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Displacement Profile of Charge Density Waves and Domain Walls at Critical Depinning
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The influence of a strong surface potential on the critical depinning of an elastic system driven in a
random medium is considered. If the surface potential prevents depinning completely the curvature C
of the displacement profile exhibits at zero temperature a pronounced rhombic hysteresis curve of width
2fc with the bulk depinning threshold fc. The hysteresis disappears at nonzero temperatures if the
driving force is changed adiabatically. If the surface depins by the applied force or thermal creep, C is
reduced with increasing velocity. The results apply, e.g., to driven magnetic domain walls, fluxline
lattices, and charge-density waves.
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its behavior of the pure system C�f� / f. We further
determine the reduction of the curvature in the case that
the surface is depinned due to a sufficiently large driving

surface potential which has applications in type-II super-
conductors and may also serve as a first step for the
treatment of conversion phenomena in CDWs.
The driven viscous motion of an interface in a medium
with random pinning forces is one of the paradigms of
condensed matter physics [1,2]. This problem arises, e.g.,
in the domain wall motion of magnetically or structurally
ordered systems with impurities [3] or when an interface
between two immiscible fluids is pushed through a porous
medium [4]. Closely related problems are the motion of
other elastic systems like a vortex line in an impure
superconductor [5], of a dislocation line in a solid [6] or
driven charge density waves (CDWs) [7]. For a constant
external driving force this problem has been considered
close to the zero temperature critical depinning threshold
[8–12] and in the creep region [6,13].

It was a tacit assumption of these investigations that the
motion of the elastic system is not hindered by effects
from surfaces or internal grain boundaries. Surface bar-
riers are, however, known to be relevant in all cases
mentioned above. In superconductors they prevent the
penetration of new flux lines into the probe [14]. In
CDWs normal electrons have to be converted into those
condensed in the CDW by a phase-slip mechanism which
is essentially a nucleation process [15,16]. The motion of
domain walls may be hindered by a variation of the width
of the sample such that positions of minimal width are
preferred, etc. Experimental [17] and numerical [18]
studies of CDWs with contact effects revealed hysteretic
behavior of the polarization.

It is the aim of the present Letter to consider the effect
of a strong surface pinning potential in addition to the
weak bulk random pinning. It turns out that, starting
from a flat interface, at T � 0 and increasing the driving
force f to f > fc the mean curvature C of the averaged
(parabolic) displacement profile behaves as C�f� / �f�
fc�. In more general situations C�f; t� exhibits a pro-
nounced hysteretic behavior. At nonzero temperatures
C�f; t� increases with time and reaches asymptotically
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force or due to thermally activated processes at the sur-
face. The latter mimic also phase slip processes in CDWs.

Model and zero temperature critical depinning.—We
focus on a simple realization of the problem. The equation
of motion of a D-dimensional field ’�x; t� describing an
interface profile in the case of domain walls or a phase
profile in the case of CDWs is given by 1


 �@’=@t� �
��
H =
’�, where H denotes the Hamiltonian of the
system:
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Z
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 and � denote the mobility and the stiffness constant of
the elastic object, respectively, and f is the driving force
which is assumed to change only adiabatically. The po-
tential includes a random force and a surface contribution

V�x; ’� � �
Z ’

0
d’0g�x; ’0�	1� ��x�
 �

�

a2
Vs�’���x�:

(2)

The random force �g�x; ’� is assumed to be Gaussian
distributed with hgid � 0 and hg�x; ’�g�x0; ’0�id �

�D��x� x0��0�’� ’0� where h. . .id denotes the random
average. For domain walls �0�’� � �0��’� is an ana-
lytical monotonically decreasing function of ’ which
decays to zero over a finite distance l. For CDWs g /
sin	’� ��x�
 with a random phase ��x� 2 	0; 2�
 and
therefore �0�’� is periodic with �0�’� � �0�’� 2�Z�.
The factor 	1� ��x�
 is essentially 1 in the bulk and
drops to zero in the vicinity (a� L) of x1 � 0 and x1 �
L, e.g., ��x� � e�x1=a � e�x1�L�=a, where the surface po-
tential Vs�’� is assumed to act, which favors the values of
’�0;x?� and ’�L;x?� at 2�Z.

The details of the interaction between the elastic sys-
tem and the surface depend on the specific system under
consideration. We will restrict ourselves here to a periodic
 2004 The American Physical Society 257205-1
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The case Vs � 0 was considered previously in
[8,9,11,12]. It was shown that at zero temperature the
system undergoes a depinning transition at a critical value
fc. For f > fc the velocity v � h _’’i increases as v� �f�
fc�� with the critical exponent � calculated in an
expansion in D � 4� � dimensions. The average dis-
placement profile is macroscopically flat. At nonzero tem-
peratures the depinning transition is smeared out and
goes over into a creep motion for f � fc [6].

In this Letter we will consider the opposite case where
a strong surface potential Vs, obeying maxfV 0

sg �
fca2=�, slows down or prevents completely the motion
of the elastic object. We study the history-dependent
curvature C�f; t� of the parabolic displacement profile.
The steady state solution for the average phase is given by

’0 � h’i � vt�
Cs�f�
2

�L� x1�x1; (3)

where Cs�f� � Cs�f; t! 1� is the saturation value of the
curvature.

Infinite surface barriers.—We begin with the case
Vs ! 1, where the depinning transition is suppressed.
To determine C�f; t� we first apply perturbation theory.
Using the decomposition ’�x� � ’0�x� � ’1�x� with
h’1�x�id � 0 in the equation of motion and expanding
g�x; ’0 � ’1� to linear order in ’1 we get after averaging
over the disorder

1



_’’0 � ��C�t� � f� hg’�x; ’0�x; t��’1�x; t�id; (4)

where g’�x; ’� � �@=@’�g�x; ’�. Calculating ’1 also to
first order of g we get from (3) and (4) Cs � C0 � f=�
since �0

0�0� � 0, i.e., there seems to be no influence of the
disorder. Here, the situation is completely analogous to
that at the conventional depinning transition [8]. How-
ever, as we know from critical depinning, this is the
situation below the Larkin scale Lp.

Next we discuss renormalized perturbation theory
starting from a situation where Cs � 0. As long as f �
fc, the elastic object is pinned and boundary pinning does
not matter, hence C�f; t� � 0. At f � fc the elastic object
is in the same critical state as at the depinning transition.
Therefore we can use the results of the previous renor-
malization group calculation in this case. As a result 

and �0�z� are replaced there by the renormalized, mo-
mentum p dependent quantities


�p� ’ 
�pLP��2�z; (5a)

�p�’� �K�1
D ��l=L"P�

2p4�D�2"���’�pLP�
"=l�: (5b)

z is the dynamical exponent and " denotes the roughness
exponent which was calculated for domain walls to order
� � 4�D in [8,9] and recently to O��2� [12]. For CDWs
" � 0 [9]. The most important feature of �p�’� is that
���’� has a cusplike singularity at the origin. The renor-
malized equation for C�f; t! 1� is given by
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�C�f; t� � f� fp!p

Z 1

0
dt0

Z 1

0
d~pp� ~pp1�z�"e�!p ~ppzt0

� ��0

�

	�C�t� � C�t� t0�

x1
2
�x1 � L�

�

; (6)

where ~pp � pLp, !p � 
fp=l, and fp � l�L�2
p . After

having increased f adiabatically to a fixed value slightly
larger than fc, C�f; t� saturates for t! 1 and hence the
difference C�t� � C�t� t0� vanishes. As a result the argu-
ment of ��0 also vanishes and the right-hand side of (6)
becomes independent of x1. Since C�t� > C�t� t0� the
argument of ��0 approaches zero from positive values.
Thus we get for the saturation value Cs�f�

C s�f� �
f� fc

�
�

l

L2
p

f� fc
fp

; fc �
fp

2� "
��0�0��:

(7)

One can understand this result in the following way:
Using the decomposition ’ � ’0 � ’1 in the asymptotic
region, where C�t� saturates, the equation of motion can
be written as

1



_’’1 � �r2’1 � f� �C� g1�x; ’1�; (8)

where g1�x; ’1� � g�x; ’0�x� � ’1�x��. g1�x; ’� and
g�x; ’� have the same statistical properties. According
to (8) the force acting on the field ’1 is now reduced by
the curvature force ��C. The depinning of the ’1 field
seems hence to occur at f % ~ffc � fc � �Cs. However,
since the boundary conditions fix ’1�0� � ’1�L� � 0 and
hence h _’’1i � 0 for all values of f, the system is always at
its depinning transition, which implies (7). Starting from
some f < fc and Cs � 0, Cs will stay at this value until f
reaches fc. For f > fc, Cs obeys (7). The same argument
can be used for negative forces f < 0. Then we find for
f <�fc: �Cs�f� � f� fc � ��jfj � fc� since
��0�0�� � ���0�0��.

A scaling argument supports the validity of Eq. (7) to
all orders in g: Close to the Vs � 0 depinning transition
the correlation length % diverges as % � Lp��f�
fc�=fc��&. For L0 < % the roughness—the mean square
displacement of a piece of linear size L0 of the elastic
object —scales as w2�L0� � l2�L0=Lp�2" [8,9,11,12]. If we
choose the system size L � % we expect that the rough-
ness scales as the height of the parabolic ’ profile on the
same scale, w�%� � C%2, which is indeed fulfilled if we
use the scaling law & � 1=�2� "�

C �
w�%�

%2
�

l

L2
p

�
f� fc
fc

�
&�2�"�

�
f� fc

�
: (9)

Hysteresis.—Next we consider the case that we increase
f adiabatically from f & fc to a value fmax, where C�f; t�
reaches Cmax, and then decrease f again. In this case
C�f; t�< C�f; t� t0� and hence the argument of ��0 be-
comes negative. Instead of (7) we get from (6)
257205-2
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�Cmax � fmax � fc � f� fc: (10)

The effective force acting on the elastic object is now
given by f� �Cmax. Further decreasing f, there is no
change of C�f; t� until the effective force reaches the
threshold �fc � f� �Cmax � f� �fmax � fc�. Ac-
cording to the last relation this happens at f � ~ffmax �
fmax � 2fc. Analogous arguments can be used for revers-
ing the fields from _ff < 0 to _ff > 0. Thus Cs undergoes a
hysteresis which consists of the two parallel segments
given by Cs� � �f� fc� and two horizontal segments
determined by Cmax � �fmax � fc�=� and Cmin � �fmin �
fc�=�, respectively. Indeed, similar hysteresis effects of
the strain have been observed in CDWs [17,19]. Note, that
in [17] the polarization is measured, which is propor-
tional to Cs.

These findings are fully supported by numerical simu-
lations, as shown in Fig. 1. For integrating the equation of
motion, the x coordinate is discretized with a lattice
constant � and the simulation time is measured in units
of a time (0 (the dimensionless lattice Laplacian for D �
1 is given by r2’i � ’i�1 � ’i�1 � 2’i, with lattice
sites i � 0; . . . ; L). � and (0 are chosen such that
�(0
�=�2� � 1 and the dimensionless stochastic forces
(0
g�x; ’� 2 	�1=2; 1=2
 (the dimensionless driving
force is (0
f).

Curvature at finite temperature.—Next we want to
consider the problem of finite temperatures. Changing f
only adiabatically we may use equilibrium statistical
mechanics. It is convenient to go over to the field ~’’�x� �
’�x� � �f=2��x1�x1 � L�. The Hamiltonian rewritten in
~’’ has the same statistical properties as the initial one (1),
since VR�x; ’� � �

R
’ d’0g�x; ’0� is a random function

of both arguments. This can most easily be seen by using
the replica method [3]. The disorder averaged free en-
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FIG. 1 (color online). Hysteresis of C�f� at T � 0 for a one-
dimensional interface. The driving force is first increased to
fmax � 0:6 or fmax � 0:8, respectively, and then decreased to
�fc � �0:27. The arrows show the direction of the hysteresis.
The numerical simulation was done for a one-dimensional
interface with length L � 1000 and averaged over 300 disorder
configurations.
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thalpy follows from the replica Hamiltonian

H n �
�

2

Xn
a;b�1

Z
x

�
�r~’’a�2
a;b �

�

T
R�~’’a � ~’’b�

�
; (11)

with hVR�x; ’�VR�x0; ’0�id � 
�D��x� x0�R�’� ’0� Ap-
parently, the replica Hamiltonian is the same as that
following from (1). It is worth to mention that this is
true only if the random potential VR�x;’� is strictly
uncorrelated in x direction. The application of surface
barriers implies therefore C � f=� and hh�~’’�x� �
~’’�x0��2idi

1=2
th ’ l�L=Lp�

~"" where ~"" denotes the equilibrium
roughness exponent corresponding to Hamiltonian (11).
Thus the displacement profile is the same as in the pure
case. For nonadiabatic changes of f, traces of the T � 0
hysteresis are expected to be seen at nonzero temperatures
(cf. Fig. 2).

The numerical solution of the equation of motion with
thermal noise at finite temperatures and Vs � 1 is in
agreement with these analytical considerations. Figure 2
shows the coefficient C�t� as it approaches its saturation
value Cs � f=� with time. Strictly speaking, we are not
in a steady state until C�t� has reached its saturation value
and hence the phase profile deviates slightly from the
parabolic shape. In Fig. 2, C�t� is the least square fit to
the profile. Note, that for low temperatures (T < 5:0 in the
simulation, where T is the dimensionless variance of the
thermal noise) this approach is very slow, noticeable by
the occurring steps, triggered by avalanches, even at large
times. For high T (T � 5:0), one sees that C�t� fluctuates
around the saturation value due to thermal noise.
Therefore the T � 0 hysteresis of C vanishes at finite
temperatures.

Critical depinning.—So far the surface potential was
assumed to fix the value of ’ at the surfaces x1 � 0 and
x1 � L. We will now assume that the surface potential is
reduced such that a macroscopic motion of the elastic
object is possible. To determine the mutual interaction
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FIG. 2 (color online). Simulation-time-resolved coefficient
C�t� for a driving force of f � 0:2 at various temperatures.
The simulation was done for a system of length L � 1000 and
for one disorder configuration of CDW type for each tempera-
ture (see text).
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between the bulk and the surface we have to consider the
effective equation of motion of the surface. Denoting
’�0;x?� � ’s�x?� the effective equation of motion of
the surface field can be written as (a is assumed to be of
the order of the lattice spacing)

1



_’’s � �C

L
2a

� �r2
?’s � f�

�

a2
V 0
s�’s�: (12)

An analogous equation can be written for ’�L;x?�. In
(12) we have replaced the force resulting from the dis-
placement in the bulk by the corresponding average force.
In the steady state r2

?’s � 0 and Eq. (12) has a depinning
threshold fs;c � fc determined by

�C�fs;c�
L
2a

� fs;c �
�

a2
maxV 0

s�’� � 0: (13)

For f > fs;c � fc the macroscopic velocity is given by
the steady state solution v � _’’s which follows from in-
tegrating (12) with r2

?’s � 0. The corresponding solu-
tion

v�t� � vp�
�
�C�t� La2 � fa2

�V 0
s;max

; t
�

(14)

depends of course on the specific form of the surface
potential, vp � 
fp. Equation (14) has to be combined
with the effective equation for the bulk (f > fc) [8]�

v�t�
vp

�
1=�

�
f� fc
fp

� C�t�
L2
p

l
; (15)

which follows from (5a) and (7). Note that we used the
condition a� Lp such that the surface potential does not
change the bulk depinning threshold. Eqs. (14) and (15)
determine both the velocity and the curvature C as a
function of the driving force. If we increase f from f �
0 with C � 0, C remains zero until we reach fc. For fc <
f < fs;c, C obeys (7). At fs;c the elastic object is depinned
and with increasing velocity the curvature is reduced
compared to a nonmoving object which is subject to the
same force, as follows from (15). If the surface potential
is periodic, also v�t� will be periodic and the bulk
depinning transition is slightly smeared out [20]. We
will assume that this effect is weak. In principal it can
be avoided by adding some randomness to the surface
potential.

Nucleation and creep.—At finite but low temperatures
the surface field may exhibit a creep motion even if f �
fs;c. Creep proceeds via the formation of droplets at the
surfaces x1 � 0 and x1 � L, inside which’ is changed by
2� with respect to the bulk value of ’. The droplet
consists of a cylindrical piece (the cylinder axis is per-
pendicular to x1 � 0) in the surface layer of height a and
radius R and an attached semisphere with the same radius.
The width of the droplet wall confining the cylin-
der is of the order a0 � a=

������
V00
s

p
.

Keeping only the leading order terms we get for the
energy of the droplet Edp�R� � 2�RD�2f

������
V 00
s

p
� lnRa0 �
257205-4
�CRL� fR2=�g. The critical droplet size RC � L fol-
lows as Rc �

������
V00
s

p
=�CL� or Rc � �CL��1 in D � 3 or

D � 2, respectively. In deriving Edp, we have neglected
the contribution from the disorder which is correct as
long as Rc < Lp, i.e., L� Lp. The nucleation rate of
droplets and hence the creep velocity is given by

vD�3

vp
� A exp

�
�B

V 00
s �

CLT

�
;

vD�2

vp
� A0

�
CLa0������
V 00
s

p
�
B0�=T

;

(16)

which replaces (14) in the case f � fs;c, T > 0 (cf. [15]).
The present treatment is too crude to give the coefficients
A; A0; B, and B0. Again, (16) has to be considered together
with (15) to determine C and v. In CDWs, where’ can be
multivalued, nucleation processes also occur deep in the
bulk [15]. The droplet energy then does not contain a term
�f, leaving the relations (16) essentially unchanged.

To conclude we have shown that surface pinning of
impure elastic systems lead to an onset of curvature C
only above a threshold value fc of the random force. In
general, C exhibits a pronounced hysteresis. The curva-
ture is reduced above the surface depinning transition or
at finite temperatures when nucleation processes at the
surface allow for creep motion.
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