
Finite-size effects in one-dimensional strained semiconductor heterostructures

Liberato De Caro and Leander Tapfer
Centro Nazionale Ricerca e Sviluppo Materiali (PASTIS-CNRSM), Strada Statale 7 Appia km 712, I-72100 Brindisi, Italy

Antonino Giuffrida
Istituto Nuovi Materiali per L8 Electtronica (CNR-IME) c/o Universita` degli Studi di Lecce, via Arnesano, I-73100 Lecce, Italy

~Received 22 March 1996; revised manuscript received 31 May 1996!

The elastic lattice deformation of strained one-dimensional~1D! semiconductor heterostructures~quantum
wires! is investigated theoretically. We consider the case of lattice-mismatched@100#-oriented superlattices
made of cubic symmetry materials with a finite lateral dimension along the@011#- or the@001#-crystallographic
direction. Due to the small lateral dimension of the quantum wires, an elastic stress relaxation occurs near the
free surfaces. The theoretical evaluation of strain fields in these 1D heterostructures is made with a Fourier
series treatment and by using the elasticity theory and the condition of zero total stress on the free surfaces. We
also investigate the effect of strain on the confinement potentials. In the case of 1D heterostructures made by
materials with zinc-blende symmetry, the nonuniform lattice deformations can induce polarization charges due
to the piezoelectric effect. Large band-gap and valence-band-splitting energy modulations of several tens of
meV can be obtained near the free surfaces, inducing strong variations in the confinement potentials, which
could cause red-shifted electron-hole transitions. Our analytical expressions for thenonuniformstrain and
stress fields, piezoelectric fields, and confinement potentials are valid for any zinc-blende heterostructure made
of III-V and II-VI semiconductor compounds. Our results clearly demonstrate that, in addition to the 1D
confinement that is caused by the reduced geometrical lateral dimension, the elastic strain relaxation and the
piezoelectric fields on the free surfaces of the quantum wires must be considered in order to understand and
describe correctly the electronic properties of 1D heterostructures.@S0163-1829~96!02736-1#

I. INTRODUCTION

Low-dimensional strained semiconductor heterostruc-
tures, such as quantum-well wires~QWW’s!, have received
much attention in recent years due to the wide range of po-
tential technological applications. The introduction of homo-
geneous strains in a heterostructure produces changes in the
lattice parameter and, in most cases, in the crystallographic
symmetry of the material. These effects, added to those in-
duced by the low dimensionality, produce significant
changes in the electronic band structure and the vibrational
modes, giving the possibility of having wide tunable band
gaps, suitable for the realization of new technological
devices.1,2 Quantum confinement effects in QWW’s, which
are laterally confined by air or vacuum, were experimentally
observed and investigated.3–5

It was experimentally shown also that in QWW’s, which
are fabricated by etching layered heterostructures, an elastic
relaxation of the lattice strain occurs due to the finite lateral
size.6–8 Recently, we have calculated theaveragelattice de-
formation of arbitrarily oriented QWW semiconductor het-
erostructures made of materials with cubic crystallographic
symmetry, by using Hooke’s law and by imposing the coher-
ence condition at the heterointerfaces only along the wire
direction.9,10 The calculated average lattice deformation has
been found to be in very good agreement with the experi-
mental data for the average lattice deformation in QWW het-
erostructures obtained by high-resolution x-ray-diffraction
measurements.6,7,9 However, it should be noted that in these
studies the influence of the finite size of the structure on its
local lattice deformation has not been considered. A more

realistic description of the actual lattice deformation in
QWW’s should take into account the partial elastic relax-
ation of compositional stresses near the free surfaces that is
caused by the very small lateral dimensions~,200 nm! of
these structures and leads to nonuniform strain fields. In fact,
photoluminescence experiments revealed that strain release,
which may occur on the sidewalls of etched QWW’s, causes
a band-edge modulation for both the conduction and the va-
lence bands.8 For this reason an accurate knowledge of the
strain and stress fields on the sidewalls and within the
QWW’s is required in order to have a better understanding
and a correct interpretation of the electronic properties of
etched low-dimensional structures.

In this work we theoretically investigate the stress relax-
ation in one-dimensional~1D! strained semiconductor super-
lattices and calculate the actual lattice deformation field in
the whole superlattice volume, even near the free surfaces
~sidewalls!. Moreover, we analyze the changes in the elec-
tronic structures induced by the elastic stress relaxation in
1D heterostructures, due to the finite lateral size. In particu-
lar, we evaluate the effect of the nonuniform strain fields on
the electron and hole confinement potentials. In fact, in zinc-
blende semiconductor materials the obtained lattice deforma-
tions could induce internal electric fields via the piezoelectric
effect.11,12

We consider the case of lattice-mismatched@100#-
oriented semiconductor heterostructures made of materials
with cubic crystallographic symmetry, with a finite lateral
dimension along the@011#- or the @001#-crystallographic di-
rection. The theoretical evaluation of strain fields in the case
of 1D heterostructures with a finite lateral dimension along
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the @001#-crystallographic direction has been made by using
a Fourier-series elasticity treatment13–16and by imposing the
relaxation at the free surfaces of the stresses, induced by the
different lattice parameter of the materials constituting the
heterostructures. In Refs. 13–16 the theoretical results are
applied to the calculations of the strain fields in thinned
transmission electron microscopy specimens of lattice-
mismatched heterostructures. In this work we extend the
theoretical calculations reported in Refs. 13–15 even to the
case of a finite size along the@011#-crystallographic direction
and apply the obtained results for evaluating the lattice de-
formations in strained QWW structures.

Our results show that~i! the local lattice spacings of 1D
heterostructures is representative of neither the 2D tetrago-
nally distorted material nor the unstressed material;~ii ! the
obtained strain fields vary by changing the crystallographic
direction of finite lateral confinement from the@001# to the
@011# orientation; ~iii ! the lattice deformations depend
strongly on the lateral width of the wires;~iv! for 1D hetero-
structures made by semiconductor materials of zinc-blende
symmetry, with a finite lateral dimension along the@011#-
crystallographic direction, the nonuniform lattice deforma-
tions induce polarization charges due to the piezoelectric ef-
fect, located at the intersection of the heterointerface planes
with the free surface planes; and~v! if the lattice mismatch is
high enough~about 1–2 %!, the variation of the lattice de-
formation can induce strong lateral modulations of the elec-
tron and hole confinement potentials~several tens of meV!.
All the aforementioned effects have a great influence on the
mobility of the free carriers and on the electronic energy
levels.

II. STRAIN AND STRESS FIELDS

Let us consider a strained superlattice of periodT, made
of two cubic semiconductor materialsA andB with thick-
nessesa and b, and lattice parametersda and db , respec-
tively. The superlattice is grown along thex crystallographic
direction and has a finite lateral widtht along thez direction
~Fig. 1!. For the sake of simplicity, let us assume that along

the other orthogonal directiony the dimension of the super-
lattice is of infinite extension. This assumption is reasonable
and valid for many real QWW structures since the total
thickness and the lateral widtht of the superlattice is very
small in comparison with the wire length. Here we will cal-
culate the strain and the stress fields of the above-mentioned
heterostructure, induced by the difference of lattice param-
eters of the two constituent materialsA andB. In these cal-
culations we take into account the partial elastic relaxation of
the compositional stresses on the free surfaces located at6t/
2.

Since the superlattice is a periodic structure along thex
axis, we can search for solutions to our problem with the
same periodicity. In fact, choosing the appropriate origin of
the reference system~see Fig. 1!, the lattice parameterd(x)
and, consequently, the lattice mismatch«(x) can be ex-
panded in an even Fourier series

«~x!5
d~x!2d̄

d̄
5 (

p51
«p cos~apx!, ~1!

where

d̄5
ada1bdb

T
,

«p52
da2db

ppd̄
sinS ppa

T D , ~2!

ap5
2pp

T
.

The cosine lattice-mismatch amplitudes«p depend on the
relative thickness of the two layersA and B. This finding
permit us to consider both situations in which the superlattice
is either in a free-standing state (a'b) or pseudomorphic
~coherent! with respect to a thick substrate of lattice param-
eterda (a@b) or db (a!b).

In particular, we are interested in the cases in which
x5@100#, y5[01̄1]/&, and z5@011#/& or x5@100#,
y5@010#, and z5@001#. Stress calculations for strained su-
perlattices with a finite size along the@001# crystallographic
direction were made by Treacy and Gibson.13,15Here we will
extend and generalize their calculations to the case of a finite
size along the@011# direction and we will apply the obtained
results for studying QWW elastic stress relaxation. First, let
us consider the particular casex5@100#, y5[01̄1]/&, and
z5@011#/&, because many QWW’s are fabricated with the
lateral geometrical confinement along the@011# direction.2 In
fact, we are dealing with a plane deformation problem due to
the assumed ‘‘infinite’’ extension of the superlattice along
they direction. For this reason, all the stress and strain com-
ponents are functions of thex andz coordinates only.

By using Hooke’s equations with respect to the$x5@100#,
y5[01̄1]/&, z5@011#/&% reference system17 and by con-
sidering the condition of a plane strain problem, the strain
compatibility conditions, and the equations of equilibrium in
absence of body forces,18 we obtain the differential equation

m011

]2sxx

]z2
1

]2szz

]x2
2n011

]2sxz

]x]z
50, ~3!

FIG. 1. Schematic diagram of a 1D heterostructure with a finite
lateral extensiont, made of a two-layer multiple-quantum-well
structure. The thickness of the two layers area andb; the period of
the structure is given byT5a1b. The dashed rectangle indicates
the region of the QWW, where our theoretical model can be ap-
plied.
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where thes i j are the stress tensor components and

m0115
11a22n

2a~12n!
, n0115

a~11n!1123n

12n
. ~4!

Herea5(C112C12)/2C44 is the anisotropy coefficient and
n5C12/(C111C12) is the Poisson ratio, where theCi j are
the elastic stiffness constants assumed to be approximately
equal in the two semiconductor materialsA andB constitut-
ing the heterostructure. It should be noted that the coeffi-
cientsm011 and n011 of the differential equation~3! differ
with respect to those obtained by Treacy and Gibson for
superlattices with finite size along the@001#-crystallographic
direction.13,15 In fact, the case of@001# in-plane oriented
QWW’s can be obtained by substituting the constant coeffi-
cients in Eq.~3! by

m00151, n0015
2~a2n!

12n
. ~5!

Thus, for a finite size along both the@011#- and the@001#-
crystallographic direction the same differential equation
holds @Eq. ~3!#, but with different coefficients.19 Therefore,
from now on we will indicate the coefficients of the differ-
ential equation~3! without a subscript, but considering the
different values for different crystallographic directions
where necessary.

Introducing the stress functionx such that

sxx5
]2x

]z2
, szz5

]2x

]x2
, sxz52

]2x

]x]z
, ~6!

the differential equation@Eq. ~3!#, which has to be solved,
can be written as

]4x

]x4
1m

]4x

]z4
1n

]4x

]x2]z2
50. ~7!

The symmetry of the problem considered gives us the possi-
bility of searching for factorizable solutions of Eq.~7!, such
as x(x,z)5F(x)G(z) with F(x)5cos(apx) for the pth
Fourier component.

In order to consider the compositional contribution to the
stress components, it is convenient to use the strain suppres-
sion method as reported in Ref. 14. In fact, each Fourier
component cos(apx) of the series given by Eq.~1! can be
considered as a 1D sinusoidal compositional modulation in
the x direction, with amplitude«p , of a thin film of lateral
width t with free surfaces located atz56t/2. Thus the
boundary conditions of zero total stress~elastic plus compo-
sitional ones! on the free surfaces for thepth Fourier com-
ponent lead to the following conditions for the elastic
stresses:14

sxz~x,6t/2!50, ;xPT,
~8!

szz~x,6t/2!52
C112C12

C11
~C1112C12!«p cos~apx!,

;xPT.

We obtain the stress field in the (x,z) plane by solving Eq.
~7! and considering the constraints given by Eqs.~8!. The

analytical expression of the total stress components are re-
ported in the Appendix. Finally, inserting the analytical ex-
pression of the total stress components into Hooke’s law17

and taking into account the condition of a plane deformation
problem for the elastic strain along they axis, i.e.,«yy

el 50,
we obtain the total strain tensor components as reported in
the Appendix.

As an example, we use our model to analyze an etched
GaAs/In0.2Ga0.8As @100#-oriented QWW with sidewalls con-
fined by air or vacuum and a finite lateral extension along the
@011#- or the @001#-crystallographic direction as shown in
Fig. 1. The dashed area schematically indicates the region of
the 1D structure in which our theoretical model can be ap-
plied rigorously. In fact, very close to the GaAs substrate
crystal the compositional stresses cannot relax completely on
the free surfaces due to the presence of a two-dimensional
surface structure~substrate!.

Figure 2~a! shows the calculated normalized total strain
«xx/u«u „Eqs. ~A4! with x5@100# andz5@011#/&…, normal-
ized with respect to the absolute value of the lattice mis-
match«, in one period for the above-mentioned 1D hetero-
structures. Here we use the following values for the
geometrical parameters of the heterostructure:a59 nm,

FIG. 2. Total strain«xx , normalized with respect to the absolute
value of the lattice mismatch«, in one period of a@011#-oriented
GaAs/In0.2Ga0.8As QWW with ~a! t510 nm and~b! t550 nm. The
hatched area~strip! in the reference plane indicates the position and
the width of the quantum well with respect to the barrier layers.
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b52.3 nm,T511.3 nm, andt510 nm. The considered val-
ues of the lattice parameters and the stiffness constants for
the InAs and GaAs materials are reported in Ref. 20. For the
material parameters of the ternary compound the Vegard rule
has been used. The differences between the stiffness con-
stants of the two materials constituting the heterostructure
were neglected by using averaged values for the whole su-
perlattice period. The Fourier series was truncated at the 40th
order in the calculation of the strain components. In fact, in
order to obtain a faster convergence of the series, we used
the Lanczos averaging method for the calculation of its
coefficients.21 Figure 2~b! shows«xx/u«u for the same 1D
structure of Fig. 2~a!, but with increased lateral widtht550
nm. A comparison between Figs. 2~a! and 2~b! shows that~i!
the lateral size influences the strain fields;~ii ! the elastic
relaxation strongly modifies the lattice deformation, in par-
ticular near the free surfaces;~iii ! the elastic relaxation oc-
curs mainly within the 4-nm-thick surface region; and~iv!
this last finding implies that for QWW’s whose lateral thick-
ness is of the order of 10 nm, the elastic relaxation involves
almost the whole volume of the structure. On the other hand,
if the QWW thickness is much larger than 10 nm, the elastic
relaxation is mainly a surface phenomenon. In fact, in the
center (z50) of the QWW of lateral widtht550 nm the
total strain field«xx/u«u approaches the value obtained for a
2D free-standing In0.2Ga0.8As superlattice with the same geo-
metrical parametersT, a, andb. Analogous results can be
obtained when the finite size of the QWW is along the@001#-
crystallographic direction. However, it is important to note
that the strain values averaged along thez direction can
change up to 15% as a function of the crystallographic di-
rection, if the t/T ratio becomes very small, i.e.,;0.1. In
fact, in the limit t/T→0, the elastic strain limit value of
~11n!« is approached only ifz5[001]; on the contrary, if
z5[011]/&, the strain limit value of$2a~11n!/@a~11n!11
2n#%« is approached.9,22

Figure 3 shows the shear strain component«xz/u«u @Eqs.
~A4!# for the same 1D heterostructures that were considered
in Fig. 2~a!. It should be noted that, near the intersections of
the free surfaces with the heterointerfaces, the shear strain
reaches very high values~aboutu«u/3!. Analogous results can

be obtained for the shear strains of QWW’s with a finite size
along the@001#-crystallographic direction. The low symme-
try of the deformed structure has a great influence on its
electronic properties, as shown in the following sections.

III. PIEZOELECTRIC FIELDS

If the direction of finite width of the QWW isz5@011#/
&, the nonuniform lattice deformation induces a piezoelec-
tric polarization field that is given by11,12

Px~x,z!5e14~x!@«zz
tot~x,z!2«yy

tot~x!#5e14~x!«zz
el ~x,z!,

~9!
Pz~x,z!52e14~x!«xz

el ~x,z!,

wheree14 is the piezoelectric constant. It is very important to
note that in the case of a@100#-oriented GaAs/In0.2Ga0.8As
quantum wire with a finite lateral width along the@001#-
crystallographic direction only the piezoelectric field compo-
nent along they axis is different from zero. Thus 1D struc-
tures with finite lateral extension along the@001# direction
may have polarization charges only in the presence of het-
erointerface and surface roughness.23

In the absence of free electric charges~or in the presence
of a free charge density much lower than the piezoelectric
polarization charge density! the Maxwell electrostatic equa-
tions lead to11,24

¹2V~x,z!5
r~x,z!

k0k r~x!
, ~10!

whereV is the electric potential,k0 is the vacuum permet-
tivity, k r is the relative dielectric constant, and the charge
density is given by25

r~x,z!52“•P

52e14(
p

2~C112C12!~C1112C12!

Am011C11@bp sin~gpt !1gp sinh~bpt !#

3ap«p sin~apx!@ f p cosh~bpz!cos~gpz!

2gp sinh~bpz!sin~gpz!#. ~11!

The coefficientsap , bp, andgp are defined by Eqs.~2! and
~A2!, whereas the coefficientsf p andgp are given by

f p5FS12S 12
S121S/2

S112S/2D2S44SS111S12
2S112S

Am011

21D Gbp cosh~bpt/2!sin~gpt/2!2FS12S 12
S121S/2

S112S/2D
1S44SS111S12

2S112S
Am01111D Ggp sinh~bpt/2!cos~gpt/2!,

~12!

gp5FS12S 12
S121S/2

S112S/2D2S44SS111S12
2S112S

Am011

21D Gbp sinh~bpt/2!cos~gpt/2!1FS12S 12
S121S/2

S112S/2D
1S44SS111S12

2S112S
Am01111D Ggp cosh~bpt/2!sin~gpt/2!.

FIG. 3. Elastic shear strain«xz normalized with respect to the
absolute value of the lattice mismatch«, in one period of a@011#-
oriented GaAs/In0.2Ga0.8As QWW with t510 nm.

10 578 54DE CARO, TAPFER, AND GIUFFRIDA



Here theSi j are the compliance constants and the coefficient
m011 is given by Eq.~4!. The polarization charge density is
calculated in Fig. 4 for a@100#-oriented GaAs/In0.2Ga0.8As
QWW with a finite lateral width along the@011#-
crystallographic direction. Here, for our calculations we used
the following geometrical parameters:a59 nm,b52.3 nm,
T511.3 nm, andt510 nm. The considered values of the
piezoelectric constants for the InAs and GaAs materials are
reported in Ref. 20 and the material parameters of the ternary
compound are calculated by using Vegard’s rule. The
hatched area in the reference planes of Fig. 4 gives the po-
sition and the width of the In0.2Ga0.8As quantum well with
respect to the GaAs barriers. It should be noted that the fixed
charges are located at the intersections of the heterointerfaces
with the free surfaces. In Fig. 4 only a cross section of the
wire ~xz plane at a fixedy value! is shown, but the same
result holds for any value of they coordinate. Therefore, the
polarization charges have a stringlike distribution along the
whole QWW length, in correspondence with the intersection
of the heterointerface planes with the free surface planes
~sidewalls!. In principle, these fixed charges could be
screened by mobile charges in the heterostructures. This re-
sult would require an excess of mobile charges by 1020

e/cm3, which is a very high value. Therefore, it should be
very likely to have 1D fixed electronic charges in a strained
QWW, which affect the carrier motion and the electronic
energy levels.

We can solve the Poisson equation@Eq. ~10!# by expand-
ing the piezoelectric potential in an odd Fourier series.25 This
is possible due to the translational symmetry of the problem
along thex axis ~periodicity T! by properly choosing the
origin of the reference system:

V~x,z!5(
p
cp~z!sin~apx!. ~13!

Solving the differential equation~10! for the pth Fourier
component, we obtain, for electrons,

cp~z!52
e14«p

2k0k rap~11m0112n011!
$@gpA4m0112n011

2

1 f p~n01122m011!#cosh~bpz!sin~gpz!

1@ f pA4m0112n011
2 2gp~n011

22m011!#sinh~bpz!cos~gpz!%, ~14!

wheren011 is defined by Eq.~4! and the coefficientsf p and
gp are given by Eqs.~12!.

The piezoelectric potential energy is shown in Fig. 5~a!
for a @100#-oriented GaAs/In0.2Ga0.8As QWW with a finite
lateral extension along the@011#-crystallographic direction
with t510 and in Fig. 5~b! for the same structure witht550
nm, respectively. It should be noted that, if the lateral thick-
ness of the QWW is 10 nm, the piezoelectric potential en-
ergy is a function different from zero in a rather extended
region of the superlattice period, reaching the maximum and
minimum values of about640 meV in correspondence with
the polarization charges at the intersections of the heteroint-
erfaces with the free surfaces. On the other hand, ift550 nm
the piezoelectric effect is localized far away from the center
of the structure involving only a 4-nm-thick region on the
free surfaces.

FIG. 4. Polarization charge density in one SL period of a@100#-
oriented GaAs/In0.2Ga0.8As QWW with a finite lateral width of
t510 nm along the@011#-crystallographic direction.

FIG. 5. Piezoelectric potential energy for electrons in meV in
one SL period of a@011#-oriented GaAs/In0.2Ga0.8As QWW with
~a! t510 nm and~b! t550 nm.
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IV. CONFINEMENT POTENTIALS

The isotropic or hydrostatic components of the strain field
give rise to a change of the volume, without disturbing the
crystal symmetry, which causes a variation of the fundamen-
tal band gap given by26

Eg~x,z!5aDP@«xx
tot~x,z!1«yy

tot~x!1«zz
tot~x,z!#, ~15!

whereaDP is the hydrostatic band-gap deformation potential.
Due to the elastic relaxation of compositional stresses

near the free surfaces we obtain an anisotropic contribution
to the strain field that reduces the cubic symmetry present in
the strain-free quantum-well lattice. This removes the degen-
eracy between light- and heavy-hole bands and leads to a
valence-band splitting given by24

Es~x,z!5AbDP2 $@«xx
tot~x,z!2«yy

tot~x!#21c.p.%1dDP
2 $@«xy

el ~x,z!#21c.p.% ~16!

wherebDP anddDP are the other deformation potentials and
c.p. means cyclic permutations onx, y, andz. In the case of
a 1D structure with a finite lateral size along the@001#-
crystallographic direction the strain components reported in
the Appendix can be directly substituted into Eq.~16! in
order to obtain the valence-band splitting in the presence of
elastic relaxation. On the other hand, if the finite lateral size
is along the@011#-crystallographic direction, the strain tensor
reported in the Appendix should be rotated since the crystal-
lographic strain components must be used in Eq.~16!.

All the strain-induced energy changesEg(x,z), Es(x,z),
andeV(x,z) added to the heterostructure band offsets con-
tribute to the confinement potentials. For the electron and
heavy holes we obtain24,26

Ee~x,z!5Q0~EQW2EB!1QeEg~x,z!2eV~x,z!,
~17!

2Ehh~x,z!5~12Q0!~EB2EQW!2~12Qe!Eg~x,z!

1Es~x,z!2eV~x,z!.

Here Q0 is the offset ratio for the unstrained bands,
Qe5ac/aDP, whereac is the hydrostatic deformation poten-
tial for the conduction band, andEQW andEB are the band
gaps of the quantum well and the barrier layer, respectively.

Figure 6 shows the modulation of the conduction-band
~CB! minimum and the valence-band~VB! maximum~heavy
hole! in one superlattice period of the GaAs/In0.2Ga0.8As
QWW that is laterally confined along the@001# direction.
The wire width is 10 nm. Figure 7 shows the CB minimum
and VB maximum for the same QWW with~011! sidewalls.
The variation of the CB minimum and VB maximum of the
QWW of increased width~50 nm! is shown in Fig. 8. In all
the calculations of Figs. 6–8, we considered the GaAs
conduction-band minimum of the bulk GaAs as reference in
the energy axes. The unstrained energy gap values at 4 K of
the materials constituting the heterostructure were taken
from Ref. 27, whereas the ratiosQ0 andQe were taken from
Ref. 28. Figures 6–8 give a 2D representation of the electron
and heavy-hole confinement potentials as described by Eqs.
~17!. The barrier potential on the free surfaces is not shown.
It should be noted that in the case of a finite size along the
@001#-crystallographic direction the piezoelectric effect is ab-
sent, contrary to the lateral confinement along the@011#-
crystallographic direction. This finding is evidenced by the
slope along thex axis of the confinement potentials in Figs.
7 and 8, which is absent in Fig. 6. However, ift550 nm

~Fig. 8! the piezoelectric effect is present only very near the
free surfaces~sidewalls!, and at the center of the structure the
confinement potentials are almost coincident with the values
obtainable for a 2D GaAs/In0.2Ga0.8As superlattice with the
same thicknesses of the barrier and quantum-well layers. The
important feature, which is common for the three cases, is
the strong modulation near the free surfaces of the energy
band of the quantum well.

In Fig. 9 band-gap modulations in the center of an
In0.2Ga0.8As quantum well of a ~100!GaAs/In0.2Ga0.8As
QWW with a finite lateral extension of 50 nm along the
@001#-crystallographic direction~dashed lines! and of a 2D
~100!GaAs/In0.2Ga0.8As superlattice~solid lines! are shown,
respectively. The interesting result is the conduction- and
valence-band bendings near the free surfaces~sidewalls!,
which should induce quantum confinement effects near the

FIG. 6. Electron- and heavy-hole confinement potentials in one
SL period of a GaAs/In0.2Ga0.8As @100#-oriented QWW of finite
lateral width of 10 nm along the@001#-crystallographic direction.
The barrier potential on the free surfaces~sidewalls! is not shown.
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free surfaces.29 In fact, the bottom of the squared quantum
well 50 nm thick presents almost triangular wells, which are
located near the two free surfaces and are about 2.5 nm wide
and 90 and 40 meV deep for electrons and heavy holes,
respectively. Since these triangular wells are deeper than the
CB and VB of the 2D quantum wells and have a width of
few nanometers, they should permit the presence of energy
levels below the 2D conduction-band minimum for electrons
and above the 2D valence-band maximum for the heavy
holes, leading to electron-hole transitions that are redshifted
with respect to the 2D case. It should be kept in mind that
also along thex direction there is a quantum-size effect
caused by the finite widthb of the In0.2Ga0.8As layer. Thus,
even a heterostructure that has a quite large lateral extension
~100–200 nm! may give strong quantum-size 1D confine-
ment effects that are generated by the elastic relaxation of the
compositional stresses on the free surfaces, but with red-
shifted excitonic transitions. However, in this case, since the
above-mentioned triangular wells are very close to the free
surfaces, lateral width fluctuations of the 1D structure should
play a crucial role. Moreover, it should be considered that
QWW’s with a finite lateral size along the@011#-
crystallographic direction have polarization charges that are
localized in the regions of the triangular wells. Therefore,
strong strain-induced electric fields will be generated that
may capture the mobile charges on the free surfaces, creating
negative effects on the carrier mobility.30 On the other hand,
quantum wires with a finite lateral size along the@001#-
crystallographic direction have no polarization charges but
have triangular wells near the free surfaces, which are very
similar to those shown in Fig. 9. Let us finally note that in
the center of the quantum well (z50) there is a relative

maximum of the valence band~Fig. 9!. This finding should
lead to electron-hole transitions from the central area of the
QWW, yielding a higher-energy photoluminescence peak
with respect to those obtainable from the areas close to the
sidewalls of the 1D structure.31

V. CONCLUSION

The theoretical model reported in this work allows us to
calculate the strain and stress fields in 1D lattice-mismatch
@100#-oriented semiconductor heterostructures with a finite
lateral dimension along the@011#- or the @001#-

FIG. 7. Electron- and heavy-hole confinement potentials in one
SL period of a GaAs/In0.2Ga0.8As @100#-oriented QWW of finite
lateral width of 10 nm along the@011#-crystallographic direction.

FIG. 8. Electron- and heavy-hole confinement potentials in one
SL period of a GaAs/In0.2Ga0.8As @100#-oriented QWW of finite
lateral width of 50 nm along the@011#-crystallographic direction.

FIG. 9. Band-gap modulation in the center of an In0.2Ga0.8As
quantum well of a GaAs/In0.2Ga0.8As @100#-oriented QWW with a
finite lateral extension of 50 nm along the@001#-crystallographic
direction ~solid lines! and, for comparison, of a 2D
GaAs/In0.2Ga0.8As @100#-oriented superlattice~dashed lines!.
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crystallographic direction. The theoretical evaluation of
strain fields in these heterostructures has been made with a
Fourier series treatment and by using the elasticity theory
and the condition of zero total stress on the free surfaces. In
particular, we investigated the effects of the elastic relaxation
of the compositional stresses on the free surfaces. We show
that the lattice deformations in 1D heterostructures can be
very different with respect to those of the 2D case. Nonuni-
form strain fields and lattice plane bendings near the free
surfaces occur both in the wells and in the barriers, which
strongly depend on the lateral QWW width.

Moreover, we theoretically studied the effect of strain on
the confinement potentials of 1D lattice-mismatch semicon-
ductor heterostructures made by materials of zinc-blende
crystallographic symmetry. If the QWW’s are laterally con-
fined along the@011# direction the nonuniform lattice defor-
mations induce polarization charges due to the piezoelectric
effect. These polarization charges are located at the intersec-
tion of the heterointerface planes with the free surface
planes. These strings of fixed charges can have a strong in-
fluence on the electronic properties of 1D heterostructures.
No polarization charges are induced in 1D structures with a
finite size along the@001#-crystallographic direction.

Due to the elastic relaxation strong lateral modulations in
the 1D confinement potentials are obtained. In fact, the bot-
tom of the squared quantum well for electrons of 1D strained
structures and the top for holes exhibit almost triangular
wells that are located near the two free surfaces. As example
we have shown that for~100!GaAs/In0.2Ga0.8As QWW’s
these triangular wells are several tens of meV deep and can
have a width of a few nanometers. Therefore, they could
permit the presence of energy levels below the 2D
conduction-band minimum for electrons and above the 2D
valence-band maximum for the heavy holes, leading to
electron-hole transitions that are redshifted with respect to
the 2D case.

In summary, our results clearly show that the understand-
ing and correct interpretation of the electronic properties of
1D heterostructures requires one to take into account, besides
the 1D confinement caused by the reduced geometrical lat-
eral dimension, the elastic strain relaxation and the piezo-
electric fields close to the intersections of the heterointer-
faces with the free surfaces of 1D heterostructures.

APPENDIX

Solving Eq. ~7! by considering the constraints given by
Eqs.~8! and adding the compositional contribution,14 we ob-
tain the total stress components in the (x,z) plane

szz~x,z!5(
p

C112C12

C11
~C1112C12!«p cos~apx!

3H 2

bp sin~gpt !1gp sinh~bpt !

3$@bp cosh~bpt/2!sin~gpt/2!

1gp sinh~bpt/2!cos~gpt/2!#cosh~bpz!cos~gpz!

2@bp sinh~bpt/2!cos~gpt/2!2gp cosh~bpt/2!

3sin~gpt/2!#sinh~bpz!sin~gpz!%21J ,

sxx~x,z!52(
p

C112C12

C11Am
~C1112C12!«p cos~apx!

3
2

bp sin~gpt !1gp sinh~bpt !

3$@bp cosh~bpt/2!sin~gpt/2!

2gp sinh~bpt/2!cos~gpt/2!#cosh~bpz!cos~gpz!

2@bp sinh~bpt/2!cos~gpt/2!

1gp cosh~bpt/2!sin~gpt/2!#sinh~bpz!sin~gpz!%,

~A1!

sxz~x,z!5(
p

2

Am~bp sin~gpt !1gp sinh~bpt !!

3
C112C12

C11

3~C1112C12!ap«p sin~apx!

3$cosh~bpt/2!sin~gpt/2!sinh~bpz!cos~gpz!

2sinh~bpt/2!cos~gpt/2!cosh~bpz!sin~gpz!%,

wherebp andgp are given by

bp5
apA2Am1n

2Am
, gp5

apA2Am2n

2Am
. ~A2!

It is worth noting that if the coefficientsm andn assume the
values reported in Eqs.~4!, then Eqs.~A1! and~A2! will give
the stress field for the case of a superlattice with a finite size
along the @011#-crystallographic direction withx5@100#,
y5[01̄1]/&, andz5@011#/&. Contrarily, if the coefficients
m andn assume the values reported in Eqs.~5!, then Eqs.
~A1! and ~A2! will give the stress field for the case of a
superlattice with a finite size along the@001#-crystallographic
direction withx5@100#, y5@010#, andz5@001#.

Inserting Eqs.~A1! into the Hooke law,17 by using the
condition«yy

el 50, and remembering that the elastic and total
strain tensor components are related as

« i j
tot~x,z!5« i j

el2(
p

«p cos~apx!d i j , ~A3!

whered i j is the Kronecker delta tensor, we can obtain the
total strain tensor components

«xx
tot~x,z!5(

p
«p cos~apx!H C112C12

C11Am
~C1112C12!

3F 2

bp sin~gpt !1gp sinh~bpt !

3@r p cosh~bpz!cos~gpz!

1sp sinh~bpz!sin~gpz!#

2S12S 12
S121S/2

S112S/2DAmG2
S12

S112S/2J ,
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«zz
tot~x,z!5(

p
«p cos~apx!H C112C12

C11Am
~C1112C12!

3F 2

bp sin~gpt !1gp sinh~bpt !

3@up cosh~bpz!cos~gpz!

1vp sinh~bpz!sin~gpz!#2S S112S/2

2
~S121S/2!2

S112S/2 DAmG1
S121S/2

S112S/2J ,
~A4!

«yy
tot~x!52(

p
«p cos~apx!,

«xz
tot~x,z!5«xz

el ~x,z!5sxz~x,z!/~2C44! ,

where

r p52SS112 S12
2

S112S/2D @bp cosh~bpt/2!sin~gpt/2!

2gp sinh~bpt/2!cos~gpt/2!#1S12S 12
S121S/2

S112S/2D
3@bp cosh~bpt/2!sin~gpt/2!

1gp sinh~bpt/2!cos~gpt/2!#Am,

sp5SS112 S12
2

S112S/2D @bp sinh~bpt/2!cos~gpt/2!

1gp cosh~bpt/2!sin~gpt/2!#2S12S 12
S121S/2

S112S/2D
3@bp sinh~bpt/2!cos~gpt/2!

2gp cosh~bpt/2!sin~gpt/2!#Am,
~A5!

up52S12S 12
S121S/2

S112S/2D @bp cosh~bpt/2!sin~gpt/2!

2gp sinh~bpt/2!cos~gpt/2!#1SS112S/2

2
~S121S/2!2

S112S/2 D @bp cosh~bpt/2!sin~gpt/2!

1gp sinh~bpt/2!cos~gpt/2!#Am,

vp5S12S 12
S121S/2

S112S/2D @bp sinh~bpt/2!cos~gpt/2!

1gp cosh~bpt/2!sin~gpt/2!#2SS112S/2

2
~S121S/2!2

S112S/2 D @bp sinh~bpt/2!cos~gpt/2!

2gp cosh~bpt/2!sin~gpt/2!#Am.
Here the Si j are the elastic compliance constants and
S5S112S122S44/2.

17 Equations~A4! and ~A5! were ob-
tained in the case of finite size along the@011#-
crystallographic direction. Nevertheless, the same equations
can yield the strain tensor components even in the case of
finite size along the@001#-crystallographic direction by using
Eqs. ~5! for the value ofm and by settingS50 in order to
avoid the rotation of the axes, which is required forz5@011#/
& but not forz5@001#.
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