1j
e2in(E) = E-E—> |F1 (17) and
E—E,+ il
: fe1(0)=0.
with

If Ve(I,R)>0 there is an energy barrier which produces
- narrow resonant states in the continuum spectrum. We dis-
EEr) : (18) tinguish three cases depending on the presence of the
Coulomb-like potential.
The resonancess( —il'/2) are then the poles of the scat- (i) Z=0 (no impurity); the barrier is given by the centrifu-
tering matrix S (E)=e?4® in the complex energy plane. gal term and exists only fdr>0.
They are of the Breit-Wigner tyBdwhen the value of /2 is (i) Z>0 (donor impurity; the barrier exists only if
small in comparison withdp, /dE) ~! away fromE, . Reso- >0 andR<[I(l+1)/2Z](e,m}/e,m}).

%
dE

4
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(iii) Z<0 (compensated accepjpthe barrier always ex- TABLE |. Material parameters for GaAs/GgAl o -As.
ists, even fol =0.

The optical(intersubbanytransitions between the ground M1=0.065M, m,=0.0750n, Ref. 28
and the excited states can be studied based on the computed=12.4 ¢,=11.84 Ref. 29

energies and wave functions. Since the ground stateshasa*=aj=99.9 A

symmetry (=0), only p-type statesl(=1) need to be con- Ry*=Ry;=5.81 meV

sidered within the standard dipole approximation. The oscilUy=0.178 e\=30.6 Ry* Ref. 30
lator strength for an optical transition from the ground state
|0) to a statd v) is given by

c 2 and report in Fig. 1 the energies of bound and resonant states
_ ar) am with | <3 versus inverse dot radius. It can be seen that bound
fo, " V+V o), (20 _ luS

AE m(r) m(r) states exist only foR>27 A. This is very close to the con-

whereC is an appropriate constant required when using th&lition R>m(/2yUo), which is obtained assuming that the
effective-mass approximation amds the unit vector in the adial Wﬁve .func;uohn vanishes at the E‘ounﬁarx As we in-
polarization direction of the perturbing electric field, since ¢Tease the size of t € QD we observe that the binding energy
we apply the approximation; =&, in the description of the of the ground state increases and other bound states appear,

incident radiation. Choosing the polarization in thelirec- startin.g fromR=55 A (the second one being tihel' 'state,
tion and using the commutation relation the thirdl =2, then anothel=0, and so oh In addition to

: bound states, we find resonances in the continuum. Such
H,z]=—(Q/u(r))V,— V., 1/u(r) we obtain ! N .
[H.Z] (Up(r))V2=Vallu(r) resonances are of the Breit-Wigner type when the broadening
fo,=CAE|(v|Z|0)]. (21  is sufficiently small. We find that a convenient criterion for

) . such a classification is the requirement for the resonant en-
The value of the consta@ can be obtained by requiring that ergy to be lower than the peak of the potential barrier

the Thomas-Reiche-Kuhn sum rule Ve(R) as given by expressiof19). The states fulfilling such
. a condition are indicated by the solid line in Fig. 1. It turns
> f0n+f foedE=1 (22)  out that the Breit-Wigner resonances are narrower and occur
n 0 in a larger positive-energy region as the valué ofcreases.

We observe that there is a correspondence between bound

should apply, and turns out to $e .
PPl and resonant states. As the radius of the QD decreases the

1 -1 bound states continuously transform into resonant states and
C= < 0| — 0> (23)  a critical value of the radius for this transformation can be
p(r) found for each state.
We recall that the matrix eleme{®|z| v) is not equal to zero We have computed the optical transition probabilities
only for such final state¥, ; o for which |=1,m=0: from the ground state to all excited states. In Fig. 2 we show

the oscillator strengths as a function of energy for three cho-

_ 3 sen values of the dot radius. While the values in the entire
(Olz}v)= J VoodNz¥, 1 dr)dr spatial region always satisfy the sum r@®), the peaks and
1 line shapes strongly depend on the dot size. For the three
==| F-ADE. (r)r3dr. 24 cases reported in Fig. 2, most of the oscillator strength is
3fo 0dMFva(r) 24 taken by the first transitionf( ;>90%) when the dot size is

sufficiently large to have more than one bound state. As the
radius decreases, we observe that a resonant transition ap-
pears above the ionization energy. Finally, for very small
Rather than discussing the general properties of electroradii most of the oscillator strength is taken up by the first
levels in QD’s and related optical effects, we chose to carryesonance.
out detailed calculations for the case of a material whose We have found that the results presented in Figs. 1 and 2
two-dimensional and one-dimensional nanostructures havean be easily scaled to the case of different Al compositions
been extensively investigated. Electron states in sphericallin the barrier. The impact of the composition on the value of
shaped GaAs/Ga Al ,As QD’s have been studied in the U, of the potential barrier is much greater than the influence
approximation of infinite potential barriefs? In the case of on the effective mass. This condition allows us to use the
finite barriers only the bound states have beenscaling procedure presented in Appendix A. We have found
considered:21527 that the scaling formulaéA4) and (A5) reproduce the ener-
The optical properties of electrons trapped inside quantungies and the oscillator strengths almost exactly for various
dots by the confining potential and by the Coulomb potentiapotential depths.
of the impurity strongly depend on the aluminum content in  We have also computed bound and resonant states, as
the barrier and on the dot radius. For quantum dots the scatvell as oscillator strengths for transitions from the ground
tering resonant states become of relevance, as we will shosgtate, for a quantum dot containing a compensated acceptor
in detail. We choose the matrix composition to be 20% of Al,impurity (Z=—1) at the center. The results are similar to
so that all the parameters needed for the calculations athose obtained for an empty QD, and are displayed in Figs. 3
those of Table I. and 4. It can be seen that in this case the widths of the
We first consider the case of a QD without an impurity, resonant states are narrower. The narrow resonant states exist

Ill. RESULTS FOR GaAs/Ga;_,Al ,As



54 BOUND AND RESONANT ELECTRON STATES IN QUANTWM . .. 2671

1=010
T

I=01021 30

2130 2 1
T -

20 — 20 -

Energy (units of Ry’)
Energy (units of Ry’)

J
N
=}

]

|
N
=]

T

|

1/R [units of (a)7'] 1/R [units of (a’)™"]

FIG. 1. Energies of the electron states in an empty GaAs/ FIG. 3. The same as in Fig. 1, but for a compensated acceptor
Gag Al o ,As spherical QD as a function of the inverse of the dot’s impurity (Z=—1) at the center of a GaAs/GgAl ; As spherical
radius. The lowest states witk=0, 1, 2, and 3 are presented. The QD.
energy valueE>0 correspond to resonant states in the continuum.

Breit-Wigner resonances with energies smaller than\g&l,R)  tatively different, because an infinite set of bound states is
barrier height are denoted by solid lines. always present, irrespective of the valueRofStill, the con-
fining potential produces two important effects, similar to
even forl=0. In general the role of resonant states in thethose presented above. The first is the increase of the binding
optical spectrum is increased, their peaks being narrower arshergies with increasing radius, where in our case the bind-
characterized by larger oscillator strength densities. ing energy is defined relative to the ionization limit. The

The case of a donor impurity in a QI €& +1) is quali-  ground state, for instance, changes from3Rfor a very
small dot radius t&J,+ Ry; for very large dots, where small
and large refer to size as compared with the Bohr effective

— o4b R=1652"1 radius. A similar change is observed for the excited-state
PR 1 energiegsmall and large dots refer in this case to the mean
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FIG. 2. Computed spectra of the transitions from the ground F ‘ | . ]
state (=0) to the excitedp-type (=1) bqund and continuum R TS ' 1o
states of an empty GaAs/GgAl o-,As spherical QD. Results are Energy (units of Ry’)
presented for three different dot radii. The finite widths of the dis-
crete level transitions are obtained by adopting a 0.04 Ryde FIG. 4. The same as in Fig. 2, but for a compensated acceptor

Lorentzian line shape. The energies refer to the ionization limit andZ= —1) in the center of the dot. Results are presented for three
the dotted vertical lines denote the ground-state positions. values of the QD radius.
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FIG. 5. The same as in Fig. 1, but for a donor impurity  FiG. 7. The same as in Fig. 2, but for a shallow donor impurity

(Z=1) at the center of a GaAs/Gghl o As spherical QD. The (71} in the center of the dot. Results are presented for five values
presented states correspond to tie4 hydrogenlike bound states of the QD radius.

in the bulk.

_ ) when the resonance appears, and increases again to the as-
radiug. The second effect is the appearance of resonanc&gnptotic value of 0.42 when the wave function of the ground
analogous to those for the empty QD, which do not appear idtate extends outside the confining region of the QD.
the case of a purely Coulombic potential. They are much The existence of resonant states, in this case, changes the
weaker and satisfy our criterion of Breit-Wigner resonancesycitation spectrum dramatically. In Fig. 7 we present the
only in a small range oR values. The resonant states appearca|culated spectra for five different dot radii. FRr=2a*
when the wave functions of the corresponding bound stategne strong absorption peak is visible while the second one is
are predominantly outside the well. The above discussed rgsrgers of magnitude weaker. FB=a* only one strong ab-
sults are summarized in Fig. 5. sorption peak occurs, since the secgnstate has lost all its

In the case of states, the appearance of resonances afygcijjator strength. FOR=0.48* both discrete and con-
fects the optical spectra significantly. The oscillator strengti}muum transitions are observed, with one peak correspond-
is transferred to the continuum, while the correspondingng to the resonant state. The appearance of a resonant tran-
bound-state transition loses almost all its intensity. This efxjtion is well exemplified foR=0.43* , where a very broad
fect is shown quite clearly in Fig. 6, where the oscillator jogonance with a peak at 1.5 Ryn the continuum can be
strength for the transition from the ground state to the firsteeny \When the value & reaches 04*, the hydrogenlike
p state is compared with that for the transition to the con-gpectrum is recovered because the notion of a quantum dot is

tinuum. It can be seen that, with decreasing dot radius, thgg |onger valid. The confining potential corresponds now to
oscillator strength for the transition to the figsoound state 5 central-cell correction to the impurity potential.

increases initially from the hydroge_n value of 0.42 to almost |, the case of an impurity inside the daZ£0) the po-
1 whenR drops to abouta*, then it falls down to about O tential cannot be scaled, in general, with the dot radius. We
have found, however, that the scaling formul@st) and
(A5) can be adopted, but only for dot radii for which the
confinement energy is greater than the Coulombic one.
In Table Il we compare the widths of the resonant states
obtained in the threeZ=0,—1,1) cases discussed above. In
: general, the attractive potential € 1) makes the resonances
very wide; what makes them narrow is the additional repul-
sive potential Z=—1). We can also observe that the widths
-~ ] diminish as the value df increases.
4 6 8 10 A further comment is in order when more electrons are
1/E [units of (@")™"] considered in the confining potential of the quantum dot.
Neglecting the effects of exchange and correlation, which
FIG. 6. Computed oscillator strengths for transitions from thehave to be taken into account, the situation can be reduced to
ground to the first =1 state(solid line) and to the continuum the case of an electron in the confining potential of the QD
(dashed ling for the case of a shallow donor inside the dot as asubjected additionally to the Coulomb repulsive potential of
function of inverse dot radius. the other electron trapped inside the QD. The resonances will
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TABLE II. Widths ' of the resonant statgn effective Ryd- APPENDIX: SCALING WITH THE POTENTIAL DEPTH
berg unitg, at the energy oE=1 Ry*. R is the dot radius for

which the resonance appears, given in units of effective Bohr ra- L€t US consider the case of an empty @&t=0 in Eq.
dius. (3)]. Assuming that for a given potential defthy we know

the solutions of Eq(3) and their dependence &) we want
Z=0 Z=-1 zZ=1 to find the solutions for a potentigdUg(r), whereg is a
I R r R r R r positive constant. We assume that the ratio of the effective
masses in4) does not change witj3. This approximation
0 026 149 037 0.14 0.19 can be applied either whe® is small enough, or when both
083 448  0.94 0.32 0.74 1180 materials are very similar and the effective masses differ

1.39 2.67 151 0.50 1.28 5.11  only by a few percent. We will denote the solutions for dif-
1.95 190  2.07 0.63 1.83 3.14  ferentR andg by

1 0.53 0.83 0.61 0.049 0.46 6.74
1.10 1.48 1.19 0.15 1.02 4.92 Ex(R.B), W) ra(r).
1.66 1.54 1.75 0.28 1.57 3.21
2 0.77 0.12 0.83 0.011 0.71 0.80 We add the indexR to describe the dependence of the
1.34 0.38 1.43 0.044 1.28 171  effective masg4) and of the potential5) on the dot radius.
3 1.00 0.03 1.05 0.021 0.95 0.11 Letus notice that botkJ(r) andug(r) can be rewritten as
functions ofx=r/R; for example,
_Uo, |X|<1
be more pronounced the larger the number of trapped elec- Ug(r)=u(x)= (A1)
R 0, |x|=1
trons. , =1.
As a consequence, E(B) can be given in the form
1 2
IV. CONCLUSIONS —VXMVXJrR BuU(x) |¥ygr g(Xx-R)
The main results obtained in the present work can be sum- =R2%E,(R,B) ¥, g s(X-R). (A2)

marized as follows.

We have given analytical expressions for bound states iit is easy to see that the operator inside the square brackets
QD’s, both empty and containing either a donor or an accepwill not change on replacing® by V3R and 8 by 1. The
tor impurity. We have shown that resonant states appear iaquation(A2) becomes then
the continuum, and their positions and energy widths depend
on the well size and on the values of the confining potentials. 1

The optical excitation spectrum of an electron for a given Xm
barrier potential strongly depends on the size of the QD and )
it shows strong resonance peaks in the continuum when the = BR?E,(VBR.DY, zr (X VBR). (A3)
radiu:*? of the QD_ is smaller than t.h<=T Bohr radiug. Whgn deHence the solutions can be scaled so that
creasing the radius of a dot containing a donor impurity, we

-V V,+ BR2u(x)

¥y, vBr (X VBR)

proceed from a hydrogenlike spectrum to a situation where E\(R,3)=BE,(\BR,1),
almost all the absorption is in the continuum, with a broad
peak at the resonance energy. and
The results presented here for a GaAs/GgAl ,As dot
can easily be extended to other materials; the critical values W\ rp(N=C¥, zral VBr). (A4)

of the potential barrier and of the radii will change according . L L
to the values of the material parameters. The case when mofd!€ value of the coefficiert is given by the normalization

electrons are considered is expected to produce an enhan&@ndition for the wave function. If we normalize to 1 for the

ment of the resonance transition due to the repulsive longdiScrete sp%gtrum and %E_EA) for the continuum, we
range Coulomb potential. obtainC=p _ andC= B+, respectively. _
The equationgA4) allow one to scale the matrix elements

of any operator. For example, the scaling of the oscillator
strengths is given by
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dimensionality, when the structure diameter can be paramguantum well. Finally, we notice that the scaling procedure

etrized by a single variable. The paramed®efthe radius of
the quantum dotcan be, for example, replaced by the radius

allows us to obtain results not only by considering the in-
crease of the potential but also by homogeneous enlargement

of the cross section of a quantum wire or by the width of aof the size of the structure.
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