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Finite-size effects in one-dimensional strained semiconductor heterostructures
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The elastic lattice deformation of strained one-dimensighB) semiconductor heterostructur@giantum
wires) is investigated theoretically. We consider the case of lattice-mismafd@@}oriented superlattices
made of cubic symmetry materials with a finite lateral dimension alonf0th8- or the[001]-crystallographic
direction. Due to the small lateral dimension of the quantum wires, an elastic stress relaxation occurs near the
free surfaces. The theoretical evaluation of strain fields in these 1D heterostructures is made with a Fourier
series treatment and by using the elasticity theory and the condition of zero total stress on the free surfaces. We
also investigate the effect of strain on the confinement potentials. In the case of 1D heterostructures made by
materials with zinc-blende symmetry, the nonuniform lattice deformations can induce polarization charges due
to the piezoelectric effect. Large band-gap and valence-band-splitting energy modulations of several tens of
meV can be obtained near the free surfaces, inducing strong variations in the confinement potentials, which
could cause red-shifted electron-hole transitions. Our analytical expressions foorheiformstrain and
stress fields, piezoelectric fields, and confinement potentials are valid for any zinc-blende heterostructure made
of -V and 1I-VI semiconductor compounds. Our results clearly demonstrate that, in addition to the 1D
confinement that is caused by the reduced geometrical lateral dimension, the elastic strain relaxation and the
piezoelectric fields on the free surfaces of the quantum wires must be considered in order to understand and
describe correctly the electronic properties of 1D heterostruct[8€4.63-182606)02736-1

I. INTRODUCTION realistic description of the actual lattice deformation in
QWW'’s should take into account the partial elastic relax-
Low-dimensional strained semiconductor heterostrucation of compositional stresses near the free surfaces that is
tures, such as quantum-well wir€@WW'’s), have received caused by the very small lateral dimenside200 nm) of
much attention in recent years due to the wide range of pothese structures and leads to nonuniform strain fields. In fact,
tential technological applications. The introduction of homo-photoluminescence experiments revealed that strain release,
geneous strains in a heterostructure produces changes in tivich may occur on the sidewalls of etched QWW's, causes
lattice parameter and, in most cases, in the crystallographia band-edge modulation for both the conduction and the va-
symmetry of the material. These effects, added to those irlence band§.For this reason an accurate knowledge of the
duced by the low dimensionality, produce significantstrain and stress fields on the sidewalls and within the
changes in the electronic band structure and the vibrationd) WW's is required in order to have a better understanding
modes, giving the possibility of having wide tunable bandand a correct interpretation of the electronic properties of
gaps, suitable for the realization of new technologicaletched low-dimensional structures.
devicest? Quantum confinement effects in QWW's, which  In this work we theoretically investigate the stress relax-
are laterally confined by air or vacuum, were experimentallyation in one-dimensiondlLD) strained semiconductor super-
observed and investigatéd® lattices and calculate the actual lattice deformation field in
It was experimentally shown also that in QWW's, which the whole superlattice volume, even near the free surfaces
are fabricated by etching layered heterostructures, an elastisidewall3. Moreover, we analyze the changes in the elec-
relaxation of the lattice strain occurs due to the finite laterakronic structures induced by the elastic stress relaxation in
size®® Recently, we have calculated thgeragelattice de- 1D heterostructures, due to the finite lateral size. In particu-
formation of arbitrarily oriented QWW semiconductor het- lar, we evaluate the effect of the nonuniform strain fields on
erostructures made of materials with cubic crystallographithe electron and hole confinement potentials. In fact, in zinc-
symmetry, by using Hooke’s law and by imposing the coher-blende semiconductor materials the obtained lattice deforma-
ence condition at the heterointerfaces only along the wirgions could induce internal electric fields via the piezoelectric
direction®1° The calculated average lattice deformation haseffect!!*?
been found to be in very good agreement with the experi- We consider the case of lattice-mismatchgt00]-
mental data for the average lattice deformation in QWW hetoriented semiconductor heterostructures made of materials
erostructures obtained by high-resolution x-ray-diffractionwith cubic crystallographic symmetry, with a finite lateral
measurements’® However, it should be noted that in these dimension along th€011]- or the [001]-crystallographic di-
studies the influence of the finite size of the structure on itgection. The theoretical evaluation of strain fields in the case
local lattice deformation has not been considered. A mor®f 1D heterostructures with a finite lateral dimension along
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the other orthogonal directiop the dimension of the super-
lattice is of infinite extension. This assumption is reasonable
and valid for many real QWW structures since the total
thickness and the lateral widthof the superlattice is very
small in comparison with the wire length. Here we will cal-
culate the strain and the stress fields of the above-mentioned
heterostructure, induced by the difference of lattice param-
eters of the two constituent materigisandB. In these cal-
culations we take into account the partial elastic relaxation of
the compositional stresses on the free surfaces located/at

2.

x=[100] 1

<

z=[001] or [011]

Since the superlattice is a periodic structure alongxhe
axis, we can search for solutions to our problem with the
same periodicity. In fact, choosing the appropriate origin of

FIG. 1. Schematic diagram of a 1D heterostructure with a finitethe reference systessee Fig. ], the lattice parametet(x)

lateral extensiont, made of a two-layer multiple-quantum-well and, consequently, the lattice mismatefx) can be ex-

structure. The thickness of the two layers arandb; the period of panded in an even Fourier series
the structure is given bf =a+b. The dashed rectangle indicates d(x) —d_
tpk;ieedreglon of the QWW, where our theoretical model can be ap- e(x)= T: 21 £p €O apX), ey

Substrate

the [001]-crystallographic direction has been made by usingWhere

a Fourier-series elasticity treatm&ht®and by imposing the — ad.+bd
. . a b
relaxation at the free surfaces of the stresses, induced by the =

different lattice parameter of the materials constituting the
heterostructures. In Refs. 13—-16 the theoretical results are
applied to the calculations of the strain fields in thinned
transmission electron microscopy specimens of lattice- pmd
mismatched heterostructures. In this work we extend the

theoretical calculations reported in Refs. 13—15 even to the 2pw
case of a finite size along tfi@11]-crystallographic direction Xp= T -

and apply the obtained results for evaluating the lattice de-

formations in strained QWW structures. The cosine lattice-mismatch amplitudeg depend on the

Our results show tha) the local lattice spacings of 1D relative thickness of the two laye®s and B. This finding
heterostructures is representative of neither the 2D tetraggpermit us to consider both situations in which the superlattice
nally distorted material nor the unstressed matefiai;the is either in a free-standing stata4b) or pseudomorphic
obtained strain fields vary by changing the crystallographidcoherent with respect to a thick substrate of lattice param-
direction of finite lateral confinement from the01] to the  eterd, (a>b) or d, (a<b).

[011] orientation; (iii) the lattice deformations depend In particular, we are interested in the cases in which
strongly on the lateral width of the wire§y) for 1D hetero- x=[100], y=[011]/v2, and z=[011]/¥2 or x=[100],
structures made by semiconductor materials of zinc-blendg=[010], and z=[001]. Stress calculations for strained su-
symmetry, with a finite lateral dimension along tf@11]-  perlattices with a finite size along ti€01] crystallographic
crystallographic direction, the nonuniform lattice deforma-direction were made by Treacy and Gibsdn>Here we will
tions induce polarization charges due to the piezoelectric efextend and generalize their calculations to the case of a finite
fect, located at the intersection of the heterointerface planesize along th¢011] direction and we will apply the obtained
with the free surface planes; afg if the lattice mismatch is results for studying QWW elastic stress relaxation. First, let
high enough(about 1-2 % the variation of the lattice de- us consider the particular cage=[100], y=[011]/v2, and
formation can induce strong lateral modulations of the elecz=[011]/v2, because many QWW’s are fabricated with the
tron and hole confinement potentidieveral tens of me)/  lateral geometrical confinement along fiéd.1] direction? In

All the aforementioned effects have a great influence on théact, we are dealing with a plane deformation problem due to
mobility of the free carriers and on the electronic energythe assumed “infinite” extension of the superlattice along
levels. they direction. For this reason, all the stress and strain com-
ponents are functions of theandz coordinates only.

By using Hooke’s equations with respect to {tie=[100],
y=[011]/v2, z=[011]/V2} reference systeth and by con-

Let us consider a strained superlattice of pefilgdnade  sidering the condition of a plane strain problem, the strain
of two cubic semiconductor materials and B with thick- compatibility conditions, and the equations of equilibrium in
nessesa and b, and lattice parameters, andd,, respec- absence of body forcé§ we obtain the differential equation
tively. The superlattice is grown along tikecrystallographic
direction and has a finite lateral widthalong thez direction m n _
(Fig. 1). For the sake of simplicity, let us assume that along 0l 5z2 * ax? M oxoz

: 2

II. STRAIN AND STRESS FIELDS
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where theo;; are the stress tensor components and

1ta—2v _a(1+v)+1—3v
g R T

(4)

Here a=(C.;—C4y)/2C,, is the anisotropy coefficient and
v=C4J/(Cy;+Cyp) is the Poisson ratio, where th@,; are
the elastic stiffness constants assumed to be approximately
equal in the two semiconductor materidlsandB constitut-

ing the heterostructure. It should be noted that the coeffi-
cients my;; and ngy,, of the differential equationd) differ
with respect to those obtained by Treacy and Gibson for
superlattices with finite size along th@01]-crystallographic
direction!®!® In fact, the case of001] in-plane oriented
QWW's can be obtained by substituting the constant coeffi-
cients in Eq.(3) by

2(a—v)
1-v

Thus, for a finite size along both tH811]- and the[001]-
crystallographic direction the same differential equation
holds[Eq. (3)], but with different coefficients® Therefore,
from now on we will indicate the coefficients of the differ-
ential equation(3) without a subscript, but considering the
different values for different crystallographic directions
where necessary.

Introducing the stress functiop such that

(5

Moo1=1, Ngo1=

25.0

62)( ézX 62)( 00 2 4-~
—_ —_— —_ - . .
O'XX—F, 0‘22—?, O-XZ__W, (6) 3 45 6.8 9.1 113 -25.0 \0’\\\
X (b) [100]

the differential equatioEqg. (3)], which has to be solved,

can be written as FIG. 2. Total straire,,, normalized with respect to the absolute

value of the lattice mismatch, in one period of §011]-oriented
—=—=0. 7) GaAs/In ;Ga gAs QWW with (a) t=10 nm andb) t=50 nm. The
Ix“dz hatched areéstrip) in the reference plane indicates the position and

The symmetry of the problem considered gives us the poss}he width of the quantum well with respect to the barrier layers.

bility of searching for factorizable solutions of E(), such . .
as x(x,2)=F(x)G(z) with F(x)=cos(a,x) for the pth analytical expression of the total stress components are re-
Fourier, component P ported in the Appendix. Finally, inserting the analytical ex-
" H H 17

In order to consider the compositional contribution to theprzss'?(n Of. the total strehss con;_p_onenfts |n|to Hzol]fe s 'a.W
stress components, it is convenient to use the strain suppred1C txing into account the condition of a plane deformation
sion method as reported in Ref. 14. In fact, each FourieProblem for the elastic strain along tlyeaxis, i.e.,e;, =0,
component cos{,x) of the series given by Eq1) can be we obtain the total strain tensor components as reported in
considered as a 1D sinusoidal compositional modulation ihe Appendix.
the x direction, with amplitudez,, of a thin film of lateral As an example, we use our model to analyze an etched
width t with free surfaces located at=+t/2. Thus the CaAs/In Ga gAs [100]-oriented QWW with sidewalls con-
boundary conditions of zero total stre@astic plus compo- fined by air or vacuum and a finite lateral extension along the

sitional oney on the free surfaces for theth Fourier com-  [011]- or the [001]-crystallographic direction as shown in
ponent lead to the following conditions for the elastic Fig. 1. The dashed area schematically indicates the region of

stressed4 the 1D structure in which our theoretical model can be ap-
plied rigorously. In fact, very close to the GaAs substrate
oy(X, *1/2)=0, VxeT, crystal the compositional stresses cannot relax completely on
(8) the free surfaces due to the presence of a two-dimensional
C;1—Coo surface structurésubstratg
T2dX, £2) = = —~— (C11+2Cqp)ep COLapX), Figure 2a) shows the calculated normalized total strain
1 4l || (Egs.(A4) with x=[100] and z=[011]/¥2), normal-
VxeT. ized with respect to the absolute value of the lattice mis-
matche, in one period for the above-mentioned 1D hetero-
We obtain the stress field in the,g) plane by solving Eq. structures. Here we use the following values for the
(7) and considering the constraints given by E@. The  geometrical parameters of the heterostructlaez9 nm,

04)( (94)( (?4)(
—+m—z+n
ax* 9z*
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FIG. 3. Elastic shear straig,, normalized with respect to the
absolute value of the lattice mismatehin one period of 4011]-
oriented GaAs/Ip,Ga gAs QWW with t=10 nm.

b=2.3 nm,T=11.3 nm, and=10 nm. The considered val-
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be obtained for the shear strains of QWW'’s with a finite size
along the[001]-crystallographic direction. The low symme-
try of the deformed structure has a great influence on its
electronic properties, as shown in the following sections.

Ill. PIEZOELECTRIC FIELDS

If the direction of finite width of the QWW ig=[011]/
v2, the nonuniform lattice deformation induces a piezoelec-
tric polarization field that is given By'?

Pu(X,2) =ep(X)[55(X,2) —e(X)]= €1 X) e 5/ X, 2),

o €)
P,(X,2) =2e14(X) e5y(X,2),

wheree,, is the piezoelectric constant. It is very important to
note that in the case of [@00]-oriented GaAs/Ig,Ga, As
qguantum wire with a finite lateral width along tHe01]-
crystallographic direction only the piezoelectric field compo-
nent along they axis is different from zero. Thus 1D struc-
tures with finite lateral extension along th@01] direction
may have polarization charges only in the presence of het-

ues of the lattice parameters and the stiffness constants f&fointerface and surface roughnéss.

the InAs and GaAs materials are reported in Ref. 20. For the

In the absence of free electric chardesin the presence

material parameters of the ternary compound the Vegard rul@f @ free charge density much lower than the piezoelectric

has been used. The differences between the stiffness co

polarization charge densjtyhe Maxwell electrostatic equa-

1,24
stants of the two materials constituting the heterostructurd®ns lead t0

were neglected by using averaged values for the whole su-
perlattice period. The Fourier series was truncated at the 40th
order in the calculation of the strain components. In fact, in

p(X,2)

V2V(x,z)= o (0

(10

order to obtain a faster convergence of the series, we useghereV is the electric potentiali, is the vacuum permet-

the Lanczos averaging method for the calculation of itsijvity, «, is the relative dielectric constant, and the charge
coefficients™ Figure 2b) showss,,/|z| for the same 1D density is given b%’

structure of Fig. Ba), but with increased lateral width=50

nm. A comparison between Fig9a2and Zb) shows thati)

the lateral size influences the strain fields) the elastic
relaxation strongly modifies the lattice deformation, in par-
ticular near the free surface&ii) the elastic relaxation oc-
curs mainly within the 4-nm-thick surface region; aid)

this last finding implies that for QWW's whose lateral thick-
ness is of the order of 10 nm, the elastic relaxation involves
almost the whole volume of the structure. On the other hand,

p(x,2)=—V-P

— e, 2(C11—C1)(Cq1+2Cyp)
MG JmosCail By SiN(ypt) + v, SinHByt)]
Xapep sin(apX)[ f, cosi B,2)coq yp2)

—0p sinl‘(ﬁpz)sin( YpZ)]-

11

if the QWW thickness is much larger than 10 nm, the elasticThe coefficientsy,, B, andy, are defined by Eqg2) and
relaxation is mainly a surface phenomenon. In fact, in the/A2), whereas the coefficients, andg, are given by

center £=0) of the QWW of lateral widtht=50 nm the
total strain fielde,,/|e| approaches the value obtained for a
2D free-standing In,Ga, gAs superlattice with the same geo-
metrical parameter$, a, andb. Analogous results can be
obtained when the finite size of the QWW is along fae1]-
crystallographic direction. However, it is important to note
that the strain values averaged along thelirection can

f =

{512< 1- ?5/2) - S44( e _ < VMo

.

2S,,-S

: S+ S/2
,Bp COSI’(Bptlz)SIn( ’ypt/Z)— Syl 1— W

change up to 15% as a function of the crystallographic di- Sut S — ;

rection, if thet/T ratio becomes very small, i.e~0.1. In *Saa 2S,,—-S Moyt 1] |vp SINM(Bpt/2)co 7pt/2),
fact, in the limitt/T—0, the elastic strain limit value of (12
(1+v)e is approached only iz=[001]; on the contrary, if B Sip+ 52 SutSp —
z=[011]/v2, the strain limit value of2a(1+)/[[a(1+7v)+1 9p=| S 1~ S,;—92) *\2s,-S Mo11

—v]}e is approached??

Figure 3 shows the shear strain componept|e| [Egs.
(A4)] for the same 1D heterostructures that were considered
in Fig. 2(a). It should be noted that, near the intersections of
the free surfaces with the heterointerfaces, the shear strain
reaches very high valugabout|e|/3). Analogous results can

- 1) }ﬁp sinh( Bot/2)cog y,t/2) +

+ S44( 5e —< VMoyt1

s[4 Syt Si2
125 g,-S2

S, +S
o ¥p COSH Bpt/2)sin(y,t/2).

25,,—-S
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FIG. 4. Polarization charge density in one SL period §1@0]-
oriented GaAs/lp,Ga As QWW with a finite lateral width of
t=10 nm along thd¢011]-crystallographic direction.

Here theS;; are the compliance constants and the coefficient
Mo11 IS given by Eq.(4). The polarization charge density is
calculated in Fig. 4 for 4100]-oriented GaAs/lp,Ga, sAs
QWW with a finite lateral width along the[011]-
crystallographic direction. Here, for our calculations we used
the following geometrical paramete®=9 nm,b=2.3 nm,
T=11.3 nm, andt=10 nm. The considered values of the
piezoelectric constants for the InAs and GaAs materials are
reported in Ref. 20 and the material parameters of the ternary
compound are calculated by using Vegard's rule. The

hatched area in the reference planes of Fig. 4 gives the po- FIG. 5. Piezoelectric potential energy for electrons in meV in

sition and the width of the ypGa gAs quantum well with  one SL period of g011]-oriented GaAs/Ip,Ga As QWW with
respect to the GaAs barriers. It should be noted that the fixe) t=10 nm and(b) t=50 nm.

charges are located at the intersections of the heterointerfaces

with the free surfaces. In Fig. 4 only a cross section of the

wire (xz plane at a fixedy valug is shown, but the same co(2)=— C148p i[9 \/mz—
result holds for any value of thg coordinate. Therefore, the P 2kokrap(1+mo—Ngyy) P o Tont
polarization charges have a stringlike distribution along the

whole QWW length, in correspondence with the intersection + f5(No11—2Mp11) Jcosh B,z) sin( y,2)

of the heterointerface planes with the free surface planes T AMe— 2. —a-(n

(sidewalls. In principle, these fixed charges could be [Fpv4Mo11™ No11~ Gp(Nona

screened by mobile charges in the heterostructures. This re- —2mgy9) Isinh(B,2)cos y,2)}, (149

sult would require an excess of mobile charges by°10
e/cm®, which is a very high value. Therefore, it should be
very likely to have 1D fixed electronic charges in a strainedvhereng,; is defined by Eq(4) and the coefficients, and
QWW, which affect the carrier motion and the electronic 9, are given by Eqs(12).
energy levels. The piezoelectric potential energy is shown in Figa)5
We can solve the Poisson equatidy. (10)] by expand- for a [100]-oriented GaAs/Ip,Ga As QWW with a finite
ing the piezoelectric potential in an odd Fourier sefieBhis ~ lateral extension along thed11]-crystallographic direction
is possible due to the translational symmetry of the problenwith t=10 and in Fig. §) for the same structure with= 50
a|ong thex axis (periodicity T) by proper|y Choosing the nm, respectively. It should be noted that, if the lateral thick-
origin of the reference system: ness of the QWW is 10 nm, the piezoelectric potential en-
ergy is a function different from zero in a rather extended
region of the superlattice period, reaching the maximum and
) minimum values of about-40 meV in correspondence with
V(sz):%‘t Cp(Z)sin(epX). (13 the polarization charges at the intersections of the heteroint-
erfaces with the free surfaces. On the other harigs B0 nm
the piezoelectric effect is localized far away from the center
Solving the differential equatiol0) for the pth Fourier  of the structure involving only a 4-nm-thick region on the
component, we obtain, for electrons, free surfaces.
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IV. CONFINEMENT POTENTIALS whereapp is the hydrostatic band-gap deformation potential.
The isotropic or hydrostatic components of the strain field Dut?] tc; the el?stlc relaxeg;on of cor_np?smpnal sttr.(ta)s?es
give rise to a change of the volume, without disturbing the1€ar the Irée surlaces we obtain an anisotropic contribution

crystal symmetry, which causes a variation of the fundamentC the strain field that reduces the cubic symmetry present in
tal band gap given 5§ the strain-free quantum-well lattice. This removes the degen-

eracy between light- and heavy-hole bands and leads to a
Eg(X.2)=apd e5(X,2) +eyy(X) +255(X,2)], (15  valence-band splitting given BY

E«(x,2) = Vb2l (X, 2) — &) ]2+ C.p} + dBp{[e5y(x,2) ] +C.p} (16)

wherebpp anddpp are the other deformation potentials and (Fig. 8) the piezoelectric effect is present only very near the
c.p. means cyclic permutations @ny, andz. In the case of free surfacessidewallg, and at the center of the structure the
a 1D structure with a finite lateral size along th@01]- confinement potentials are almost coincident with the values
crystallographic direction the strain components reported imbtainable for a 2D GaAs/inGa, gAs superlattice with the
the Appendix can be directly substituted into EG6) in same thicknesses of the barrier and quantum-well layers. The
order to obtain the valence-band splitting in the presence amportant feature, which is common for the three cases, is
elastic relaxation. On the other hand, if the finite lateral sizehe strong modulation near the free surfaces of the energy
is along thg 011]-crystallographic direction, the strain tensor band of the quantum well.
reported in the Appendix should be rotated since the crystal- In Fig. 9 band-gap modulations in the center of an
lographic strain components must be used in @6). Ing ,GaygAs quantum well of a(100GaAs/In, Ga, As

All the strain-induced energy changgg(x,2), E«(x,2), QWW with a finite lateral extension of 50 nm along the
andeV(x,z) added to the heterostructure band offsets conf001]-crystallographic directioridashed linesand of a 2D
tribute to the confinement potentials. For the electron and100GaAs/In, ,Ga, gAs superlattice(solid lineg are shown,

heavy holes we obtafft?® respectively. The interesting result is the conduction- and
valence-band bendings near the free surfa@edewalls,
Ee(X,2) =Qo(Eqw—Eg) + QcEq4(X,2) —eV(X,2), which should induce quantum confinement effects near the
(17)

—Enn(%,2)=(1-Qo)(Eg—Eqw) — (1~ Qe)E4(x,2)
+Eq(X,2) —eV(X,z).

27

Here Q, is the offset ratio for the unstrained bands, =
Q.=a./app, Wherea, is the hydrostatic deformation poten-
tial for the conduction band, anél,,, andEg are the band
gaps of the quantum well and the barrier layer, respectively.
Figure 6 shows the modulation of the conduction-band
(CB) minimum and the valence-barfdB) maximum(heavy
hole) in one superlattice period of the GaAg/lba, As
QWW that is laterally confined along tH®01] direction.
The wire width is 10 nm. Figure 7 shows the CB minimum
and VB maximum for the same QWW witl®11) sidewalls.
The variation of the CB minimum and VB maximum of the
QWW of increased widtl{50 nm is shown in Fig. 8. In all
the calculations of Figs. 6—8, we considered the GaAs
conduction-band minimum of the bulk GaAs as reference in
the energy axes. The unstrained energy gap valuéXaof
the materials constituting the heterostructure were taken
from Ref. 27, whereas the ratiq}, andQ, were taken from
Ref. 28. Figures 6—8 give a 2D representation of the electron
and heavy-hole confinement potentials as described by Egs.
(17). The barrier potential on the free surfaces is not shown.
It should be noted that in the case of a finite size along the
[001]-crystallographic direction the piezoelectric effect is ab-
sent, contrary to the lateral confinement along foé&1]- FIG. 6. Electron- and heavy-hole confinement potentials in one
crystallographic direction. This finding is evidenced by thesL period of a GaAs/Ig,Ga, gAs [100]-oriented QWW of finite
slope along thes axis of the confinement potentials in Figs. lateral width of 10 nm along thE001]-crystallographic direction.
7 and 8, which is absent in Fig. 6. However,ti#50 nm  The barrier potential on the free surfads&lewall$ is not shown.

Confinement Potentials (meV)
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Confinement Potentials (meV)
Confinement Potentials (meV)

FIG. 7. Electron- and heavy-hole confinement potentials in one_ F!CG- 8- Electron- and heavy-hole confinement potentials in one
SL period of a GaAs/lg,Ga, sAs [100]-oriented QWW of finite SL period of a GaAs/If,Ga, gAs [100]-oriented QWW of finite

lateral width of 10 nm along thf911]-crystallographic direction. lateral width of 50 nm along thED11]-crystallographic direction.

free surfaced’ In fact, the bottom of the squared quantum maximum of the valence bar(@ig. 9). This finding should
well 50 nm thick presents almost triangu|ar wells, which are'Gad to electron-hole transitions from the central area of the
located near the two free surfaces and are about 2.5 nm widéWW, yielding a higher-energy photoluminescence peak
and 90 and 40 meV deep for electrons and heavy holedVith respect to those obtainable from the areas close to the
respectively. Since these triangular wells are deeper than tHédewalls of the 1D structur.

CB and VB of the 2D quantum wells and have a width of

few nanometers, they shoul_d permit th_e presence of energy V. CONCLUSION

levels below the 2D conduction-band minimum for electrons

and above the 2D valence-band maximum for the heavy The theoretical model reported in this work allows us to
holes, leading to electron-hole transitions that are redshiftedalculate the strain and stress fields in 1D lattice-mismatch
with respect to the 2D case. It should be kept in mind thaf100]-oriented semiconductor heterostructures with a finite
also along thex direction there is a quantum-size effect lateral dimension along the[011]- or the [001]-
caused by the finite widtb of the In, ,Ga&, gAs layer. Thus,
even a heterostructure that has a quite large lateral extension
(100-200 nm may give strong quantum-size 1D confine-
ment effects that are generated by the elastic relaxation of the
compositional stresses on the free surfaces, but with red-
shifted excitonic transitions. However, in this case, since the
above-mentioned triangular wells are very close to the free
surfaces, lateral width fluctuations of the 1D structure should
play a crucial role. Moreover, it should be considered that
QWW's with a finite lateral size along thg011]-
crystallographic direction have polarization charges that are
localized in the regions of the triangular wells. Therefore, 1420 |
strong strain-induced electric fields will be generated that 250 225 200 ‘o8 oo
may capture the mobile charges on the free surfaces, creating z (nm)

negative effects on the carrier mobiltyOn the other hand,

quantum wires with a finite lateral size along tH@01]- FIG. 9. Band-gap modulation in the center of ag JBa, gAs
crystallographic direction have no polarization charges buguantum well of a GaAs/,Gay gAs [100]-oriented QWW with a
have triangular wells near the free surfaces, which are verfinite lateral extension of 50 nm along tfi801]-crystallographic

similar to those shown in Fig. 9. Let us finally note that in direction (solid line9 and, for comparison, of a 2D
the center of the quantum welk€0) there is a relative GaAs/In, ,Ga, gAs [100]-oriented superlatticédashed lines
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crystallographic direction. The theoretical evaluation of

strain fields in these heterostructures has been made with@,(x,z)=— >,
Fourier series treatment and by using the elasticity theory P 11\/a
and the condition of zero total stress on the free surfaces. In 5
particular, we investigated the effects of the elastic relaxation X i :
of the compositional stresses on the free surfaces. We show Bp Sin(ypt) + ¥, sinh(B,t)
that the lattice deformations in 1D heterostructures can be :

very different with respect to those of the 2D case. Nonuni- X{[Bp costippti2)sin( ypt/2)

Cy—C
2 222(Cyy+2Chp)e, cod apX)

form strain fields and lattice plane bendings near the free — yp Sinh(B,t/2)cog ypt/2)]cosh B,z)cog y,z)
surfaces occur both in the wells and in the barriers, which .
strongly depend on the lateral QWW width. —[Bp sinh(B,t/2)cod y,t/2)

Moreover, we theoretically studied the effect of strain on ; ; -
= : ) i ) +
the confinement potentials of 1D lattice-mismatch semicon- Vp COSHBRU2) SN ypt/2) ISinN 5p2)Sin )}
ductor heterostructures made by materials of zinc-blende (A1)
crystallographic symmetry. If the QWW's are laterally con- (x Z)_E 2
fined along thg011] direction the nonuniform lattice defor- ~ 7x2\%:4)= : :
. . o . . P Vm(B, si t)+ v, sin t

mations induce polarization charges due to the piezoelectric (Bp Sin(ypt) 7, sinh Bpt)

effect. These polarization charges are located at the intersec- C11—Cyp

tion of the heterointerface planes with the free surface X Cu

planes. These strings of fixed charges can have a strong in-

fluence on the electronic properties of 1D heterostructures. X (C11+2C1p) ape) Sin(apX)

No polarization charges are induced in 1D structures with a . .

finite size along th¢001]-crystallographic direction. X {cosh Bpt/2)sin( y,t/2)sinh( B,z)cog y,2)
Due to the elastic relaxation strong lateral modulations in — sinh( Byt/2) cog y,t/2)cosh Byz)sin( y,2)},

the 1D confinement potentials are obtained. In fact, the bot- )
tom of the squared quantum well for electrons of 1D strainedvhere 3, and y, are given by

structures and the top for holes exhibit almost triangular
wells that are located near the two free surfaces. As example Bo= %p V2ym+n _% V2ym-n (A2)
we have shown that fof100GaAs/In, Ga, AS QWW'’s P 2Jm ' Y 2Jm

these triangular wells are several tens of meV deep and can

have a width of a few nanometers. Therefore, they could! is worth noting that if the coefficientsy andn assume the
permit the presence of energy levels below the 2pValuesreported in Eqg4), then Eqs(Al) and(A2) will give
conduction-band minimum for electrons and above the 203he stress field for the case of a superlattice with a finite size
valence-band maximum for the heavy holes, leading td!ong_the [011)-crystallographic direction withx=[100],
electron-hole transitions that are redshifted with respect t=[0111/v2, andz=[011}v2. Contrarily, if the coefficients
the 2D case. m andn assume the values reported in E¢S), then Eqgs.

In summary, our results clearly show that the understandAl) and (A2) will give the stress field for the case of a
ing and correct interpretation of the electronic properties ofuPerlattice with a finite size along th@01]-crystallographic
1D heterostructures requires one to take into account, besidgdection withx=[100], y=[010], andz=[0071]. ,
the 1D confinement caused by the reduced geometrical lat- '”??”'”gl Egs.(Al) into the Hooke law,” by using the
eral dimension, the elastic strain relaxation and the piezotonditionzy,=0, and remembering that the elastic and total
electric fields close to the intersections of the heterointerStrain tensor components are related as
faces with the free surfaces of 1D heterostructures.

eX(x,2)=ef— > &, cogapX)dj, (A3)
APPENDIX p
where §;; is the Kronecker delta tensor, we can obtain the

Solving Eqg.(7) by considering the constraints given b .
g Eq.(7) by g g y total strain tensor components

Egs.(8) and adding the compositional contributihywe ob-
tain the total stress components in thez) plane

ozz(x,z)=§ C11C—11Clz (Cir+2C19ep COLayX) s}&‘(x,z)=2p &p cos(apx)| Ccl;—\/cimlz (C11+2Cyp)
2 2
" By sin(yy0)+ 7, SN Byt) . {ﬂp Sin(7p1) + 7p SINMB,)
X{[Bp cosh Bpt/2)sin(y,t/2) X[r, coshBpz)coq ypz)
+ vp SinN(Bt/2) cod y,pt/2) Jcosh B,2) cog yp2) +5, sinh(B,2)sin(y,2)]
—[ B, sinh(B,t/2)cog y,t/2) — v, coshB,t/2) Syt S/2 Si
12( - W mi— W],

X sin( y,t/2) 1sinh( B,2)sin( 7,2)} — 11,



Cc,;—C
tot 11 12
e, (X,2)= g, COq a X)§ —— (C1+2C
e ) Ep: p p )[ Cu — (Cq1 12)

2
X{ﬂp Sin(yp0) + 7, SN B,1)

X[u, cosh B,z)coq yp2)

+v, sinh(Byz)sin(ypz)]—| S;1—5/2

(Siz+5/2)

S,—92 S,—92

3

Spo+ S/2 }

(A4)

0= oot
e %(x,2)=£%(x,2) = 0, (X, 2)/(2C,s) ,
where

St .
- ( Sii— FS/Z) [,Bp cosk(,Bpt/Z)sm( 'ypt/Z)
S+ S/2

~ Y sinl‘(ﬁpt/Z)cos( ’ypt/Z)] + 812 1- W

X[ B, cosh Bpt/2)sin( y,t/2)
+ 1y, Sinh( B,t/2)cog y,t/2) ]V m,
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SZ
$p=| S~ FHS/Z) [Bp Sinh( B,t/2)cod y,t/2)

] S+ S/2
+ Yp cosf(,Bpt/Z)sm( )/pt/Z)] =Sl 1— m
X[ By Sinh(B,t/2)cog y,t/2)
— 7y, cosh B,t/2)sin( y,t/2)]Vm,

- 812( 1- SIZ) [ Bp COSH Bpt/2)sin( y,t/2)

—y, sinh(B,t/2)cog y,t/2) ]+ ( Sy;—Si2
(S1t+S12)?

B —-Si2

+ vy, sinh( Byt/2)cog y,t/2)]m,

g 22t S i /2 /2
"5, [ Bp sinh(Bt/2)cog y,t/2)

) [ Bp COS B,t/2)sin( y,t/2)

v p: SlZ(

+ ¥, cosh{ Bpt/2)sin( ypt/2) |- ( S;1— 92

(Syo+S/2)2

— v, COSH B,t/2)sin( y,t/2)]y/m.

Here the S; are the elastic compliance constants and
S=S;1— 812 S./21" Equations(A4) and (A5) were ob-
tained in the case of finite size along th11]-
crystallographic direction. Nevertheless, the same equations
can yield the strain tensor components even in the case of
finite size along th¢001]-crystallographic direction by using
Egs. (5) for the value ofm and by settingS=0 in order to
avoid the rotation of the axes, which is required Ze1{011])/

v2 but not forz=[001].

) [ Bp sinh(Bt/2)cog y,t/2)
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