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Scattering-theory formulation of stopping powers of a solid target for protons and antiprotons
with velocity-dependent screening
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The scattering theory formulation of the stopping power of a homogeneous electron gas is implemented by
consistent velocity-dependent potentials, which are needed to calculate transport cross sections for bare intrud-
ers. The method of volume averaging, over the Wigner-Seitz atomic cell of a solid Al target, is employed to
characterize inhomogeneities of the electronic system and define average stopping powers for cases of protons
and antiprotons. The theoretical results for average energy losses of both projectiles are in remarkable agree-
ment with recent experimental data over a broad range of projectile velogBi£850-29478)50909-3

PACS numbegps): 34.50.Bw, 34.50.Fa

I. INTRODUCTION treatment for consistent velocity-dependent screening, giving

. . stopping powers of a solid Al target for protornd£€1) and
The stopping power of matter for energetic charged par- ntiprotons Z=—1). We use Hartree atomic unite=7

ticles is (_)f recurring interest in p_hy5|c_s. The understanding oi m.=1) throughout this work.
the slowing down of these particles is of great fundamental
and applied relevance. Generally, it is important to know

accurately the stopping power for a broad range of projectile

Velocities in Ordel‘ to interpret experiments a.nd Jus“fy our For a common One_body potentia' with Spherica' Symme-
physical ideas for slowing down processes. try moving with constant velocity through a homogeneous
Theoretically, stopping power has been considered sincgh) electron gas of given density,, one obtains the follow-
the early days of atomic physics; for textbooks, see Refsing expression for the stopping pow@—11]:
[1,2]. As in most areas of physics a general approach to
stopping power involves models, where the stopping matter dE
is approximated by simpler systems, such as a degenerate (a) :(277)3
electron gag$3] or sets of harmonic oscillatofd]. h
We reexamine here the theory of energy loss by protons 02 o )
(p) and antiprotonsﬁ) in an electron gas as a function of Here f*(p“/2) denotes the distribution functiofstep func-

the projectile velocityv. For the electron-gas model there tion aFT=0 temperatu_r)eof the .|deal system c.)f mdependent
constituents, andv,=v—p is the relative velocity

are two general approaches. 2_.2, .2 .
. . =p°+p~—2vp cose. In the formallyexactsolution[10],
One of these is based on perturbative treatments of resr Y P v ¢ y [10]

i ) given by Eq.(1), the distribution function enters linearly, and
sponse f“”C“OF‘ theory. Th.e _I|near response treatright thus, for heavy projectile and potential with inversion sym-
provides a qualitative description of the stopping power. It

o . Smetry, the Pauli principle does not impose a restricfiba.
result is independent of the charge sign of the charged pro- 1pq momentum-transferior transport cross section

Jeculg The quadratlp response treatmé@_it IMproves our — , (y,) in Eq. (1) is given in partial-wave representation by
physical understanding for the asymptotic limits, i.e., for a

high-density electron gas and/or a high-velocity projectile. 4r >

Around the measurel] stopping maximum in real targets, ou(v)=— > (I+D)si[8(v,) = 8+1(v)], (2
these treatments are not able to account quantitatively for the Ur 1=0

strong influence of unit-charg&Z & = 1) projectiles. ) )

The second approach to the stopping power of an electrowhere /’s are one-electron scattering phase shifts. Of
gas is the scattering theory formulatif®-11]. At present, ~course, to implement the above-formulated approach, knowl-
this theory treats the electron gas as a quantum-statistic8dge of the scattering potential is essential. This potential
ideal system of independent constituents. The influence depresents the effect of the heavy charged intruder on the
the heavy projectile on this system is modeled by a Spherimodel system. Here we take the additional step of determin-
cally symmetric screened potential. The assumpf®n11] !ng the scattering potential in a consistent way and thus
of a central potential allows the application of the standardmplement the formal resuit. _ _
partial-wave method in order to obtain one-electron scatter- Our starting equation to construct a consistent, velocity-
ing phase shifts that are needed to characterize the energgependent screening is the linearized Thomas-Fermi-

Il. THEORY AND RESULTS

dpf(p22, 1
pf(p/2)v, v oy (vy). 1)

loss process. WeiZS"a:ker equatior[lS]
In this Rapid Communication we present a survey of the
scattering theory supplemented by a physically motivated (—3V2+b)o(r)+ \/n—OV(r)zo, 3
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where V(r) is the self-consistent screened potential of the 0.25 . . .

projectile. This screened potential contains, via the Poisson

equation, the properly normalized induced charge density 0.20 - P T

[ 5n(r)] of this approachsn(r)=2+nyw(r) and depends on 3 NP

the parameteb. The “wave-function” w(r) of Eqg. (3) is 8 015 AN .

determined, at short distancas+£0), by the Coulomb part = p A

(—2Z/r) of the potential and the Laplace term. In the static 5 010 N T

(v=0) situationb is a so-called(Paul) pseudopotential z g R TS

[14], representing the kinetic energy of electrons. Precisely, 005 -/ £~ T 2 mme ]

this kinetic-energy-like nature of the extra tebrin Eq. (3)

gives the physical motivation to consideras a consistency 0-000 0 1'0 : 2'0 : 3‘0 2.0

parameter in a velocity-dependent construction. ' ' v (a..u) '

The self-consistent solution of E¢3) for the screened

potential has the following forrl3]: FIG. 1. The stopping power of a homogeneous electron gas with

2 o e b r«=2.07, as a fum:tion of the projectile velocity for protons )
V(r)=——e o + (e"—e M|, (4 and antiprotons ). The solid curves are based on consistent

r 2 4ay velocity-dependent potentials, while the dashed ones are based on

) . ) the corresponding static potentials.
in which « and y are characterized by
b Eqg. (1) numerically to obtain stopping powers for a given
a?==+/4mn,, (58  Wigner-Seitz radius and fixed values,v €[0,4].
2 In the following we present our numerical results, first for
a homogeneous electron gas of given The numerical
_ \/Fno (5h) value ofrg is fixed by the valence density of an Al target:
rs=2.07[18]. In order to show the influence of a consistent
i i velocity-dependent screening, we compare, in Fig. 1, its re-
Note thatV(r) may have an oscillatory behavior as a func-gits (solid curves with those obtained by the statically-
tion of the model parametetsandn,. screened-potential approximatigdashed curvés Our re-

The normalization constraint for the total induced density ults for protons 6) and antiorotonst) show. in both case
(a constraint that is inherently included in the above paramet§ P ) P K) show, oth cases,

ric treatment may be expressed by a condition for scatteringremarkable charge-sign dependences. Apart from the low-

one-electron phase shifts caused by the self-consistent poteﬁglocn);hran?e (’.<1) the dyfnarrglcta;: scrger:ylng a}ct?hto hefn;l
tial. This condition for static {=0) charged projectiles is ance the stopping powers for both projectiies. in the high-

the well-known Friedel sum rulg€l5]. In two independent velocity, Beth_e-like ¢>1) limit the corresponding curves
recent publicationg16,17] an extension of this rule to merge, Show”ﬁg that the pmb'e”.‘ be.co”.‘es a pgrturbatwe
velocity-dependent screening was established. one, asymptotically. Furthermore, in this high-velocity range

Their result is as follows in Born approximation for the thbe \{tetlocn}[/_-depehn_dﬁnt tshcreetﬂlngtgtl_ves ta :?[_tolpplng power
scattering amplitudg16,17; about two times higher than the static-potential approxima-

tion.
The dynamical result has the expecfdd-6] asymptotic

y?=

N T

2 2
~ Pr |1l PE—v° |vtDpE . >
= = — 4+
Z=V(q O)? 2 apro Mo —pel | (6) form in the Bethe limit
~ . ) dE 4mng 202
whereV/(q) is the Fourier transform of the screened poten- — ] =72 >—In —, (8)
tial. The Fermi velocity is defined age=(37?ngy)*® and dx/, v wp

can be expressed hy-=1.92f, whererg is the Wigner-

Seitz radius. Now, in the present parametric cig¢g=0) Wherew,=4mn, is the classical plasma frequency. In ad-

:Zb/(ZnO), and one obtains from E(ﬁﬁ) the desired con- dition, we note that at low Ve|0CitieSv§p|:) the present
sistent form of the parametér as results(for Z=*1) are in very reasonable agreement with

those based on the so-called “impurity-form” of the stop-
-1

2 pz—v? |v+ p ping power[the low-velocity form of Eq(1)]:
b(v.pe)=3PE 5+ — (@)
3 2 4p|:l) v p|: dE
Clearly, according to our motivation, this pseudopotential (&)h:novaUtf(pF)’ ©)

term has a special kinetic-energy-like form for both limits of

v, viz., b~p2 or b~v?, respectively at a fixed value. and self-consistent static potentials of density-functional
Our theoretical framework becomes, with this equation, aheory (DFT) within its Kohn-Sham orbital versiofil9,20]

closed one. We shall use the abdvég,v) in Egs. (58, or Thomas-Fermi-Weizs&er iterative versiofil3].

(5b), and(4), and calculate’(v,) values to Eqs(2) and(1) The above results are important for the case of a homo-

by numerical solution of the scattering Sctirmger equation geneous electron gas characterized, solely, by Jtsalue.

at vf/2 scattering energies for cases of 1. Next, we  This condition, namely, the constancymf, is best satisfied

perform the double integrationdfp=2mp?sin ¢dpdp) in  for a real solid target at exceptional, i.e., channeling condi-
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FIG. 2. The inhomogeneity correctidsee Eqs(10) and (11)] FIG. 3. The average stopping powgee Eq.(10)] of an Al

obtained by volume averaging over a Wigner-Seitz solid-st_ate atomyrget for protons |§) and antiprotons [f) as a function of the
of the Al target. The results are plotted for protopg @nd antipro-  projectile velocityv. The experimental data are denoted @yfor
tons (p) as a function of the projectile velocity. protons[25] and by for antiprotong 7].

tions. Therefore, the next natural step in the implementatiomng with Fig. 1, one can see that this correction is very small
of a consistent theory for random incidence situatipfiss  at low velocities. At intermediate and higher velocities this
to take into account the inhomogeneity of the electron syscontribution becomes an important one. In the interesting
tem. Within the framework of an electron-gas model this isrange of the stopping-power maximum and beyon¢sée
achieved via the so-called local plasma density approximagig. 1), the correction term is almost constant, especially for
tion (LPDA) [1,2,21]. In this empirically successful method, protons. Furthermore, the correction term is essentially big-
the inhomogeneous electron gas of a solid-state target atoger for the positive particle than for a repulsive one.
is described by a distance-dependent, equivalent, one- Qur final results for solid-state conditions are exhibited in
electron radiusrg(r) [18], wherer is measured from the Fig. 3, together with recent experimental points for the aver-
fixed nucleus. Earlief21] and more recerfi22—24 results, age(av) stopping powefsee Eq.(10)]. One can observe a
obtained within the LPDA, even for slow ions, provide @an remarkable agreement with measured antiproton [@tand
posteriorijustification for the success of this old rule of em- only moderate deviations from the measured proton [28h
pirical nature. for an Al target. This latter deviation may be the conse-
In the following we present our velocity-dependent re-quence of the so-called charge-exchange contribution. This
sults, obtained by combining E(L) with localr4(r) density  contribution is not considered in the present work. According
parameters and the LPDA for a realistic electron derjdi8]  to prediction[26] this term may be about 10% in the inves-
in a spherically averaged Wigner-Seitz cell. This density wasigated velocity range beyond the stopping maximum, and
calculated by the Hartree-Fock method. The equivalent onethus would result in an even better agreement for the attrac-
electron radiug(r) is almost constanr;=2.07; valence tive, proton intruder.
part for 2<r <R,y (see Fig. 9 of Ref{18]) and tends to zero

quite smoothly ag —0. The cell radius iRy=3, as pre-
scribed by the target atomic density. Note that all of our lll. CONCLUSIONS
previous velocity-dependent equations, needed for (Eg. In this Rapid Communication we have investigated the

include ther¢(r) values, besides the velocity paramater important problem of energy losses of proton and antiproton

The volume-averagetav) stopping power is calculated, projectiles in a solid Al target. We applied the scattering

according to the LPDA method, as theory formulation of the stopping power and implemented it

with a consistent determination of the velocity dependence in

3 (Rw_ L|(dE a common one-body scattering potential required for the
R o drrevl gx) [s(M1r (A0 gansport cross-section calculations. We have modeled the
av h real solid target by an inhomogeneous electron gas and used

dthe LPDA in order to define average quantities for stopping

dE
dx

at givenuv values. Furthermore, it is useful to define an

; ; S powers.
introduce the following quantity: We investigated the special role of the inhomogeneity
dE dE dE correction and finally compared our theoretical results with
(—) =(—) — —) (11 relevant experimental predictions. A remarkable agreement

dx/;, \dx av dx/y, was established. This agreement shows that the présasi

ily controllable model and the physical ideas behind it are
to characterize the inhomogeneityr) correction. The last syccessful in interpreting an important and fundamental phe-
term of the right-hand side of E11) refers to the uniform  nomenon in the field of charged-particle interaction with
gas(see Fig. 1 with rg=2.07. matter.
The results, obtained by a careful numerical procedure for Qur optimization of the central potential was based on the
the quantity of Eq(11), are plotted in Fig. 2 as a function of |inear version of the Friedel sum rule. Therefore, the nonlin-

the velocity of protons§) and antiprotons[f). By compar-  ear effectgcharge-sign dependencies in stoppiage due to
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