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a b s t r a c t

We have calculated the electromagnetic Brillouin precursor that arises in a one-dimensional photonic
crystal that consists of two homogeneous slabs which each have a single electron resonance. This fore-
runner is compared with the Brillouin precursor that arises in a homogeneous double-electron resonance
medium. In both types of medium, the precursor consists of the components of the applied pulse that
have their frequencies below the lowest of the two electron resonances. In the inhomogeneous medium
however, the slab contrast starts affecting the precursor field after a certain rise time of the precursor: its
spectrum starts to peak at the geometric scattering resonances of the medium whereas minima appear at
the Bragg-scattering frequencies.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

In 1914, Sommerfeld and Brillouin [1] published a paper on
electromagnetic pulse propagation in spatially homogeneous, tem-
porally dispersive media. With the method of steepest descent,
they calculated that during the propagation of optical electromag-
netic pulses in dielectric, nonmagnetic Lorentz media with a single
electron resonance, two different electromagnetic precursors
evolve, propagating ahead of the main part of the pulse. These fore-
runners have been experimentally observed for the first time in
1969 by Pleshko and Palócz [2]. The fastest propagating one is
the Sommerfeld precursor. This forerunner arises from the very
high-frequency components of the applied pulse, where very high
means as compared to the single electron resonance frequency of
the homogeneous medium. For these high frequencies, the re-
sponse of the medium to the field very much resembles that of a
vacuum, which explains the rapid propagation and slow decay of
this first precursor. The wavefront of the Sommerfeld precursor
propagates exactly at the vacuum speed of light. Behind the Som-
merfeld precursor follows the Brillouin precursor. This forerunner
arises from the very low-frequency components of the applied
pulse, where low frequency again means as compared to the elec-
tron resonance frequency. These components interact relatively
weak with the medium as well. After the Brillouin precursor, the
main part of the applied pulse follows.

It is our aim to describe pulse propagation in photonic crystals
[3] and in this paper, we extrapolate the Brillouin precursor theory
from homogeneous media to a one-dimensional photonic crystal,
modeled as a stratified multiple-layer medium. In a previous paper
[13], we have already calculated the transmitted Sommerfeld pre-
ll rights reserved.
cursor in such a medium. There we found that this precursor
merely feels the spatial average of the medium; we did not find
any effects on the propagation and wave-shape of the Sommerfeld
precursor from the fact that the medium is inhomogeneous. This
could be understood because at the high frequencies of the Som-
merfeld precursor, the contrast between the slabs in the medium
is extremely small, because all slabs nearly respond as if they were
a vacuum. From this point, it is to be expected that the Brillouin
precursor will be influenced stronger by the medium inhomogene-
ities since the slab contrast does not vanish at the low frequencies.

In this paragraph we review photonic crystals. These materials
have recently gained much interest, because they can control the
propagation of light. A photonic crystal [3] is a spatially repeated
geometrical structure, or unit cell, of various material compounds
that each individually have in general a different interaction
strength with an electromagnetic field so that a propagating elec-
tromagnetic field is reflected periodically. Exactly as in the case of
electrons in interaction with a periodic atomic lattice, where a
band-gap appears in the electron dispersion relation due to Bragg
scattering, the lattice of material compounds in photonic crystals
creates a band-gap for electromagnetic radiation. For the frequen-
cies inside this gap, no propagating wave solutions exist inside
the crystal. If the band-gap lies in the visible part of the spectrum,
the photonic crystal is called an optical photonic crystal. Another
interesting effect of photonic crystals is that the group velocity of
an electromagnetic pulse can be reduced considerably [4,5] when
the pulse is predominantly composed of frequencies that lie close
to the edge of the band-gap [6]. Therefore photonic crystals open
new avenues to manipulate the propagation of an electromagnetic
field. The expected applications of photonic crystals that rely on the
aforementioned properties are numerous, for instance: waveguides
[3], diodes [7], data storage compounds [8], delay lines [8,9], lasers
[11] and devices that control the spontaneous atomic emission of
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Fig. 1. The stratified one-dimensional N-layer medium and its surroundings. Slabs
A and B, which, respectively have physical widths lA and lB, together form a single
layer of thickness l. Along the principal axis, the x-axis, the interface coordinates
have been written. The permittivities and permeabilities of material m = L,A, B, R
are, respectively given by �m and lm. Also indicated is the labeling of the electric (E)
and magnetic (H) field amplitudes in the various homogeneous subspaces of the
system.
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photons [10,12]. However, it is still difficult to grow highly regular
three-dimensional structures with lattice constants of only a few
hundreds of nanometers so that the large-scale fabrication of
three-dimensional optical photonic crystals is still limited.

This paper has been organized as follows. In Section 2, the pho-
tonic crystal is modeled and its transmission coefficient for the
electromagnetic field is derived in Section 3. The transmittance
of the medium is analyzed numerically in Section 4. Thereafter,
in Section 5 we discuss how to apply the method of steepest des-
cent in order to calculate the Brillouin precursor. Then, in Section
6, we calculate the transmitted Brillouin precursor resulting from
a delta-peak input pulse and from a step-modulated sinusoidal in-
put field. In Section 7 the results are discussed. Finally, conclusions
are drawn in Section 8.

2. Model for the photonic crystal

Our model for the photonic crystal is a stratified one-dimen-
sional multiple-layer medium which has been depicted in Fig. 1.
The x-axis is taken as the principal axis of the medium. The crystal
consists of N layers of physical width l and each layer contains two
homogeneous slabs, denoted as slab A and slab B, respectively of
physical widths lA and lB that add up to the layer width, lA + lB = l.
The coordinates of the interfaces are given as

xmn ¼ xL þ ðn� 1Þlþ dmBlA; m ¼ A; B; n ¼ 1; . . . ;N;

xR ¼ xL þ Nl:
ð1Þ

The interfaces at x = xL and at x = xR are respectively referred to as
the entrance and exit interface. To the left and to the right from
the N-layer medium there are respectively the homogeneous mate-
rials L and R. All homogeneous materials m = A, B, L, R give an isotro-
pic and linear response to the electromagnetic field so that these
materials are fully characterized with the scalar permittivities and
permeabilities. The response to the electric component of the field
is modeled as that of a Lorentz medium with a single1 electron res-
onance [1] whereas the medium does not interact with the magnetic
component. The absolute permittivity and absolute permeability of
medium m are therefore given by, respectively

�m ¼ �0 þ
�0x2

pm

x2
m � 2icmx�x2 ; ð2aÞ

lm ¼ l0; ð2bÞ

where x is the angular frequency of the electromagnetic field, �0

and l0, respectively the vacuum permittivity and permeability,
xm the electron resonance frequency, xpm the plasma frequency
and cm the absorption parameter of medium m. Now that the pho-
tonic crystal has been modeled, its transmission coefficient for the
amplitude of the electric component of an electromagnetic field will
be calculated in the following section.

3. Transmission coefficient of the photonic crystal

We take a perpendicularly incident applied field. The theory al-
lows for an extension to oblique incidence with separation in TE-
and TM-polarization, but since we are only interested in the effect
of the medium inhomogeneities, this extension would merely ob-
scure the purpose of our paper. The system of the N-layer medium
plus the two surrounding media consists of 2N + 2 homogeneous
parts, separated by sharp interfaces. The homogeneous subspaces
are labeled as mn, where the first index m = A, B, L, R indicates
the material and the last index n = 1,. . .,N indicates the layer num-
1 For the evolution of precursors in homogeneous media with multiple electron
resonances, see Ref. [14].
ber. The latter index is present only if m = A, B, see Fig. 1. The real
amplitude of the electric component of the linearly polarized elec-
tromagnetic field in subspace mn reads in a Fourier representation
as

Emnðt; xÞ ¼
Z

dxeEmnðx; xÞ expð�ixtÞ: ð3Þ

where the complex Fourier coefficient is given by

eEmnðx; xÞ ¼ 1
2p

Z
dtEmnðt; xÞ expðixtÞ: ð4Þ

These coefficients obey Helmholtz’ equation,

ðo2
x þ k2

mÞeEmnðx; xÞ ¼ 0; ð5Þ

where

km ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffi
�mlm

p
: ð6Þ

The solutions to Eq. (5) give, after substitution into Eq. (3), that the
electric field consists of, respectively the right- and leftwards prop-
agating parts

EðrÞmnðt; xÞ ¼
Z

dxeEðrÞmnðxÞ expð�ixt þ ikmðx� xmnÞÞ; ð7aÞ

E lð Þ
mnðt; xÞ ¼

Z
dxeEðlÞmnðxÞ expð�ixt � ikmðx� xmnÞÞ; ð7bÞ

where the Fourier coefficients of respectively the right- and left-
wards propagating parts of the electric field, as evaluated at the
interfaces, are given by

eEðrÞmnðxÞ ¼
1

2p

Z
dtEðrÞmnðt; xmnÞ expðixtÞ; ð8aÞ

eEðlÞmnðxÞ ¼
1

2p

Z
dtEðlÞmnðt; xmnÞ expðixtÞ: ð8bÞ

From Maxwell’s equation r� eE � ixeB ¼ 0 with eB ¼ leH, the
Fourier coefficients of, respectively the right- and leftwards propa-
gating parts of the magnetic field that correspond to those of the
electric fields of Eq. (8a) follow aseHðrÞmn ¼ �eE rð Þ

mn=Zm; ð9aÞeHðlÞmn ¼ eE lð Þ
mn=Zm; ð9bÞ



2 The right-to-left transmission coefficient equals t0N � :ðeEðlÞL =
eEðlÞR ÞjeEðrÞL ¼0

¼ T�1
22 , the

o transmission coefficients are therefore related as ZRt0N ¼ ZLtN .
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where Zm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lm=�m

p
is the impedance of material m. The left-to-

right transmission coefficient of the photonic crystal for the electric
field amplitude is defined as

tN � ðeEðrÞR =
eEðrÞL ÞjeEðlÞR ¼0

; ð10Þ

and in the rest of this section we will calculate tN. Let xm0n0 denote
the coordinate of the interface immediately to the right of the inter-
face at x = xmn. The electric and magnetic fields must be continuous
at each interface, hence

Emnðt; xm0n0 Þ ¼ Em0n0 ðt; xm0n0 Þ; ð11aÞ
Hmnðt; xm0n0 Þ ¼ Hm0n0 ðt; xm0n0 Þ: ð11bÞ

With Eqs. (3), (8a) and (9b), (11a) giveeEðrÞm0n0eEðlÞm0n0

 !
¼ Hm0mPm

eEðrÞmneEðlÞmn

 !
; ð12Þ

where the transmission matrix Hm0m is constructed from the
dynamical matrices

Dm ¼
1 1
�Z�1

m Z�1
m

� �
ð13Þ

as

Hm0m ¼ D�1
m0 Dm: ð14Þ

Note that by construction H�1
m0m ¼ Hmm0 and Hm0mHmm00 ¼ Hm0m00 . Fur-

ther, in Eq. (12), the unimodular propagation matrices are given by

Pm ¼ diagðexpðikmlmÞ; expð�ikmlmÞÞ: ð15Þ

Eq. (12) relates the Fourier coefficients of the left- and rightwards
propagating electric field components in subsequent slabs. The sin-
gle-layer transfer matrix involves transfer over two successive
slabs,

TA ¼ HABPBHBAPA: ð16Þ

The entries of TA ¼
A1 B1

C1 D1

� �
can readily be calculated as

A1 ¼ expðikAlAÞ cos kBlB þ
i
2

ZA

ZB
þ ZB

ZA

� �
sin kBlB

� �
; ð17aÞ

B1 ¼
i
2

exp �ikAlAð Þ ZB

ZA
� ZA

ZB

� �
sin kBlB; ð17bÞ

C1 ¼
�i
2

exp ikAlAð Þ ZB

ZA
� ZA

ZB

� �
sin kBlB; ð17cÞ

D1 ¼ exp �ikAlAð Þ cos kBlB �
i
2

ZA

ZB
þ ZB

ZA

� �
sin kBlB

� �
: ð17dÞ

With a slight simplification by using the aforementioned properties
of Hmn, the left-to-right transfer matrix of the N-layer medium, T,
can be constructed from the propagation and transmission matrices
as

T ¼ HRATN
A HAL: ð18Þ

Note that detT = ZR/ZL. The unimodularity of TA implies that the en-
tries of the transfer matrix for N layers,

TN
A �

AN BN

CN DN

� �
; ð19Þ

are related to those of the single-layer transfer matrix as [16]

AN ¼ A1UN�1ðT1Þ � UN�2ðT1Þ; ð20aÞ
BN ¼ B1UN�1ðT1Þ; ð20bÞ
CN ¼ C1UN�1ðT1Þ; ð20cÞ
DN ¼ D1UN�1ðT1Þ � UN�2ðT1Þ; ð20dÞ

where the Um are the Chebyshev U-polynomials,
UmðT1Þ ¼
Xbm2c
n¼0

ð�1Þn
m� n
n

� �
ð2T1Þm�2n

; ð21Þ

having as argument T1 � 1
2 trTA. In Eq. (21) the upper limit to the

sum, bm2c, denotes the floor function of m/2, which gives the largest
integer that is smaller than or equal to m/2. From the defining equa-
tion of the transfer matrix,eEðrÞReEðlÞR

 !
¼

T11 T12

T21 T22

� � eEðrÞLeEðlÞL

 !
; ð22Þ

the N-layer medium’s left-to-right2 transmission coefficient for the
electric field follows from Eq. (10) in terms of the T-matrix entries as

tN ¼
det T
T22

: ð23Þ

This expression gives the transmission of the N-layer medium in
frequency space and the left-to-right transmitted electric field
amplitude, evaluated at the exit plane of the N-layer medium, fol-
lows from Eqs. (7a) and (10) in terms of the applied field spectrum
and the transmission coefficient as

EðrÞR ðtÞ ¼
Z

dxtNðxÞeEðrÞL ðxÞ expð�ixtÞ: ð24Þ

In the following section we will consider the transmittance for com-
plex frequencies in order to determine, as a function of time, those
frequency components that are transmitted with the least absorp-
tion. This will be done for early times, so that we obtain, by using
the method of steepest descent, the time-resolved, initial transmit-
ted frequency components.

4. Transmittance of the photonic crystal

In anticipation of the application of the method of steepest des-
cent, we write the propagation part of the integrand of Eq. (24) as a
mono-exponential function and we use the natural time coordi-
nate for the N-layer system, HN = ct/(Nl). With these substitutions,
the transmitted field reads as

ERðHNÞ ¼
Z

dxeELðxÞ exp UNðHN; xÞ: ð25Þ

We have omitted the superscript to indicate that the field propagates
rightwards, since from now on we will only consider rightwards
propagating fields. The exponent that describes the propagation is
called the (complex) phase function [17] and it is given by

UN ¼ ln tN � ixðNl=cÞHN: ð26Þ

The transmittance of the medium is by definition the ratio of the
transmitted field intensity to the applied field intensity and it fol-
lows from Eqs. (25) and (27) as TN = exp(2 ReUN). Note that the
transmittance is independent of the shape of the applied pulse, it
is a function of the system parameters. A plot of

XN ¼ ReUN ; ð27Þ

in the complex plane is therefore a scaled, logarithmic plot of the
transmittance for complex frequencies. Fig. 2 shows various of
these plots, successive plots being taken at successive instants
of time. The coordinates along the axes are given by n = Rex
and g = Imx. The values that were used for the medium param-
eters have been listed in Table 1. The value of XN is constant on
contour lines and this value has been indicated for two neighbor-
ing contour lines in each plot. The difference of the values of XN

on neighboring contour lines is constant as well. Reality of the
tw



Fig. 2. Plots of XN, which is one half times the logarithm of the transmittance of the N-layer medium, at increasing values of time hN for N = 1 and the parameter values of
Table 1. The value of XN is constant on contour lines and the difference of neighboring contour values is constant in each plot. The two numbers in each plot give contour
values. The dashed curve represents the integration path, along which the stationary points have been indicated.

Table 1
Parameter values that have been used for the transmittance plots

Medium parameter values

Number of layers N = 1

Slab widthsa lA = 20 nm lB = 30 nm
Electron resonances xA = 4.0 � 1016/s xB = 2.5 � 1016/s
Plasma frequencies xpA = 4.5 � 1016/s xpB = 2.0 � 1016/s
Absorption parameters cA = 0.20 � 1016/s cB = 0.15 � 1016/s
Permittivities surrounding media �L = �0 �R = �0

a The reason for taking the slab widths so small is given in the discussion.
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field amplitudes implies that U�NðxÞ ¼ UNð�x�Þ which in turn im-
plies that XN is symmetric about the imaginary axis, therefore the
plots cover only positive values of n. The lowest electron reso-
nance frequency xB sets the upper limit for the frequencies of
the Brillouin precursor, therefore the frequency domains of the
plots have been chosen to extend until this frequency and the
coordinates n and g are measured in units of this frequency.
The plotting times have been chosen such that they cover the
time interval during which those stationary points of the phase
function that generate the Brillouin precursor are dominant as
compared to all other stationary points of the phase function
throughout the complex plane. With dominant stationary points
we mean those stationary points at which XN takes on the largest
values. In the plots of Fig. 2, the stationary points of the phase
function appear as saddle-points, see Appendix A. At the plotting
times, all stationary points in the plots are of first order, as can
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be concluded from the variation of XN in the neighborhood of
these points. Figs. 3 and 4

5. Method of steepest descent

The three dominant stationary points in Fig. 2 have been indi-
cated and, following the method of steepest descent, the instanta-
neous integration path passes through these stationary points, it is
given by the dashed curve. Away from the stationary points, this
path follows the lines of steepest descent of XN. The contribution
to the electric field of Eq. (25) that comes from the integration in
the neighborhood of a first-order stationary point of the phase
function that follows the trajectory x = /s (hN) is given, within
the approximation of the method of steepest descent, by

EðsÞR ðhNÞ ¼ eELð/sÞPðhN ;/sÞ; ð28Þ
Fig. 3. Calculated electric field amplitude (solid line) as a function of time, resulting from
with N = 1. The dashed lines give twice the real part of the contributions from the three

Fig. 4. Calculated electric field amplitude (solid line) as a function of time, resulting from
layered medium with N = 1. The dashed lines give twice the real part of the individual c
where we have defined the function that describes, within this
approximation, the effects of the propagation in the medium on
the transmitted field as

PðhN; /sÞ ¼
ffiffiffiffiffiffi
2p
p

Uð2ÞN ð/sÞ
��� ����1

2
expðUNðhN; /sÞ þ iaNð/sÞÞ; ð29Þ

where UðnÞN denotes the n-th order x-derivative of the phase func-
tion and where aNð/sÞ ¼ ðp=2Þ � ð1=2Þ arg Uð2ÞN ð/sÞ is the angle of
the steepest descent line with the positive real axis at the stationary
point. The integration in Eq. (25) in the neighborhood of the station-
ary point has been performed in the direction of this steepest des-
cent line. Eq. (28) only holds if the phase function is stationary to
first order along the trajectory. In order to determine the roots of
the second-order derivative of the phase function for verifying that
these are not located on the trajectory and thus represent second-
order stationary points, the function
an applied delta-peak input pulse, after transmission through the layered medium
dominant stationary points.

an applied Heaviside step-modulated input pulse, after transmission through the
ontributions from the three dominant stationary points.



Fig. 6. The time-dependent roots of Uð1ÞN and the time-independent roots of Uð2ÞN as
obtained from, respectively the contour plots of XN and UN. The numbers denote the
values of time hN and give the instantaneous locations of the roots of Uð1ÞN . The solid
lines represent the stationary point trajectories x = /I (hN) (leftmost solid line), /II

(hN) (middle) and /III (hN) (right) in the time interval 1.3 6 h 6 2.5, as calculated
from the series expansion formula about evaluation time hs = 1.8.
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UN ¼ ReUð1ÞN ð30Þ

has been plotted in Fig. 5, again for the parameter values of Table 1.
In this figure, the roots of the second-order derivative of the phase
function are visible as saddle-points. From Eq. (26), it follows that
UN is independent of time, so the positions of the roots of the sec-
ond-order derivative of the phase function are fixed. The roots of
first- and second-order derivative of the phase function, as deter-
mined from, respectively Figs. 2 and 5, have been plotted together
in Fig. 6. In this figure, the dashed lines connect successive instan-
taneous stationary points of the phase function and thus roughly
represent the observed trajectories. From this figure, it follows that
the stationary points are always of first order at the time interval
spanned by the plots in Fig. 2, because the roots of first- and sec-
ond-order derivatives of the phase function do not coincide in this
time interval. Therefore, we are allowed to use Eq. (28) for a calcu-
lation of the transmitted field.

We will now obtain an algebraic expression for the stationary
point trajectory x = /s (hN), which is required for Eq. (28). When
at some observation time hN = hs the instantaneous location of a
stationary point of the phase function is determined from the
transmittance plots as x = xs, its trajectory at times close to this
evaluation time follows from the relation Uð1ÞN ¼ 0 together with
the requirement that /s(hs) = xs and is given by [18,19]

/sðhNÞ ¼ xs þ
X1
l¼1

ð�1Þl

l!
ol�1ex eUNðehN; exÞ � ex� �l
� 	

j ehN ;ex
 �; ð31Þ

Here, the auxiliary function eUNðehN; exÞ ¼ Uð1ÞN ðehN þ hs; ex þxsÞ=
Uð2ÞN ðhs;xsÞ that picks out the proper stationary point, is well-de-
fined if the observed stationary point is of first order. For the plots
of Fig. 2, this requirement is fulfilled because we have already ver-
ified that the stationary points are of first order along the complete
trajectory. The trajectories as calculated from Eq. (31) are shown in
Fig. 6 as solid lines. These do diverge a little from the observed tra-
jectories at times that differ much from the observation time, which
is at hs = 1.8, and which has been used as the origin in the function
series expansion of Eq. (31). This stems from the fact that the sum
in Eq. (31) could only be taken up to and including the third term
because of a shortage of computer power.

At last, we mention that the aforementioned symmetry of the
phase function implies that, if it has a stationary point at x = /s,
Fig. 5. Plot of UN ¼ Re Uð1ÞN . The roots of Uð2ÞN ¼ 0 are visible as saddle-points of UN.
it also has one at x ¼ �/I

s . When an integration path is used that
is symmetric about the imaginary axis, as we will do because XN is
symmetric about his axis, the contribution from the one stationary
point equals the complex conjugate of the contribution from the
other so that both together give a real field with an amplitude that
equals twice the real part of Eq. (28). This completes the discussion
about how to obtain the dominant contributions to the transmitted
field from a temporal sequence of graphs of the transmittance and
the method of steepest descent. In the next section, the electric
field contributions from the dominant stationary points will be
numerically calculated for two applied fields: the delta-peak pulse
and a step-modulated sinusoidally oscillating field.

6. Results

The Brillouin precursor arises predominantly as a result of the
specific dispersion and absorption of the medium and it is quite
independent of the actual shape of the applied pulse [1]. Because
our main interest is in the effect of the inhomogeneities of the
medium on this precursor, we will only consider two simple input
pulses, namely a delta-peak and a step-function modulated sinu-
soidal oscillation. For the delta-pulse, the applied field is given
by EL (t) = �d (t) where � is the strength of the pulse. In natural time
units, this applied field reads as

ELðhNÞ ¼ �NdðhNÞ; ð32Þ

where �N = (Nl)�1 c� is a strength with the dimension of an electric
field amplitude. For the input pulse of Eqs. (32), (28) gives that the
contribution to the transmitted field from a stationary point at
x = /s (hN) equals

EðsÞR ðhNÞ ¼
Nl�N

2pc
PðhN; /sÞ: ð33Þ

Since the propagation part P in this expression is merely multiplied
with a constant coefficient, the transmitted field that results from an
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applied delta-peak input pulse most clearly exhibits the effects of
the medium. The field of Eq. (33) has been plotted in Fig. 6 for the
three dominant stationary points to which we have added the con-
tributions from the corresponding stationary points at the opposite
side of the imaginary axis. Shown are the individual contributions
from the stationary points and their sum, which approximately
makes up for to the total transmitted field at the plotted time
interval.

In order to be able to compare the amplitude of the transmitted
Brillouin precursor to that of an applied pulse, which is difficult to
do for the delta-peak input pulse, we also consider the Heaviside
step-function modulated input signal

ELðtÞ ¼ �hðtÞ sin x0t; ð34Þ

where � is the amplitude and x0 the angular frequency of the field
at times greater than zero and h (t) is the unit step function. For this
input field, Eq. (28) gives the contribution from a stationary point at
x = /s to the transmitted field as

EðsÞR ðhNÞ ¼
�

2p
x0

x2
0 � /2

s

PðhN ; /sÞ: ð35Þ

This field has been plotted in Fig. 6, for which we have used as car-
rier frequency x0 = 4 � 1015 s�1. The amplitude is given in units �
and for the Brillouin precursor it is maximally about 0.6 times that
of the applied field. The amplitudes of applied and transmitted field
are still comparable because, for the choice of parameters N = 1,
lA = 20 nm and lB = 30 nm, the propagation distance in the medium
is only 50 nm and over such a short distance the absorption is very
small. Below, in the discussion section, we will give our reasons for
taking such a small propagation distance.

7. Discussion

From Eq. (29) it follows that the instantaneous frequency of the
contribution from a stationary point is approximately equal to its
horizontal coordinate if this point moves slowly in time. This is
especially the case at late times hN J 2, when the motion of the
stationary points comes to rest, close to the scattering resonance
poles (see Fig. 2). Hence, at late times, the transmittance spectrum
peaks at the resonance frequencies, whereas the Bragg-scattering
frequency components that lie in between the resonance poles,
are slightly suppressed. In Fig. 6, it is visible that the field from
x = /I is an exponentially decaying non-oscillating field, whereas
the other contributions are not only decaying, but also oscillating
fields.

Our observation from Fig. 2 is that the number of stationary
points of the phase function and their locations in the complex
plane are strongly tied up with the number of singularities of this
function and their locations, however we cannot quantify this
statement. Therefore, we will now discuss the density and location
of the singularities of the phase function and argue how these af-
fect the transmitted field. As can be seen in Fig. 2, the locations
of the singularities of UN in the complex plane are independent
of time. The singularities originate from two possible causes. The
slab permittivities �A and �B each have two poles in the complex
plane. From Eq. (2b), their locations are given by

x ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

m � c2
m

q
þ icm; m ¼ A; B: ð36Þ

The permittivities of media L and R have no poles since these media
were chosen as vacuum. The poles of the permittivities always ap-
pear as branch-points of XN since it is always the square root of the
permittivity that enters the expressions of the transmitted field, see
Eqs. (17d). The branch points of Eq. (36) for m = A are located out-
side of the domain of the plots of Fig. 2 whereas for m = B one is sit-
uated at x ’ (1 � 0.06i)xB. The locations of the permittivity poles
of Eq. (36) are independent of the geometry of the medium, which
is governed by the parameters N and lA and lB.

The other singularities are the geometric resonance frequencies
which emerge in the landscape of XN as poles. These poles are the
roots of T22 (the 2,2-element of the transfer matrix, see Eq. (23))
and they are visible in Fig. 2 as white dots. In the figure, it is visible
that the poles cluster at the branch-point of slab B. This is explained
as follows. The wavelength of the field in medium m is given by

km ¼
2p

Rekm
: ð37Þ

For frequencies close to the branch-point of this medium, the wave-
length becomes very small and as a consequence, many wave-
lengths fit in the slab giving many resonance poles, thus
explaining the clustering. The density of the geometric resonance
poles increases with the number of layers N and with the slab
widths lA and lB since more wavelengths fit in the system when
the medium is made larger. The values of these parameters were
chosen small in order to keep the number of stationary points that
give significant contributions to the Brillouin precursor small: we
only had to take into account three stationary point contributions.

There is also a serious drawback of taking the dimensions of
the medium small. As mentioned earlier, for our choice of param-
eters the medium width is only 50 nm. The phase function, and
therewith XN, scales with these parameters. In the case of propa-
gation in a homogeneous medium, the propagation distance is a
linear overall scaling parameter of the exponent of the phase
function. For an inhomogeneous medium, the number of layers
and the slab widths are not simple linear overall scaling parame-
ters, though the variation of XN does become small when the
dimensions of the medium are taken to be small. In the extreme
case N = 0, lA = 0 and lB = 0 there is no variation at all since then
XN � 0 everywhere. The small variation of XN in the complex plane
is visible in Fig. 2 as the small difference of the values of XN on
neighboring contour lines, which is about 0.05. For larger medium
dimensions, the variation in XN becomes larger and the stationary
point contributions are more pronounced. This latter situation re-
flects the mature regime [14] of the dispersion, in which the
shape of the field has fully developed to a steady pattern. So,
for our choice of parameters, the transmitted field has not yet
fully reached the steady state.

Fig. 7 is an instantaneous plot of XN for the same set of param-
eter values as that has been used for Fig. 2, except for the number
of layers, which is now taken equal to N = 5. This figure shows
three consequences of increasing the number of layers. At first,
the density of scattering resonance poles increases, which has
been explained above. Secondly, the resonance poles have been
shifted towards the real axis. The vertical position of a pole in
the complex plane is related to the contrast of the complete med-
ium at the frequency of the pole. This can easily be shown for a
slab of width lA and of constant, real, refractive index nA. The
Fresnel reflection and Fresnel transmission coefficients for the
interfaces of the slab are, respectively rAB and tAB. Then the trans-
mission coefficient of this slab equals tslab ¼
tABtBA expðilAnAx=cÞ=ð1� r2

AB expð2ilAnAx=cÞÞ. The relation for reso-
nance is r2

AB expðilAnAx=cÞ ¼ 1, therefore the vertical coordinate of
the pole follows as g ¼ c

lAnA
log jrABj. Since 0 < jrABj < 1, the pole lies

below the real axis and approaches this axis if the contrast jrABj
approaches its maximum value of one. When the number of lay-
ers increases, the overall medium contrast increases as well and
therefore the poles are shifted towards the real axis. At last, the
transmittance minimum at the band-gap becomes visible. It is lo-
cated between the N-th and the N + 1-th resonance poles with
nonzero frequency, at x ’ (0.57 � 0.05i)xB.

At last, the Brillouin precursor that arises in our inhomogeneous
N-layer medium that consists of homogeneous slabs with each one



Fig. 7. Plot of contours of XN for N = 5 and again for the parameter values listed in
Table 1. The main differences with the previous plots for N = 1 are explained in the
text.
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electron resonance is compared with the Brillouin precursor that
arises in a homogeneous medium with two electron resonances
[14]. For comparison, the two slab electron resonances of the inho-
mogeneous medium are taken to be equal to the electron
resonances of the homogeneous medium. In the case of the multi-
ple-layer medium, we have found that the Brillouin precursor is
generated from the frequency components below the lowest elec-
tron resonance frequency of the two slabs and the forerunner is
slightly distorted such that the (geometric) resonant frequency
components are enhanced and the Bragg-scattered frequency com-
ponents are suppressed, as has been concluded from the transmit-
tance landscape. In the case of the double-resonance homogeneous
medium, the Brillouin precursor is generated from the same low-
frequency components, but the distortion is absent.
8. Conclusions

We have investigated the electromagnetic Brillouin precursor
that has been transmitted through a one-dimensional photonic
crystal, modeled by the stratified layered medium. This precursor
is formed by those components of the applied pulse that have fre-
quencies smaller than the lowest electron resonance frequency of
the medium. From an investigation of the transmittance and from
applying the method of steepest descent, the following observa-
tions have been made. The effect of the slab contrast on the spec-
trum of the transmitted Brillouin precursor is that, after a certain
rise time, the components with frequencies equal to the frequen-
cies of the poles of the transmission coefficient are slightly en-
hanced and the Bragg-scattering frequency components that lie
in between the poles, are suppressed.
Fig. 8. Illustration of an instantaneous plot of X(h;n,g) = Re U(h;x) near a first-order
stationary point of U at x = /s. The steepest descent lines depart from this point
along the radial line at the angle a = as and in the opposite direction.
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Appendix A. Steepest descent method

In order to illustrate the method of steepest descent, we use the
integral of Eq. 25,

ERðhÞ ¼
Z

dxeELðxÞ exp Uðh;xÞ; ð38Þ

where we have omitted the various N-subscripts and (r)-super-
scripts, as we will do throughout this appendix. We assume thateEL varies slowly as a function of x as compared to U in the neigh-
borhood of the relevant stationary points of the latter function. Let X
and Y, respectively denote the real and imaginary parts of U and let
n and g denote, respectively the real and imaginary parts of x.
Demanding U(1), which denotes the first-order x-derivative of U,
to be independent of the direction along which the derivative is ta-
ken in the complex plane gives the Cauchy-Riemann equations,

Xn ¼ Yg; Xg ¼ �Yn; ð39Þ

where Xn = oX/on etcetera. Let s parametrize the deformed integra-
tion path. When this path follows the steepest slope lines of X,
the coordinate derivative must satisfy

_n

_g

 !
¼ �

Xn

Xg

� �
; ð40Þ

where the dot denotes the s-derivative and where the plus and
minus sign stand for, respectively the steepest ascent and descent
lines. From the chain rule for differentiation and from Eqs. (39)
and (40) it follows that

_Y ¼ 0: ð41Þ

This proves that the phase is constant along the lines of steepest
descent. The n-th order stationary points of U satisfy

UðkÞ ¼ 0; k ¼ 1; . . . ; n: ð42Þ

When U depends on time h as well, the stationary points generally
sweep out trajectories in x-space and we write the solutions to Eq.
(42) as

x ¼ /sðhÞ: ð43Þ

The Taylor expansion of U in x about an n-th order stationary point
at x = /s(h) is equal to

Uðh;xÞ ¼ Uðh; /sðhÞÞ þ
Uðnþ1Þðh; /sðhÞÞ
ðnþ 1Þ! ðx� /sðhÞÞ

nþ1

þ oððx� /sðhÞÞ
nþ2Þ: ð44Þ

With polar coordinates in the complex x-plane it easily follows
that, at an n-th order stationary point of U, both X and Y have a sad-
dle-point from which n + 1 radial lines of steepest descent and as-
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cent depart. For first-order stationary points, the contribution to the
field can actually be calculated and Fig. 8 illustrates X at a fixed time
h close to a first-order stationary point at x = /s(h). The angles of
the steepest descent lines of X departing from this point are given
by

asðhÞ ¼
1
2
ðp� arg Uð2Þðh; /sðhÞÞÞ; ð45Þ

and the other is at as + p. When the integration path is taken along
the radial line at angle as through this point, the parametrization of
the path equals x = /s (h) + eias (h)s and the contribution from this
stationary point to the field of Eq. (38) can be calculated with a qua-
dratic approximation of U as

EðsÞR ðhÞ ¼ eELð/sÞ expðUðh; /sÞ þ iasÞ
R

ds exp � 1
2 jU

ð2Þðh; /sÞjs2
� �

;

¼
ffiffiffiffiffiffi
2p
p eELð/sÞ expðUðh; /sÞ þ iasÞjUð2Þðh; /sÞj

�1
2:

ð46Þ

The symmetry U�NðhN;xÞ ¼ UNðhN;�x�Þ implies that, if U has a sta-
tionary point at x = /s, it also has one at x ¼ �/I

s . When an inte-
gration path is used that is symmetric about the imaginary axis,
the contribution from one stationary point equals the complex con-
jugate of the other so that both stationary points together contrib-
ute two times the real part of Eq. (46).
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