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We present an expanded distorted-wave theory for x-ray diffraction from a crystal. By adding a single
sinusoidal component to the distorting susceptibility, the new theory provides a simple first-principle
approach to the phase-sensitive scattering phenomenon in reference-beam diffraction experiments.

PACS numbers: 61.10.Dp, 78.70.Ck
Diffraction of x rays is a widely used technique for
studying structural information in condensed matter. One
of the main advantages of this structural technique is
that the diffracted intensities measured in experiments can
be easily interpreted by a simple kinematic theory [1–3]
that is based on the first-order Born approximation where
single scattering events are the predominant mechanism.
The kinematic theory, however, is intrinsically limited by
the phase problem of diffraction, i.e., its result is gener-
ally insensitive to the phases of scattering amplitudes even
though both the phases and the magnitudes are needed for
solving a complex structure. The only existing diffraction
theory to date that can be phase sensitive is the so-called
dynamical theory [4,5], which includes all possible inter-
actions among multiply excited Bragg reflection waves
inside a crystal. Unfortunately, this theory is rather com-
plicated in its mathematical formulation, especially in the
case of multiple Bragg waves [5], and it is generally
viewed as a specialist’s theory and is rarely used in ev-
eryday x-ray diffraction and crystallography analyses.

The practical need for a simple, phase-sensitive, first-
principle x-ray diffraction theory is greatly exemplified
by the recent experimental innovation of reference-beam
diffraction [6,7], which in principle allows a phase-
sensitive intensity data collection of a large number of
Bragg reflections using a routine crystallography setup.
With this new technique, it is conceivable that every
Bragg diffracted beam from a crystalline specimen con-
tains a multiple-beam interference component that can be
analyzed by a phase-sensitive diffraction theory to provide
the desired information for solving the crystallographic
phase problem. It is thus the purpose of this Letter to fur-
nish such a simple phase-sensitive theory that is easy to
use, and at the same time provides an intuitive physical
picture of the reference-beam diffraction process.

Previous efforts to develop an approximate phase-
sensitive theory have been based mainly on a perturba-
tional approach [8,9]. In this approach, one calculates
the diffracted intensity of a single main Bragg reflection,
and treats the additional Bragg waves as perturbations to
the main reflection. The results in general provide good
descriptions on the tails of a multiple reflection interfer-
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ence peak, but diverge at the center of the peak where
the multiple reflection is fully excited. The failure at the
peak center is intrinsic within the perturbational frame-
work, and a much different approach is needed in order to
solve this problem.

The new phase-sensitive approach that we present in
this Letter is based on a distorted-wave Born approxi-
mation (DWA) in quantum mechanical scattering theory
[10] used in calculations of nuclear collisions [11]. For
x rays, the only existing application of the DWA theory,
to our knowledge, is in the area of grazing-angle diffrac-
tion and scattering from surface structures [12–14], in
which the scattering medium is first approximated by
its zeroth-order Fourier component representing the aver-
age homogeneous substance. The scattering problem for
this averaged scatter, termed the distorting component, is
solved by the standard optical theory and a distorted wave,
i.e., the Fresnel wave, is obtained. This distorted wave is
then rescattered by surface roughness or other inhomoge-
neous surface structures, and this part of the problem is
solved using the Born approximation.

Our new theoretical approach, which we will refer to as
an expanded distorted-wave approximation (EDWA), fol-
lows closely to the algorithm of the conventional DWA
for x rays outlined above, with an important revision that
a sinusoidal Fourier component G is added to the distort-
ing component of the electric dielectric function. This
sinusoidal component represents a perturbing reference
G charge density component used to excite a reference
beam, and the resulting distorted wave is in fact composed
of two waves, O and G waves. Instead of the Fresnel
theory, a two-beam dynamical theory is employed to
evaluate these distorted waves, while the subsequent scat-
tering of these waves is again handled by the Born
approximation. The final result is a simple analytical
expression of a phase-sensitive diffracted intensity that is
valid for all measured Bragg reflections and for the en-
tire excitation range of the reference reflection G in a
reference-beam diffraction experiment.

The fundamental equation that governs the scatter-
ing of an x-ray plane wave, D0�r� � D

�0�
0 exp�2ik0 ?

r�, by a crystal with an electric susceptibility x�r� �
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2�rel2�p�r�r� is given by

�=2 1 k2
0�D � 2= 3 = 3 �xD� , (1)

where D is the electric displacement vector, re �
2.818 3 1025 Å is the classical radius of an electron, l

is the x-ray wavelength, and k0 � 2p�l. The electron
density r�r� is a periodic function of the crystal lattice
and can be expanded into a Fourier series: r�r� �
�1�Vc�

P
H FH exp�2iH ? r�, where Vc is the unit-cell

volume and FH are the structure factors. The differen-
tial equation (1) is equivalent to the following integral
equation [2,9]:

D�r� � D0�r� 1
1

4p

Z
dr0

exp�2ik0jr 2 r0j�
jr 2 r0j

=0

3 =0 3 �x�r0�D�r0�� . (2)

Following the formal description of the distorted-wave
approximation given in Ref. [12], we separate x�r� into a
distorting component x1�r� and the remaining part x2�r�:

x�r� � x1�r� 1 x2�r� .

In the conventional distorted-wave description, x1�r�
contains only the homogeneous average susceptibility
x0 � 2GF0 inside the crystal, where G � rel2��pVc�.
In our new expanded distorted-wave approximation, we
add a single predominant Fourier component G to x1�r�
so that the total distorting component is given by

x1�r� � 2G�F0 1 FGe2iG?r 1 F2GeiG?r� , (3)

and the remaining x2�r� is thus

x2�r� � 2G
X

Lfi0,6G

FLe2iL?r . (4)

Writing out explicitly that FG � jFGj exp�iaG� and
F2G � F�

G � jFGj exp�2iaG� when anomalous dis-
persion corrections are negligible, it can be seen that
the additional component in Eq. (3) represents simply

FIG. 1. Schematic illustration of the distorting susceptibility
in (a) distorted-wave approximation (DWA) and (b) expanded
distorted-wave approximation (EDWA).
a sinusoidal distortion, 22GjFGj cos�aG 2 G ? r�, as
illustrated schematically in Fig. 1.

The distorted-wave solution of Eq. (2) is a two-step
process. First, we solve for the distorted wave D1�r� due
only to x1�r�, which satisfies Eq. (2) with x�r� substituted
by x1�r�. However, since Eq. (2) is equivalent to Eq. (1),
this part of the solution can be obtained by solving

�=2 1 k2
0�D1 � 2= 3 = 3 �x1D1� . (5)

Since only O and G Fourier components are involved in
x1�r�, Eq. (5) represents a simple two-beam case and can
therefore be solved by the standard dynamical theory [4].
For clarity, we assume a parallel plate sample geometry
with b being the ratio of the normal component of the
incident wave vector k0 to that of the reflected kG �
k0 1 G. In addition, we assume that the incident beam
polarization direction D0 is perpendicular to the scattering
plane formed by k0 and kG . Using a normalized angular
parameter

hG �
b�u 2 uG� sin2uG 1 GF0�1 2 b��2

G�jbjFGF2G�1�2 ,

the field ratio rG between the G and the O waves inside
the crystal is given by [4]:

DG � rGD0

� 2�jbjFG�F2G�1�2�hG 6 �hG 1 b�jbj�1�2�D0 ,

(6)

where the choice of 6 is such that a smaller jrGj is
retained. An example of rG is shown in Fig. 2(a) for
GaAs (004).

The total distorted wave is given by the sum of the G
and the O waves:

D1�r� � D0e2iK0?r 1 DGe2iKG?r . (7)

Here we use capital K’s to indicate that these are internal
waves inside the crystal, KG � K0 1 G. To obtain the
absolute field strengths, we would apply the boundary
conditions that are used in standard dynamical theory
[4,5] to express D0 and DG in terms of D

�0�
0 of the incident

wave. It is important to note that these fields include
such dynamical effects as primary extinction in Bragg
reflection geometry and the Pendellosung effect in Laue
transmission geometry. For convenience, we separate out
the slow-varying exponentials of the imaginary parts of
K0 and KG and include them in D0 and DG , so that K0
and KG in Eq. (7) are only referring to their real parts.

The second step of the expanded distorted-wave so-
lution is to evaluate the scattering of the total distorted
wave, Eq. (7), by the remaining susceptibility component
x2�r�, as is done in the conventional distorted-wave Born
approximation [12]:

D�r� � D1�r� 1
1

4p

Z
dr0

exp�2ik0jr 2 r0j�
jr 2 r0j

=0

3 =0 3 �x2�r0�D1�r0�� . (8)
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FIG. 2. Calculated results of expanded distorted-wave ap-
proximation for G � �004� and H � �317� of GaAs in
reference-beam geometry. (a) Field ratio jrG j for G � �004�.
(b) Dynamical phase shift nG and exctinction correction m0�mz
for the (004). (c) Normalized intensity of H � �317� with
the correct triplet phase d � 3.5± (thick line) and an artificial
phase d � 183.5± (thin line), using the EDWA theory. The
open and filled circles are the corresponding full dynamical
N-beam calculations. (d) Same as (c) except that the (317)
structure factor is reduced by a factor of 5 to illustrate the
Umweganregung effect.

The first term in Eq. (7), D0 exp�2iK0 ? r�, gives rise
to a scattered wave field D0

0. The mathematics is simi-
lar to that used in the first-order Born approximation
[9], except that the primary extinction effect due to G
reflection has been accounted for in D0 which is now
a function of r0. However, since a typical extinction
length is on the order of many micrometers, D0 is a
slow-varying function, and thus can be replaced by its
average value D0 over the extinction depth and taken
out of the volume integral. For a thick parallel plate
Bragg geometry, it can be shown that the averaged field
intensity jD0j

2, normalized to the conventional absorp-
tion coefficient m0 along the surface normal, is given by
jD0j

2 � jD
�0�
0 j2m0�mz , where mz is the effective absorp-

tion coefficient including extinction [15]: mz � m0�1 1

Im�F2GrG��F00
0 �, with F00

0 being the imaginary part of the
zeroth-order structure factor F0. An example of m0�mz

is shown in Fig. 2(b) for GaAs (004) reflection. With
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the above approximation and using the algebra detailed in
Ref. [9], we obtain

D0
0�r� � NreFHu 3 �u 3 D0�

e2ik0r

r
, (9)

where N is the number of unit cells in the crystal par-
ticipating in the scattering process, and we have assumed
that the crystal is oriented in such a way that another set of
atomic planes, H, satisfies the Bragg’s law, k0u � K0 1

H � KH , with u being a unit vector.
The scattering of the second term in Eq. (7),

DG exp�2iKG ? r�, gives rise to a scattered wave
field D0

G . Using the same approach outlined above and
approximating DG by its extinction-averaged value DG �
rGD0, we obtain that

D0
G�r� � NreFH2Gu 3 �u 3 DG�

e2ik0r

r
, (10)

where the mathematical details again follow closely to
that in Ref. [9]. Combining Eqs. (9) and (10), we arrive
at the total scattered wave in u direction:

D0�r� � D0
0�r� 1 D0

G�r�

� Nreu 3 �u 3 D0�
e2ik0r

r
�FH 1 FH2GrG� .

(11)

Equation (11) constitutes the key result of our expanded
distorted-wave theory. The two terms in parentheses rep-
resent the rescattering of the forward-diffracted incident
O beam by reflection H and of the Bragg-diffracted ref-
erence G beam by reflection H 2 G, respectively. These
two waves travel along the same direction u, and interfere
with each other, producing a phase-sensitive diffracted in-
tensity. To see its phase dependence explicitly, we recall
that according to the dynamical theory, the phase of rG

is equal to the G structure-factor phase, aG , plus the dy-
namical phase shift, nG , which changes by p across the
G rocking curve (Fig. 2b). Thus the phase difference be-
tween the two waves is the sum of aH2G and aG 1 nG

minus aH , or, d 1 nG , where d � aH2G 1 aG 2 aH

is the invariant triplet phase used in crystallography.
The diffracted intensity along u is obtained by squaring
Eq. (11). For simplicity, this intensity is normalized to
that in the first-order Born approximation [9] given by a
formula identical to Eq. (9), except that D0 is replaced by
D

�0�
0 . Thus the final normalized intensity, IH , is given by

IH �

∑
1 1 2

Ç
FH2GrG

FH

Ç
cos�d 1 nG�

1

Ç
FH2GrG

FH

Ç2∏
m0

mz
. (12)

Equation (12) provides a simple compact expression for
calculating three-beam interference profiles as a function
of G reflection rocking angle in the reference-beam
diffraction geometry. A numerical example for a GaAs
G � �004� symmetric Bragg case �b � 21� is shown
in Fig. 2. The main characteristics of the G reference
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reflection, internal field ratio rG , dynamical phase shift
nG , and primary extinction correction factor m0�mz , are
plotted in (a) and (b) as a function of the normalized
angular parameter hG . The x-ray wavelength used in
the calculation is l � 0.918 Å. In Fig. 2(c) we show the
calculated diffracted intensity profiles, using Eq. (12), of
the GaAs H � �317� reflection, for both the true triplet
phase d � 3.5± (thick line) and for an artificial case
with d � 183.5± (thin line). The apparent reversal of
the asymmetric patterns demonstrates the phase sensitivity
of the intensity profiles as expected from Eq. (12). For
comparison, we plot the results calculated using a rigorous
N-beam dynamical theory originally developed by Colella
[5] and modified for the reference-beam geometry. These
results are shown as open and filled circles in Fig. 2(c)
for d � 3.5± and for d � 183.5±, respectively. The
agreements between the two theories in both cases are
excellent over the entire range of hG .

In addition to its validity over the entire excitation
range of the reference detour reflection, our expanded
distorted-wave theory also automatically takes into ac-
count the energy flow balance that depends on the
strengths of the structure factors involved, the so-called
Aufhellung and Umweganregung effects. To illustrate
these effects, we artificially adjust the ratio of jFH j�jFGj
from 0.425 (strong H) to 0.085 (weak H) by reducing
the structure factor of the H � �317� reflection by a fac-
tor of 5 while keeping the same triplet phase, and repeat
the same calculations performed for Fig. 2(c). These re-
sults are shown in Fig. 2(d) with a much greater verti-
cal scale, where considerable peak intensities appear as
Umweganregung. Nonetheless, the agreements between
the N-beam results (open and filled squares) and the
EDWA (thick and thin solid lines) are again excellent,
even in the central region of the G reflection where the
profiles are very complex.

Even though some mathematical similarities exist be-
tween the second-order Born approximation [9] and our
present EDWA theory in arriving at Eqs. (9) and (10), the
physical concepts involved in the two approaches are very
different. In the former perturbational approach, a main
reflection H is considered as a first-order approximation
and a detour perturbing reflection G is introduced later in
the second order, which prevent the accurate evaluation of
the G wave field close to its full peak excitation. In the
EDWA, the perturbing G wave field is treated on equal
bases as the incident O beam, and the subsequent rescat-
tering of the two waves is again evaluated equally, both in
first-order Born approximation.

It is also interesting to note that Eq. (12) resembles
an expression for an x-ray standing-wave yield [4,15].
This suggests that the multiple-beam interference effect is
closely related to the intrinsic standing-wave fields inside
the crystal. The EDWA theory presented here has indeed
provided a theoretical basis that the multibeam effects can
be viewed as an extension of the conventional incoherent
standing-wave yield to the regime of coherent scattering
processes of Bragg reflections.

In summary, by adding a sinusoidal component to the
distorting susceptibility, we have expanded the distorted-
wave theory to account for the phase-sensitive multiple-
Bragg-wave interference in x-ray diffraction. The
combination of the dynamical treatment in evaluation of
the distorted-waves and the kinematic approach in subse-
quent scattering of the distorted waves leads to a simple
analytical intensity expression that can be routinely used
to extract a large number of Bragg reflection phases in
the recently developed reference-beam diffraction crystal-
lographic technique. The theoretical approach presented
here may also stimulate other developments with the
basic distorted-wave scattering theory for a variety of
diffraction physics applications.
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