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RINGS OF ANALYTIC FUNCTIONS*

BY JoOHN WERMER
(Received March 25, 1957)

1. This paper is a sequel to the author’s paper ¢ Function Rings and
Riemann Surfaces >, listed as [1] in the References at the end of the
paper. The reader will need to refer to [1] at several places in our argu-
ment.

Let E be the open unit disk in the z-plane and let £ be its closure. Let

¢ be an analytic function on E extendable to all of E to be continuous.
Assume :

(1.1) Ifz,z € E,2 #2, then ¢(z) #+ ¢(z,) .
Under this hypothesis, a well-known theorem of Walsh [2, p. 36] allows
us to conclude that every function analytic on E and continuous on E is

uniformly approximable on E by polynomials in o.

Our object in this paper is to consider the analogous approximation
problem when the single function ¢ is replaced by a pair of analytic
functions ¢, f and the disk F is replaced by a finite region on a Riemann
surface. We restrict ourselves to the case when ¢ and f are both analyt-
ic on the boundary of the region considered as well as on the region
itself.

Let . be a Riemann Surface, I'; a simple closed analytic curve on .&¥
such that I, is the boundary of a region D, with D, U I', compact.

DEFINITION 1.1. (D) is the ring of all functions analytic on D, U I,.

DEFINITION 1.2. For g, g, in A(D,), [gi, g.] is the subring of A(D,)
consisting of all polynomials, including constants, in g, and g,.

Let ¢, f be a pair of functions in A(D,) neither of which is a constant.
In the following two theorems we assume :

(1.2) The differential d¢ does not vanish on I,

THEOREM 1.1. In order that every function in A(D,) be uniformly ap-
proximable on D, U I'y by functions in [¢, f] it is necessary and sufficient
that

(1.3) If pi, p, are distinct points in D, U I'y, either ¢ or f takes on
different values at p, and p,.

* This research was supported by the United States Air Force, through the Air
Force Office of Scientific Research of the Air Research and Development Command,
under contract No. AF18 (600)-1109.
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498 JOHN WERMER

1.4) If p € D, de(p) + 0or df(p) + 0.

We now drop hypothesis (1.4) and replace (1.3) by the condition that
¢ and f separate points only on the boundary I',. Then :
THEOREM 1.2. Assume

(1.5) ¢ and f together separate points on I, .

Then there exists a finite subset T of D, U I", and an integer n such that

if g€ W(D,) and g vanishes at each point of T to an order no less than n,
then g is approximable on D, U I', uniformly by functions in [¢, f].

We choose a simple closed curve J; on .&* bounding a region .&*, which
contains D, U I'; such that .&#, U J, is compact and ¢ and f are analytic
on & U . Set A= {pe S|Hq in . with ¢(p) = ¢(q), de(q) = 0}.
Then A is finite. Let I', be a simple closed analytic curve in .&; which
bounds a region D, containing D, U I', such that I'; does not meet A and
such that

(1.6) d¢ =0 on I'}, and
(1.7) ¢ and f together separate points on I; .

Such a curve exists because of (1.2) and (1.5). Write D, for D, U I,.

DEFINITION 1.3. A point p in D, is ¢-singular if either

(i) There is some ¢ in D, with ¢(p) = ¢(q) and d¢(q) = 0, or

(ii) There exists ¢,, ¢, in D, with ¢(q:) = ¢(¢.) and f (¢:) = f(¢.) and ¢(p)
= ¢(q1)

LEMMA 1.1. The set of ¢-singular points in D, is finite.

PRrOOF. Since ¢ is analytic in D, U I';, only finitely many pointsin D,
can satisfy (i) in Definition. 1.3. Assume now infinitely many points in D,
satisfy (ii) in that Definition. Then there exist points p,, ¢, # = 1,2, + - -,
with p, # ¢, and ¢(p,) = ¢(q,) and f (p,) = f(g.). It easily follows from
this that there exists a pair of distinct points a, b in D, and a one-one
conformal map r of a neighborhood U of a on a neighborhood of b such
that for ¢ in U

(1.8) ¢(z(q)) = ¢(q)
a9 f(=(@)) = f(q)

Let 7: z=2(t), 0 < ¢t < 1, be a Jordan arc lying in D, except for its
endpoint z(1) which is on I';, with 2(0) = a and such that 7 does not meet
A. We assert that one of the following two cases must occur. Either

(1.10) = can be analytically continued along 7 up to 2(1) and =(2(1)) € D,, or

(1.11) continuation is possible up to some point 2(¢') on 7 with z(2(¢')) e I',
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and w(z(¢)e D, t < t' .

Assume first that continuation is possible up to 2(1) for r as a map
from &7 in to <. If 7(2(1))¢ D,, then for some ¢, < 1, 7(2(t,)) € I'y and
so (1.11) holds. If z(2(1))e D, (1.10) holds.

It remains to assume that for some ¢ < 1, continuation is possible up
to 2(t) if ¢ < ¢ but not for £ = ¢. Assume now (1.11) does not hold. Then
for each t < ¢, (2(t)) ¢ I'; and so 7(2(¢)) € D, for all £ < ¢. Choose a sequence
{¢,} converging to ¢ from below and let T' be a limit point of the image
sequence {r(2(¢,))}. Then T'e D, U I';. Now formula (1.8) remains true
under continuation. Hence

P(r(2(2.))) = @(2(¢.)) for all n,
whence
AT = ¢(2(c)) -
Since 7 does not meet A, d¢ # 0 at T. Hence in a neighborhood U of T'
the restriction ¢, of ¢ is one-one. Choose n with (2(¢,)) in U and let «
be an are on 7 containing 2(¢,) with () ¢ U. For z in « we then have

e(t(2)) = ¢(z)  or  7(2) = ¢7'(¢(2))
But ¢7'(¢) is analytic at z(c) and so r admits an analytic continuation
along » beyond 2(¢). This is a contradiction. Hence (1.11) holds. Our
assertion is thus proved.

Assume now (1.10) holds. By an argument just like the preceding
with I'; replacing 7 we see that either
(1.12) 7 is continuable along all of I'; starting at 2(1) on » N I'; with =(p)
e D, for all p in I';, or
(1.13) r is continuable along I'; up to some point p, with «(p,) € I'; such
that if p on I'; precedes p, in this continuation, «(p) € D;.

Choose now " on I'; such that for all p in D, ¢(p) # ¢(p”). If (1.12)
holds, we have «(p”") € D, and ¢(z(p”)) = ¢(p"’). This is impossible. Hence
(1.18) holds. If now z(p,) # p, the fact that (1.8) and (1.9) remain true
under continuation gives that (1.7) is violated, while if #(p,) = ,, (1.6)
is violated. Thus if (1.10) holds, we reach a contradiction. If (1.11) holds,
a similar argument using r~! instead of r produces a contradiction. Thus
the assumption that infinitely many points in D, satisfy (ii) is untenable.
So the Lemma, is proved.

Because of the lemma, we can find a simple closed analytic curve T’
lying in D,, which satisfies the following definition :

DEFINITION 1.4. T" bounds a region D which contains D, U I', and

(i) No ¢-singular point lies on I

(ii) ¢ takes only finitely many values more than once on I
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NoOTE in particular :
(1.14) d¢ does not vanish on I'
(1.15) If peI"and ge D U T', p # ¢, then ¢(p) # ¢(q) or f(p) # f(q).

2. Let ¢, f be the functions of the last Section and let I', D be as given
in Definition 1.4. Write 7 for the image of I' under ¢ and write Q(¢)
for the complement of 7 in the plane. Fix a measure ds on I' with

21) [ oote) = o, if gele, 71,

and
(2.2) do has no point mass at any point which ¢ maps into a multiple
point of 7.

DEFINITION 2.1. dy is the measure on 7 defined as follows: if S is a
subset of r containing no multiple points, du(S) = do(¢~(S)), and dp = 0
at each multiple point.

DEFINITION 2.2. For each ¢ in [¢, ], g*(2) = g(¢~'(3)) for 2 in 7,
where 2 is not a multiple point.

Then
2.3) [ " aun = 0 it gele, 1.
For each component W of Q(¢) we set
2.4) W, 0,9 = | OO e w ey
271 Jr o@(t) — 2
Then we also have
(2.5) W, 0,9 = L | SOED
270 Jy 1 —z

For W a component of Q(¢), ¢~'( W) means the set of points in D which
¢ maps into W. Let us use annular coordinates 2, a < |z| < b, in a neigh-
borhood of I' on & in which ¢ and f are analytic such that I' gets the
equation : |z| = 1. Then ¢ and f may be regarded as functions analytic
in the annulus a < |z| < b. Because of (1.14) and (1.15) we have
(2.6) ¢ = 0on |z| =1 and
(2.7) ¢ and f together separate points on |z| = 1.

Thus ¢ and f satisfy the hypotheses (a), (b), (c) made in the Introduc-
tion of [1]. The other assumptions made in the Introduction of [1] are
that ¢ maps |z| = 1 on a curve with only finitely many multiple points
and that the closed algebra A4 generated by ¢ and fon |z] = 1 is a proper
subalgebra of the algebra C of all continuous functions on |z| = 1.

The first of these assumptions is satisfied here because of Definition
1.4, (ii). Further, if a continuous function on I' lies in the closed algebra
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generated by ¢ and f, then by the maximum prineciple it is the boundary
function of a function analytic in D, and so A is a proper subset of C.
Thus ¢ and f satisfy all the assumptions made in the Introduction of [1],
and so the results of [1] are valid for this pair of functions. We shall use
results in [1] to prove the following theorem, which is the goal of
the present section.

THEOREM 2.1. For each component W of Q(¢) there exists a unique
meromorphic function k(W) on ¢ (W), k(W) % 0, such that if z€ W, 2z

not a branch-point for ¢, and q., +++, q. are the points on ¢~ (W) which
¢ maps wnto z, then for all g in [¢, f] we have
(2.8) i 9(@RW, q)) = ®(W, g, 2) .

If o= (W) is empty for some W, we interpret the left side in (2.8)as 0, i.e.,
we have ® (W, g) = 0 for each g.
In the notation of the Introduction of [1] we write & for the Riemann

surface of the function f(¢~') and r for the simple closed curve on .% ob-
tained by continuing a fixed element of f(¢~') along 7. Here ¢~' means
the inverse to a function-element of ¢ which maps a neighborhood of a

point on I one-one on a neighborhood of a point on 7. Then r projects
on 7. Let 2 be the component of the complement of y on % which is

defined in Definition 4.1 of [1]. By the proof of Theorem 1 of [1], 2 U7
is compact and by Lemma 4.4 of [1], no point of & projects into the un-
bounded component of Q(¢).

We now define a map y from D U I'" to places over points in the plane
as follows : For each pin D UT, let ¢, denote the restriction of ¢ to a
neighborhood of p in & and let ¢, be the inverse element of ¢, in a
neighborhood of ¢(p) in the plane. ¢;' may be branched.

DEFINITION 2.3. x(p) is the pair (¢(p), f(¢;")) considered as a place over
the point ¢(p) in the plane, where f(¢;') means the function-element.

LEMMA 2.1. The map y maps I' homeomorphically on 1 and is a one-one
conformal map of D onto = .

PRrOOF. The first assertion follows at once from the definition of 7 and
the fact that ¢ and f together separate points on I'. We next claim that
X is one-one in D. For let p,, p, be distinct points in D with x(p,) = x(».).
Then 2 = ¢(p,) = ¢(p.) and f(¢5') = f(¢') in a neighborhood of 2. This
contradicts Lemma 1.1, and so y is one-one, as asserted.

Next we show that for some ¢ in D, y(q) is in = To this end fix a, on
I with ¢(a,) lying on the boundary of the unbounded component of Q(¢).
Call this component W, and let W, be the other component on whose
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boundary ¢(a,) lies. Assume ¢(a,) is a simple point on 7. Choose a neigh-
borhood U of @, on & on which ¢ is one-one and such that ¢(U) is the
union of ¢(U) N W, and ¢(U) N W.. and a simple arc on 7. Then ¢(U N D)
=¢(U)N W,. For else ¢(UN D) = ¢(U) N W., and then ¢(D) must cover
W.., contradicting the compactness of D U I'.

Let now p be the place (¢(a,), f(¢z!)), which lieson 7. Let U be a neigh-

borhood of p on . projecting one-one into ¢(U). Fix ¢ in UN < and
let its projection be z, with z, ¢ y. Then z, € W,, since points in & never
project into W... Hence z,€ ¢(U) N W,, whence there is a unique ¢ in
U N D with ¢(q) = 2,. It follows directly from the definitions that y(¢)=
¢ and so that y(¢) € .

Fix now p in D. Because of the definition of y, y(p) € #. Join p to
q, where g € D and y(¢) € &, by an arc lying in D. If y(p) ¢ &, then
for some r on the arc y(r) € 7. But then there isan + in I' with xwWr') =
¥(r). This implies that »" is ¢-singular and so contradicts the choice of
I". Hence y(p) € &.

It is easily verified that y is econformal on D and it remains to be shown
that y maps D onto <. Assume the contrary. Then (D) is a proper
open subset of 7. Then y(D) has a boundary point b in <. Hence
there exists a sequence of points p, in D with y(p,) converging to b.
Let p be a limit point of the p,in DUT. If pe I', then x({)) € r. But
also x(f)) =be < and this is a contradiction. Hence p e D. It follows
that ¥ maps a neighborhood of p on a neighborhood of b in &2 whence b
was not a boundary point of y(D). Hence y(D) = <. This completes
the proof of the lemma.

DEFINITION 2.4. Z is the function on 7 which assigns to each place its
projection in the plane. For each component W of Q(¢), Z-'(W) denotes
the set of points p on & with Z(p) in W.

DEFINITION 2.5. For each g in [¢, f] we define G on <2 U 7 by

(2.9) G(p) = 9(x"'(p)) -
LEMMA 2.2. Let W be a component of Q(¢) with Z=(W) non-empty. Then
there exists a meromorphic function k on Z-(W), k = 0, with

(2.10) 2o G®) k(p) = D(W, g, 2)

Sor all g in [¢, f]1and z in W, where p,, - -+, p,, are the points on Z-(W)

with Z(p,) = 2, and G is given by Definition 2.5 and ® by formula (2.4).
NoTE. To prove this lemma, we need the notion of a ‘ regular Rie-

mann surface ”’ over a component W of Q(¢) which was given in [1].

Definition 3.1. This definition is given in terms of a measure satisfying
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(2.3) and so is applicable to our dy. In[1], Lemma 4.4, it is shown that if w
is the regular surface over W, then Z-(W)c W. We need here that
Z-(W) = W, and the following two lemmas are proved to this end.

LEMMA 2.3. Let W, W’ be two components of Q(¢) having a common
boundary arc a. Assume that Z- (W) and Z-\(W’) are non-empty. Then
the reqular surfaces W and W' over W and W exist by Lemma 4.4 of
[1]. If W is contained in <7, then also W is contained in <7 .

PROOF. Since Z~'(W) is non-empty, W is a bounded component of Q(¢)
by Lemma 4.4 of [1]. The hypotheses of our lemma are then just those
of Lemma 4.3 of [1].

Let 3: z = 2(t), a < t < b be an arc in the plane such that for some c,
a<c<b zt)e Wilora <t<ec,zc)e a, and 2(t) e W, forec <t <b.
Let 2(a) not be a branch-point for W and let Whave m sheets. Let A« «,h,,

be the function-elements of the places on W over 2(a). By Lemma
4.3 of [1], &, can be continued along 5 up to ¢, giving rise there to an
algebraic function element #4,(c). By abuse of language, we shall identify
places with their function-elements. By Lemma 4.3 again, if A,(c) ¢ 7,
then %,(c) may be continued along /3 for ¢ > ¢ and for each such ¢ gives rise

to a place &,(t) over () belonging to W’. By hypothesis W' c < and so
h(t) € <. Continuing %,(t) backward along {3 till ¢ = a and using that
hic) ¢ 7 we get that &, belongs to .

It remains to consider the case that A(c) € 7. Then if |t — | is small,
either ,(t) € = fort < cor h(t)e &, for t < ¢, where &7, is the com-
ponent of the complement of 7 on . which is not 7. In the second case

there exists ¢, with A,(t,) € < ,N W.
We can now choose a path 7 on <7, whose initial point is %,(¢,) and whose
endpoint projects into the unbounded component W. of Q(¢). Let 7 be
the projection of 7 in the plane. By application of Lemma 4.3 of [1] to
the components of Q(¢) traversed by 7, using the fact that 7 does not
meet 7, we conclude that each component traversed by 7 is bounded.*
But by choice of 7, 7 penetrates into W... This is a contradiction. Hence
h(t)e < for t <e, |t —c| small, whence by continuation backward
along B we get that #, € 7. Similarly each 2, ¢ =2, -+, misin &.
Hence every place of W belongs to <7 and the lemma is proved.
LEMMA 2.4. Let W be a component of Q(¢) such that Z-(W) is non-
empty and so the regular surface W over W exists. Then W C 2.

* For a detailed argument of this type,fcf. [1], proof of Lemma 4.4.



504 JOHN WERMER

PRroOF. Let W, be the region entering in the definition of &, (Defini-
tion 4.1 of [1]). Fix a point g, in W,. By Definition 4.1, ¢, <. Since
Z7(W) is non-empty and Z-(W)c W, we have that there is some ¢ in
W N 7. Join g, to q by a path §in < having the following properties :
if 3 is the projection of § in the plane, then 2 meets 7 only finitely often
and f contains no multiple point of y. Then there exists a finite sequence

of components of Q(¢); W,, W, .-+ W, = W, such that W,,, = W,, all
i, and f traverses this sequence in succession. Then W, and W,., have

a common boundary arc for each i. For each i there is some point on 3
and so on &7 projecting into W,, whence by Lemma 4.4 of [1] the regular

surface W, over W, exists.
Now W,c &, by Definition 4.1. Hence W, <7, by our Lemma 2.3.
Repeatedly using this lemma, we arrive at the conclusion that W, =

Wc <7, as asserted.
Proor or LEMMA 2.2. Combining Lemma 2.4 with the fact that

Z1(W)c W, we get that Z- (W) = W.
By definition of W, (Definition 3.1 of [1]), there exists a meromorphic
function %, k = 0, defined on W, and there exists a homomorphism L of

[¢, f] into functions meromorphic on W, such that, with ¢g* as in Defini-
tion 2.2 :

p— ¥
(2.11) T Lowokp) = L | oD ze W
2t Jy 1 — 2
where p,, - -+, p,, are the places on W lying over z and further Lf is the

function on W assigning to a place (b, 4) the value h(b). Since W =
Z7 (W), the p, are the points on Z-(W) with Z(p,) = z.

Then Lf = F on W, where F(p) = f(x~(p)). Also L¢ = Z, which we
see as follows : Applying (2.11) to g = ¢-f* we get

r (L)) F(0)k(p,) = 271ﬂ; S X(fv:(z_»zzpa) .

But (2.8) gives that the right side equals
e L[ L@
S

2 A—z

and this again, by (2.11), is
Z'ET-l Fv(pi)z(pi) .
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Hence we have

(2.12) ;n:l (Le(ps) — z)TC(pz)Fv(pz) =0.
This last equality now holds foryv =0, 1, 2, --- . Consider the system
of equations, for the xz;:

(2.13) Yo xk@)F(p),v=0,1,2,---,m —1.
The determinant of this system is

+ 15, k) I17,.. (F(p.) — F(py)) .

From condition (3.10) in the definition of W in [1], and (8.18) in [1], we
see that this determinant vanishes only for isolated values of zin W. It
follows from (2.12) that Le(p) =2=2Z(p), © =1, --- m, except for
isolated values of z in W. Hence Ly = Z, as asserted.

Since now L is a homomorphism, we get for every polynomial P in two
variables

@) TLPE Peke) = | PGS0

A—z

Thus for all g in [¢, f] we have

_ k
EZ: G(p)k(p:) = é};{Sy"g“ (;)_(_i};’(l )
where G is defined by Definition 2.5, and this is exactly the equation
(2.10) which was to be proved. Lemma 2.2 is thus established.
PRrROOF OF THEOREM 2.1. Let ¥ be the map defined in Definition 2.3.
Define a function k(W) on ¢~(W) for each component W of Q(¢) with
¢~ (W) non-empty by

KW, p) = k(x(p))

where % is the function on Z-)(W) obtained in Lemma 2.2. Then Lemma
2.2 gives for g in [¢, f], and setting z = ¢(q.) = Z(x(q.)) :

1 9(2(W, q) = 300, GOa)k(x(a:)) = D(W, g, 2) .

Thus we have proved (2.8). Finally, it is easy to see that (2.8) deter-
mines k(W) uniquely for we may set g =f*,v=20,1, -+, m —11in (2.8)
and solve the resulting system for k(W, ¢,), 2 =1, ««+, m.

It remaing to consider a component W for which ¢~ (W) is empty. We
have to show that ®(W, g) = 0 for all g in [¢, f].

If ¢ is one-one on all of ', then ¢~(W) empty implies that W is the
unbounded component, whence ®(W, g) = 0, all g, by (2.3). We may
hence assume that at least one multiple point 1* of y lies on the bound-
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ary of W. We can then choose a curvilinear triangle A whose interior
lies in W which has 1* as a vertex and two of whose sides, «; and «,,
are arcs on y with endpoint 1*. We can choose A so small that there ex-
ist halfopen arcs 8, and f, on I' with distinct endpoints p, and p, such
that ¢(p,) = ¢(p,) = 2* and ¢ maps 3, — p, one-one on @, — A*and B3, — p,
one-one on «a, — 4*, and that no points outside f, or 3, map on @, — 1* or
a, — A*. Since ¢ and f together separate points on I', f(p) # f(p.).
Hence the function f* = f(¢~') has different limits as 1 — 1* along «;
and along «a,.

Let W, be the component of Q(¢) other than W which has «, as bound-
ary arc. Since ¢~(W) is empty and a;, — 1* is covered just once by ¢ on
I', W, is covered exactly once by ¢ in D. We now apply (2.8) to W, and
get a function %, on ¢~(W,) such that for all zin W,

(1) (¢ R)k(97'(2)) = P(W, g, 2)

for all g in [¢, f]. Let C[¢, /] be the Banach algebra of all functions on
I' which are uniform limits of functions in [¢, f]. If g € C[¢, f1, then g
has a unique continuous extension to D U I" which is analytic in D. Call
this extension again g. Then (i) clearly remains true for all g in C[¢, f].
For each 2 in a; — 2* let p(2) be the unique point in I' which ¢ maps on
A. Set g* = g(¢*). Then (i) yields :

(i1) T (Dk(p(2)) = D(W,, g, 2) a.e. on a;, g € Clg, f]
On the other hand, we know (Lemma 2.3 of [1]):

(iii) (W, 9,2) = ©(W, g,2) + g*(A)e((R) a.e. on «;,
where p(2) is a suitably defined derivative of dx at 1. Hence

(iv) T D)(k(D() — p(2)) = D(W, g, 2) a.e. on
whence, using (iv) with ¢ = 1, we get :

v) g*(DD(W,1,2) = (W, g, 2) a.e. on q;.

Assume now that it is false that ®(W, g) =0 for all g in [¢, f]. Be-
cause of (v), then, ®(W, 1) = 0. Hence by (v):
(vi) g* () = ®(W, g, )®(W, 1, ) a.e.onay, all gin C[e, f].
By an argument we have used earlier (proof of Lemma 4.2 of [1]), this
implies that the function F defined on W by
(vii) Fiz)=d(W,g9,2) - (W, 1,2)"
is a bounded analytic function in W assuming the boundary values f/*
continuously on «;. A parallel argument shows that F also takes the
boundary values f* on a,. But f* has a jump discontinuity as we go
from a, to a, at 1*. The boundary function of a bounded analytic funec-
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tion in the Jordan region A cannot have such a jump. We thus have a
contradiction. This forces us to conclude that ®(W, g)==0 for all g in
[¢, 1. This was what we had to prove. Theorem 2.1 is thus established.

3. For each component W of Q(¢), set
AW, 2) = II7,.. (@) — f(p))s ze W

where p,, --- p,, are those points in ¢~'( W) which ¢ maps on z. Because
of Lemma 1.1, A #= 0. Since ¢ and f are analytic on I', and I'" contains
no ¢-singular points, A(W) is analytic on the boundary of W and does
not vanish there. By setting A(W, p) = A(W, 2) where z = ¢(p), A(W)
becomes defined on ¢~} W).

DEFINITION 3.1. For each W, Z(W, ¢) is the set of zeros of A(W) in
¢ Y (W) and n( W) is the maximal order of these zeros.

Z(¢) is the union of the sets Z(W, ¢) over all components W of Q(¢)
and 7 is the maximum of the n(W).

DEFINITION 3.2. E(¢) = the set of points p in D such that there exists
¢, ¢ on I', ¢, # q,, with ¢(q)) = ¢(q.) = ¢(p)-

DEFINITION 8.3. M(¢) = the set of point ¢ in I" such that there exists
¢’ in T" with ¢(q) = ¢(q’), ¢ # ¢'. By (ii) of Definition 1.4, M(¢) is finite.

Fix annular coordinates re® in a neighborhood of I' on .&“ such that
r = 11is the equation of I" and » < 1 in D. Let k* be a measureable
function defined on the unit circle with

3.1) S”lk*(eie)ma <o
0

and assume that the measure do = k*(¢)d¢ on I' satisfies (2.1), where
de is the differential of ¢, and T" is oriented positively with respect to D.

DEFINITION 3.4. For W a component of Q(¢), p € ¢ (W), set K (p)
= k(W, p) where k(W) is defined by (2.8) relative to the measure k*de.
K, is then defined on the union of the sets ¢~(W).

THEOREM 3.1.! K, can be extended to all of D to be analytic every-
where on D except for possible poles of order < % at points of Z(¢) and
possible isolated singularities at the points of E(¢). Furthermore :

(i) lim,., K, (p) = k*(¢) for a.a. t on I', the limit being nontangential.

(ii) If ¢*0 is any point on I" and not in M(¢), there exist numbers s,, s,,
s, < 0, < s,, with

Ss2|K¢(rei9)|2d0 = 0Q1) asr — 1.

11 am indebted to Professor Beurling for a discussion which led me to a simpler proof
for this theorem.
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PrROOF . Denote by D* the union of all the sets ¢~ (W) with W a com-
ponent of O(¢). Fix pin D — D* and p¢ E(¢). Set T = ¢(p).

Let ¢ be the unique point in I" with ¢(q) =2, and let p,, - - -, p,, be the
points in D with ¢(p,) = 7 and p = p,. Sinceq is not ¢-singular, de # 0
at each p;, and also at ¢. Hence there exists a neighborhood U of 7 and
single-valued maps p,, -, p,, With p,2) = p;, i = 1, -+, m, from U into
D with ¢(p(2)) =zif ze U, and a single-valued map p,., from U into
& with pm+1(}) :E and P(Dm+1(2)) = 2.

Let o denote an arc on I' containing ¢ and set a = ¢(a). We assume
a =UNr and «a is free of multiple points of ¢(I).

Let W and W’ be the two components of Q(¢) which have « as a
boundary are. Since I' contains no ¢-singular points, A(W) and A(W') do
not vanish on «. We may assume U so small that A( Wy+0inUnw
and A(W’') # 0in UN W'. Let ¢~'(W) be m-sheeted and ¢ (W')be m+1
sheeted. Then m = 1. Let k(W), k(W’) be the functions associated to the
measure k*d¢ by Theorem 2.1. We claim : For a.a. 1 on «, the functions
k(W, p(z)) have non-tangential limits k(W, p,(1)) as z — A from within
W,i=1, --+ m, and similarly the limits &(W’ pi(4)) exist as z — A from
within W’ for¢ =1, ... m + 1. Further, a.e. on «

(3.2) KW, p(2) = (W, (), i =1, -+, m
and
(3.3) (W', Pnii(2) = E*(Dpar(2)) .

The existence of non-tangential limits follows from (2.8) and the ex-
istence of such limits for the functions ®(W, g, 2). Using (2.8) with g =
S and taking limits we get

(3.4) 11 L)W, p()) = (W, £, 2) a.e.ona, v=0.
(3.5) " P DY RV, (D) = D(W', £, 2) a.e.ona, v = 0.

i=1

By Lemma 2.8 of [1] we get
(8.6) (W', />, 2) = (W, ) + E*(Omn+1(A)) S (Dns1(2)) a.e.ona,y = 0.
Hence we get from (3.4)
11 SOV T(W, DA2)) + (D) T (Dr(2))
=W, f,2) a.e.on «a, v = 0.
From (8.5) and (3.7) we get the asserted equations (3.2) and (3.8) by solv-
ing for k(W, p,(1)) the two systems of equations with » = 0, 1, - -- , m
and using the fact that ];")2, (f(»/2)) — f(»,(2)) # 0 on «.

We can now choose a region R in the complex z-plane, » = s + w,
defined by

(3.7
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a<s<bh —c<v<e,c>0
having the following properties , up to and including (3.9) :
The are o’ on I' consisting of points with annular coordinates e, a <
s < b, is contained in @ and ¢ has coordinate ¢, @ < s < b. Set
t(x) = ¢(e*) = ¢(e"e¥) forxin R .
Then ¢ is a one-one analytic map from R to a neighborhood of « in the
plane contained in U. Set

(3.8) Qz,5)= T 11 for s,z in R .

Then
(8.9) Q is analytic in both variables for @, s in some region containing
the closure of R .

Write B* for RN {x|v > 0}, R~ for RN {x|v < 0}. Then ¢t maps R*
into W’ and R~ into W and the segment a < s <b, v = 0, into «. Set
k() = K(W, p(t(x))) for x € R~ and ki(x) = MW, p(#(x)) for x e R*.
Fix real numbers s,, s, with ¢ < s, < s < s, < b and define H*(R*) as the
class of functions % analytic in R* and satisfying :

(3.10) SSZ|h(s + iv)Pds = 0(1) asv 0.
Sy

Define H*(R") similarly. We shall show

(3.11) k, € H(R") and k; € H(R*) .

We observe that for x € R~
_ 1 SY(p)k*(p)de(p)
@12 e = | i
1 S " €Nk (e")g(s)ds

b Ja t(s) — t(x)
where ¢(s) = ((lzs (¢(€")). Set gy(s) = f(e¥)k*(e”)¢(s). The first term on

the right in (3.12) is then analytic for x in all of R. The other term
equals

1 (" glsdds | [
(3.13) - @)Sas"_x‘ + |'Q@, s)g.(o0ds

Because of (3.9) the second term in (3.13) is analytic in all of R. Also,
g, € L*(a, b), since k*(¢) € L*0, 27) by hypothesis and f and ¢ are con-
tinuous. By a well-known property of the Cauchy integral, then

S" 98)48 pelongs to HE(R-) .
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Also - t’(lx) is analytic in R. Hence ®(W, />, t(x)) € H(R") for each v.

Now it follows from (2.8) (compare [1], (3.17)) that k(W) is a quotient
whose denominator is A(W) and whose numerator is a finite linear com-
bination of functions ®(W, /) with coefficients which are polynomials in
S and in symmetric functions of f(p,), -+, f(pn). Since A(W) # 0 on «,
we get from this and the fact that ®(W, f, (x)) € H(R") that k, €
H(R-). A parallel argument gives k; € H(R"*), so that (8.11) holds.

We now appeal to the following known result: Let two functions % and
k' be analytic, respectively, in domains V and V' where V lies in the
upper and V’ in the lower half-plane and V and V' have a common
boundary segment I on the real axis. Let %~ and # have coinciding
boundary-values a.e. on I. Assume the L*means of » over segments I,
in V parallel to I and approaching I as » — « remain bounded, and
assume the analogous situation for 2. Then % and 4 provide analytic
continuations of each other across I.

By (3.2) and (3.11) the functions %, and %, satisfy the hypothesis of this
theorem, and so these functions continue each other analytically across
the segment s, < s <s,, Hence there exists a function analytic in
a neighborhood U of p on D which coincides on U N ¢~(W) with k(W)
and on U N ¢~ (W’) with k(W").

Since this is so for an arbitrary point p in D — D* — E(¢), we have the
following consequence:

If K, is given on D* by Definition 3.4 and if we define K, by analytic
continuation on the rest of D, except for points in E(¢), then K, is
a single-valued function on D — E(¢) analytic except for the poles of
k(W) in ¢~ (W) for each W. Since k(W) is the quotient of two analytic
functions in ¢~'(W) with denominator A(W), K, has no poles in D — E(¢)
except possibly at points of Z(¢) and of order < n. (Recall Definition
3.1).

Because of (3.3) we also have

lim,., K,(p) = k*(t) a.e. ona

It now ¢, is any point on I', a similar argument shows that the preced-
ing relation is valid in a neighborhood of ¢, on I', and so assertion (i) is
proved. -

Further, arguing with k(W’, p,...(2)) as we did with &(W’, p,(z)), we find
fore=s+w,v>0:
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*ds = 0(1)

K (ee")

(3.14) [/ 10", Dty
S1

as v — 0. Thus Theorem 3.1 is proved, except for assertion (ii) for points

gon I, ¢ é M(¢), for which there does not exist p in D with ¢(q) = ¢(p).

But this case can be treated in a quite similar manner and so Theorem

3.1 is established.

4. In this section we consider the exceptional points in E(¢) and M(¢)
appearing in Theorem 3.1. We shall do this by replacing ¢ by suitable
other funections in Theorem 3.1.

THEOREM 4.1. Let k* be as in Theorem 3.1. Then there exists a function
K analytic on D except for possible poles of orders < n at points of Z(¢)
such that :

5 2
*ds = S
51

(4.1) S” | K(rei®) — k*(e):d0 —> 0 as r —> 1,
0
and ;
(4.2) lim,.; K(re®) = k*(e") a. e. on (0, 27).

LEMMA 4.1. Fizr > 0. Fizg € I'. Then we can find €, 0 <|&|< T,
such that if ¥ = ¢ + & f, then for all ¢ in T with ¢ # q, Y(¢) # ¥(q).

PrOOF. Set Q) = £ —¢@)
At — fa)
Then Q is meromorphic on I' and hence maps I' on a finite sum of analytic
curves. We can hence find &,]€| < 7, such that @ does not take the
value — onI'. Set ¥ = ¢ + € f. We claim ¥ satisfies the assertion
of the lemma. For, assume the contrary. Then there is some ¢’ in I,

¢ + ¢, such that ¥(¢') = ¥(g), or

(4.3) o(@') + &f@)= ¢(a) + & F (@),
whence
#(q¢") — ¢(q) = — &fd) — f)) -
If f(¢') — f(q) were zero, then ¢ and f would take the same values at q
and ¢, contrary to Definition 1.4. Hence (4.3) gives
Ql¢)=—¢.

But this contradicts the choice of &. Hence ¥ does satisfy the assertion -
and the lemma holds.

LEMMA 4.2. There is an r > 0 such that if |€] < rand ¥ = ¢ + & f,
then T contains no W-singular points (as defined in Definition 1.3 with
¥ replacing ¢) and ¥ takes only finitely many values more than once on I'.

PROOF. Assume first that for each » there is an &,|&| < 7, such that
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for ¥, = ¢ + & f there are W.-singular points on I'. Then there exist
&, — 0 such that one of the following two cases occurs :

(i) For each n there exist p,in T, ¢, in D, (as defined in § 1) with
Ve, (Pn)= ¥¢,(¢.) and d V¥, (¢.) = 0. By passing to a suitable subse-
quence, we get p, > pin T, ¢, > ¢ in D,. Then, since f is bounded on
D,, ¢(p) = ¢(q), and similarly de(q) = 0. Hence p is ¢-singular,
contrary to our choice of T.

(ii) For each n there exist p, in I, ¢, ¢2 distinct points in D,, with
V. (pn) = Y (q:) = V. (q7) and f(q.) = f(g7). Hence ¢(q,) = ¢(¢;). Again
we may assume p, — p in I, ¢, = ¢, and ¢2 — ¢, with ¢, ¢, in D,. Then
¢(p) = ¢(¢) = ¢(¢.) and f(¢) = f(@). If @ # ¢, pis ¢-singular. If ¢,
= @, d¢(q;) = 0. Hence again p is ¢-singular. But this contradicts our
choice of I'. Hence for some r, I' contains no W-singular points if ¥ =
¢ + &f, |&| < r. Finally, for r sufficiently small, we have that if |&| <7,
¥ = ¢ 4 &f takes only finitely many values more than once on I', as is
seen by use of (ii) in Definition 1.4. This proves our lemma.

PRrROOF oF THEOREM 4.1. We take K = K, as given in Definition 3.4.
Let 7 be the number introduced in Lemma 4.2. Fix ¢ € M(¢). By Lemma
4.1 we can choose &, |&€| <7, suchthat if ¥ =¢ + ¢ f, thenq ¢ M(V),
where M(¥) is given by Definition 3.3 with ¥ replacing ¢. By Lemma
4.2, I satisfies conditions (i), (ii) of Definition 1.4 relative to ¥. Also

clearly [¢, f1 = [V, f]. Since the measure k*d ¢ on T' satisfies (2.1), we
have also

(4.4) Lg(t)k*(t)—g%(t)d\lf(t) 0 if g e [W, f].

We can hence apply Theorem 3.1 to the pair ¥, f and the function
k*g%' Define Ky on D in accordance with Definition 3.4 applied to W.
Then Theorem 3.1, applied to ¥ yields :

(4.5) lim, ., Ke(p) = k*(t)%{%(t) a. e onT.

Combining (4.5) and (i) of Theorem 3.1 as applied to ¢, we conclude that

K\yg—\lj and K, have the same non-tangential boundary values a. e. on

¢
I'. Hence

(4.6) K=K inD.
dy
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Let now ¢ have coordinate ¢??. Then since ¢ ¢ M(¥), by (ii) of Theorem
3.1 applied to ¥ there exist numbers (s, s,), s; < 0 < s,, with

Ss2lK\y(re“’)l2d0 — 0(1) asr—1.

Since also gg——\?f is analytic on I, (4.6) gives
1

(4.7) S?!Kq,(re“’)lzdﬂ - 0(1) as r — 1.

The same now holds for each point in M(¢). Hence every point on T,
without exception, lies on an open arc for which (ii) of Theorem 3.1
holds for K,. Since I' is compact, this implies that

(4.8) S2”|K¢(reiﬂ)|2d0 = o(1) asr—»1,
0

Because of (4.8) and the fact that by (i) of Theorem 3.1 K, has k* as
boundary-function, a classical result gives assertion (4.1) of our theorem.
Also (4.2) holds by Theorem 3.1. It remains to prove that the isolated
singularities of K, in E(¢) are removable.

Fix pin E(¢). By Definition 3.2, p € D and the point ¢(p) lies on
¢(I"). Since I' contains no ¢-singular point we have for each ¢ in I" either
¢(p) # ¢(q) or f(p) #+ flg). From this we obtain, arguing as in the proof
of Lemma 4.1 that, given 7 > 0, we can find €&, |&| <r, so that if ¥'=
¢ + & f, then W(¢) # ¥'(p) for every ¢’ € I'. Using Lemma 4.2 we
can show, as earlier, that Theorem 3.1 is applicable to the pair ¥/, f.

Form K. in accordance with Definition 3.4, applied to ¥’'. Theorem
3.1 then yields that Ky, has no singularities except at points of E(¥’) and
Z(¥"). Now p & E(¥’), since we chose W' so that ¥'(p) ¢ ¥/(I'). Also,
since p € E(¢), ¢(p) € ¢(T). Since I' contains no ¢-singular point, there
is a constant & > 0 with |¢(p) — ¢(p')|= 6 for every ¢-singular point p’
in D y I'. By choosing & sufficiently near zero, now, we can assume
that if b is any ¥’-singular point, then there exists a ¢-singular point ¢
with |¢(b) — ¢(c)] < 6. Hence p is not W'-singular. Hence p ¢ Z(¥).
Hence Ky. is regular at p. But by (4.6) applied to ¥, this yields that Ky
is regular at p, unless d¢(p) = 0. But that would imply that I' contains
a ¢-singular point, since p & E(¢). Hence de(p) # 0 and so K, is regular
at p.

Thus K, is regular at each point of E(¢), and our theorem is completely.
proved.
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5. In this final section we prove Theorems 1.1 and 1.2 by use of
Theorem 4.1.

Proor oF THEOREM 1.1. The necessity of conditions (1.3) and (1.4)
is obvious.

Assume now these conditions hold. Fix ge 2(D,). Then there is some
region &g containing D, U T, in which g is analytic. We can assume with-
out loss of generality that the curve I' and the region D of Definition
1.4 lie in .%“¢ and that no ¢-singular points lie in D — (D, U I';). Then
Z(¢) c D, U I',. We assert that for each » > 0, there is some G in [¢, f]
with

(5.1) [ loten) = Geenyran < 4,
0
where ¢” are coordinates on I'.  For choose k* € L*0, 27) such that
(5.3) S“G(eW)k*(ew)dqa —o0, for all Gel[g,f].
0

Because of (5.3), k*d¢ satifies (2.1). Hence Theorem 4.1 is applicable
and it yields a function K on D satisfying (4.1) and (4.2) and analytic on
D except for poles in Z(¢) of order < n.

We claim that the residue of Kd¢ vanishes at each pe Z(¢). For let
D1, **+, D; be the remaining points in Z(¢). Because of (1.3) and the fact
that Z(¢) € D, U Ty, the points (¢(®), f(D)), (¢(p1), f(21)) -+, (¢(Ds)
[f(p,)), are distinct in the space of two complex variables. Hence there is
a polynomial P such that P(¢, f) vanishes at p,, -+ - p, and equals 1 at p.

Set @ = P*. Then for v = 1, Q'K is analytic at every point of D ex-
cept at p. Because of (4.1) and Cauchy’s theorem, we have for v > 1,
if B is a simple closed curve in D containing in its interior 7 but none of
the p;, 1 < ¢ < s, that

(5.4) o | @rrde = 1| @Ky
2t Jr 271 JB
It is easy to see that there exits constants C,, C,, - - -, C,, with
(5.5) 2L SBQ“Kng = Cy 4 Cw + Ca? + =+ +Cpom
)

foryv=1,2, --., where C, = residue of Kd¢ at p. But now @ €[¢, f]
for each v and so (5.3) yields that the left side in (5.4) vanishes for v > 1.
Hence all the C; must vanish and in particular C,, the residue of Kd¢ at
P vanishes. :

Now for any G, in [¢, f], the measure Gk*d¢ also satisfies (2.1) and

S“l () (e) |*df < oo .
0
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Hence we may apply the preceding to conclude that the residue of G,Kd¢
vanishes at 7. ‘

Consider now the function g in (D,) with.-which we began and fix p in
Z(¢). Because of (1.2) and (1.4), either de¢(p)# 0 or df(p) = 0. Assume
the first. Then in some neighborhood of 7, g is a uniform limit of poly-
nomials in ¢. Since the residue of G,Kd¢ at p is 0 for each G, in [¢, f],
we get that the residue of gKdg¢ is zero at p also. If df(p) =0, the
same will hold.

This now holds for each point 7 in Z(¢). If B € Z(¢), gKd¢ is analytic
at p. Hence by the residue theorem applied to gKd ¢, and using (4.1)
we get

(5.6) S:”g(eiﬂ)k*(ew)@ —o0.

We have then seen that for k* in L*0, 27), (5.3) implies (5.6). By a
well-known property of the space L? this implies that (5.1) holds for
some G € [¢,f]. On the other hand, a sequence of analytic functions
converging in the L*-sense on I' converges uniformly on every compact
set in D. Hence there exists a sequence of functions in [¢, f] converg-
ing uniformly to g on the compact set D, U I',, Thus Theorem 1.1 is
proved.

PrOOF OF THEOREM 1.2. Fix ¢ in 2(D,). Let &g be a region in
which g is analytic containing D, U I', and choose I' as in the preceding
proof. Let k* satisfy (5.3) and lie in I*(0, 27).

Set T' = Z(¢) and set @ = n, as given in Definition 3.1. Then T is a
finite subset of D, U I,. Then, by Theorem 4.1, K has poles only at
points of Z(¢) and there of order < n». Hence if g vanishes at each point
on Z(¢) with an order = 7, the differential gK*d¢ is analytic everywhere
in D. Hence

S gl*de = 0 .
T

From this it follows as in the proof of the last theorem that g is approxi-
mable uniformly on D, U T', by functions in [¢, f]. This completes the
proof of Theorem 1.2.

Appendix

Let A be any subalgebra of 2((D,) which contains a function satisfying
(1.2). It is then easy to prove the following generalization of Theorem
1.1,

THEOREM. Assume that
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(a) A separates points on D, U T,.

(b) If pe D, there is some g,in A with dg, + 0 at p. Then every
Junction in A can be approximated uniformly on D, U Ty by functions of
A.

It is easy to construct two functions ¢ and f in A which satisfy (1.2)
and (1.5). We may then apply Theorem 4.1 to the algebra [¢, f] which
is contained in A4, and finally argue as in the proof of Theorem 1.1. We
shall not enter into the details of the argument.
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