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Scattering-theory formulation of stopping powers of a solid target for protons and antiprotons
with velocity-dependent screening

I. Nagy and B. Apagyi
Department of Theoretical Physics, Institute of Physics, Technical University of Budapest, H-1521 Budapest, Hungary

~Received 28 May 1998!

The scattering theory formulation of the stopping power of a homogeneous electron gas is implemented by
consistent velocity-dependent potentials, which are needed to calculate transport cross sections for bare intrud-
ers. The method of volume averaging, over the Wigner-Seitz atomic cell of a solid Al target, is employed to
characterize inhomogeneities of the electronic system and define average stopping powers for cases of protons
and antiprotons. The theoretical results for average energy losses of both projectiles are in remarkable agree-
ment with recent experimental data over a broad range of projectile velocities.@S1050-2947~98!50909-2#

PACS number~s!: 34.50.Bw, 34.50.Fa
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I. INTRODUCTION

The stopping power of matter for energetic charged p
ticles is of recurring interest in physics. The understanding
the slowing down of these particles is of great fundamen
and applied relevance. Generally, it is important to kn
accurately the stopping power for a broad range of projec
velocities in order to interpret experiments and justify o
physical ideas for slowing down processes.

Theoretically, stopping power has been considered s
the early days of atomic physics; for textbooks, see R
@1,2#. As in most areas of physics a general approach
stopping power involves models, where the stopping ma
is approximated by simpler systems, such as a degene
electron gas@3# or sets of harmonic oscillators@4#.

We reexamine here the theory of energy loss by prot

(p) and antiprotons (p̄) in an electron gas as a function o
the projectile velocityv. For the electron-gas model the
are two general approaches.

One of these is based on perturbative treatments of
sponse function theory. The linear response treatment@5#
provides a qualitative description of the stopping power.
result is independent of the charge sign of the charged
jectile. The quadratic response treatment@6# improves our
physical understanding for the asymptotic limits, i.e., fo
high-density electron gas and/or a high-velocity project
Around the measured@7# stopping maximum in real targets
these treatments are not able to account quantitatively for
strong influence of unit-charge (Z561) projectiles.

The second approach to the stopping power of an elec
gas is the scattering theory formulation@8–11#. At present,
this theory treats the electron gas as a quantum-statis
ideal system of independent constituents. The influence
the heavy projectile on this system is modeled by a sph
cally symmetric screened potential. The assumption@8–11#
of a central potential allows the application of the stand
partial-wave method in order to obtain one-electron scat
ing phase shifts that are needed to characterize the ene
loss process.

In this Rapid Communication we present a survey of
scattering theory supplemented by a physically motiva
PRA 581050-2947/98/58~3!/1653~4!/$15.00
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treatment for consistent velocity-dependent screening, giv
stopping powers of a solid Al target for protons (Z51) and
antiprotons (Z521). We use Hartree atomic units (e25\
5me51) throughout this work.

II. THEORY AND RESULTS

For a common one-body potential with spherical symm
try moving with constant velocityv through a homogeneou
(h) electron gas of given densityn0 , one obtains the follow-
ing expression for the stopping power@8–11#:

S dE

dx
D

h

5
2

~2p!3 E d3pf 0~p2/2!v r

vr•v

v
s tr~v r !. ~1!

Here f 0(p2/2) denotes the distribution function~step func-
tion atT50 temperature! of the ideal system of independen
constituents, and vr5v2p is the relative velocity
v r

25v21p222vp cosw. In the formallyexactsolution@10#,
given by Eq.~1!, the distribution function enters linearly, an
thus, for heavy projectile and potential with inversion sym
metry, the Pauli principle does not impose a restriction@12#.

The momentum-transfer~or transport! cross section
s tr(v r) in Eq. ~1! is given in partial-wave representation b

s tr~v r !5
4p

v r
2 (

l 50

`

~ l 11!sin2@d l~v r !2d l 11~v r !#, ~2!

where d l ’s are one-electron scattering phase shifts.
course, to implement the above-formulated approach, kno
edge of the scattering potential is essential. This poten
represents the effect of the heavy charged intruder on
model system. Here we take the additional step of determ
ing the scattering potential in a consistent way and th
implement the formal result.

Our starting equation to construct a consistent, veloc
dependent screening is the linearized Thomas-Fer
Weizsäcker equation@13#

~2 1
2 ¹21b!v~r !1An0V~r !50, ~3!
R1653 © 1998 The American Physical Society
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where V(r ) is the self-consistent screened potential of
projectile. This screened potential contains, via the Pois
equation, the properly normalized induced charge den
@dn(r )# of this approachdn(r )52An0v(r ) and depends on
the parameterb. The ‘‘wave-function’’ v(r ) of Eq. ~3! is
determined, at short distances (r→0), by the Coulomb part
(2Z/r ) of the potential and the Laplace term. In the sta
(v50) situation b is a so-called~Pauli! pseudopotentia
@14#, representing the kinetic energy of electrons. Precis
this kinetic-energy-like nature of the extra termb in Eq. ~3!
gives the physical motivation to considerb as a consistency
parameter in a velocity-dependent construction.

The self-consistent solution of Eq.~3! for the screened
potential has the following form@13#:

V~r !52
Z

r
e2arFegr1e2gr

2
1

b

4ag
~egr2e2gr !G , ~4!

in which a andg are characterized by

a25
b

2
1A4pn0, ~5a!

g25
b

2
2A4pn0. ~5b!

Note thatV(r ) may have an oscillatory behavior as a fun
tion of the model parametersb andn0 .

The normalization constraint for the total induced dens
~a constraint that is inherently included in the above param
ric treatment! may be expressed by a condition for scatter
one-electron phase shifts caused by the self-consistent p
tial. This condition for static (v50) charged projectiles is
the well-known Friedel sum rule@15#. In two independent
recent publications@16,17# an extension of this rule to
velocity-dependent screening was established.

Their result is as follows in Born approximation for th
scattering amplitude@16,17#:

Z5Ṽ~q50!
pF

p2 F1

2
1

pF
22v2

4pFv
lnUv1pF

v2pF
UG , ~6!

whereṼ(q) is the Fourier transform of the screened pote
tial. The Fermi velocity is defined aspF5(3p2n0)1/3 and
can be expressed bypF51.92/r s , wherer s is the Wigner-
Seitz radius. Now, in the present parametric caseṼ(q50)
5Zb/(2n0), and one obtains from Eq.~6! the desired con-
sistent form of the parameterb as

b~v,pF!5
2

3
pF

2F1

2
1

pF
22v2

4pFv
lnUv1pF

v2pF
UG21

. ~7!

Clearly, according to our motivation, this pseudopoten
term has a special kinetic-energy-like form for both limits
v, viz., b;pF

2 or b;v2, respectively at a fixedr s value.
Our theoretical framework becomes, with this equation

closed one. We shall use the aboveb(r s ,v) in Eqs. ~5a!,
~5b!, and~4!, and calculated l(v r) values to Eqs.~2! and~1!
by numerical solution of the scattering Schro¨dinger equation
at v r

2/2 scattering energies for cases ofZ561. Next, we
perform the double integration (d3p52pp2sinwdpdw) in
e
n

ty

y,

y
t-

en-

-

l

a

Eq. ~1! numerically to obtain stopping powers for a givenr s
Wigner-Seitz radius and fixedv values,vP@0,4#.

In the following we present our numerical results, first f
a homogeneous electron gas of givenr s . The numerical
value of r s is fixed by the valence density of an Al targe
r s52.07 @18#. In order to show the influence of a consiste
velocity-dependent screening, we compare, in Fig. 1, its
sults ~solid curves! with those obtained by the statically
screened-potential approximation~dashed curves!. Our re-
sults for protons (p) and antiprotons (p̄) show, in both cases
remarkable charge-sign dependences. Apart from the l
velocity range (v,1) the dynamical screening acts to e
hance the stopping powers for both projectiles. In the hi
velocity, Bethe-like (v@1) limit the corresponding curve
merge, showing that the problem becomes a perturba
one, asymptotically. Furthermore, in this high-velocity ran
the velocity-dependent screening gives a stopping po
about two times higher than the static-potential approxim
tion.

The dynamical result has the expected@1–6# asymptotic
form in the Bethe limit

S dE

dx
D

h

5Z2
4pn0

v2 ln
2v2

vp

, ~8!

wherevp5A4pn0 is the classical plasma frequency. In a
dition, we note that at low velocities (v!pF) the present
results~for Z561! are in very reasonable agreement w
those based on the so-called ‘‘impurity-form’’ of the sto
ping power@the low-velocity form of Eq.~1!#:

S dE

dxD
h

5n0vpFs tr~pF!, ~9!

and self-consistent static potentials of density-functio
theory ~DFT! within its Kohn-Sham orbital version@19,20#
or Thomas-Fermi-Weizsa¨cker iterative version@13#.

The above results are important for the case of a hom
geneous electron gas characterized, solely, by itsr s value.
This condition, namely, the constancy ofr s , is best satisfied
for a real solid target at exceptional, i.e., channeling con

FIG. 1. The stopping power of a homogeneous electron gas
r s52.07, as a function of the projectile velocityv, for protons (p)

and antiprotons (p̄). The solid curves are based on consiste
velocity-dependent potentials, while the dashed ones are base
the corresponding static potentials.
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tions. Therefore, the next natural step in the implementa
of a consistent theory for random incidence situations@7# is
to take into account the inhomogeneity of the electron s
tem. Within the framework of an electron-gas model this
achieved via the so-called local plasma density approxi
tion ~LPDA! @1,2,21#. In this empirically successful method
the inhomogeneous electron gas of a solid-state target a
is described by a distance-dependent, equivalent, o
electron radiusr s(r ) @18#, where r is measured from the
fixed nucleus. Earlier@21# and more recent@22–24# results,
obtained within the LPDA, even for slow ions, provide ana
posteriori justification for the success of this old rule of em
pirical nature.

In the following we present our velocity-dependent r
sults, obtained by combining Eq.~1! with local r s(r ) density
parameters and the LPDA for a realistic electron density@18#
in a spherically averaged Wigner-Seitz cell. This density w
calculated by the Hartree-Fock method. The equivalent o
electron radiusr s(r ) is almost constant~r s52.07; valence
part! for 2,r ,RW ~see Fig. 9 of Ref.@18#! and tends to zero
quite smoothly asr→0. The cell radius isRW53, as pre-
scribed by the target atomic density. Note that all of o
previous velocity-dependent equations, needed for Eq.~1!,
include ther s(r ) values, besides the velocity parameterv.

The volume-averaged~av! stopping power is calculated
according to the LPDA method, as

S dE

dxD
av

5
3

RW
3 E

0

RW
dr r 2H S dE

dxD
h

@r s~r !#J , ~10!

at given v values. Furthermore, it is useful to define a
introduce the following quantity:

S dE

dxD
ih

5S dE

dxD
av

2S dE

dxD
h

~11!

to characterize the inhomogeneity~ih! correction. The last
term of the right-hand side of Eq.~11! refers to the uniform
gas~see Fig. 1! with r s52.07.

The results, obtained by a careful numerical procedure
the quantity of Eq.~11!, are plotted in Fig. 2 as a function o
the velocity of protons (p) and antiprotons (p̄). By compar-

FIG. 2. The inhomogeneity correction@see Eqs.~10! and ~11!#
obtained by volume averaging over a Wigner-Seitz solid-state a
of the Al target. The results are plotted for protons (p) and antipro-

tons (p̄) as a function of the projectile velocityv.
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ing with Fig. 1, one can see that this correction is very sm
at low velocities. At intermediate and higher velocities th
contribution becomes an important one. In the interest
range of the stopping-power maximum and beyond it~see
Fig. 1!, the correction term is almost constant, especially
protons. Furthermore, the correction term is essentially b
ger for the positive particle than for a repulsive one.

Our final results for solid-state conditions are exhibited
Fig. 3, together with recent experimental points for the av
age ~av! stopping power@see Eq.~10!#. One can observe a
remarkable agreement with measured antiproton data@7# and
only moderate deviations from the measured proton data@25#
for an Al target. This latter deviation may be the cons
quence of the so-called charge-exchange contribution. T
contribution is not considered in the present work. Accord
to prediction@26# this term may be about 10% in the inve
tigated velocity range beyond the stopping maximum, a
thus would result in an even better agreement for the att
tive, proton intruder.

III. CONCLUSIONS

In this Rapid Communication we have investigated t
important problem of energy losses of proton and antipro
projectiles in a solid Al target. We applied the scatteri
theory formulation of the stopping power and implemented
with a consistent determination of the velocity dependenc
a common one-body scattering potential required for
transport cross-section calculations. We have modeled
real solid target by an inhomogeneous electron gas and
the LPDA in order to define average quantities for stopp
powers.

We investigated the special role of the inhomogene
correction and finally compared our theoretical results w
relevant experimental predictions. A remarkable agreem
was established. This agreement shows that the present~eas-
ily controllable! model and the physical ideas behind it a
successful in interpreting an important and fundamental p
nomenon in the field of charged-particle interaction w
matter.

Our optimization of the central potential was based on
linear version of the Friedel sum rule. Therefore, the non
ear effects~charge-sign dependencies in stopping! are due to

m
FIG. 3. The average stopping power@see Eq.~10!# of an Al

target for protons (p) and antiprotons (p̄) as a function of the
projectile velocityv. The experimental data are denoted byd for
protons@25# and byj for antiprotons@7#.
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the exact quantum solution of the scattering problem. T
fully consistent determination of a central potential based
the general form of the velocity-dependent Friedel sum r
@16,17# needs further examination.
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