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Discrimination power of measures for nonlinearity in a time series
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The performance of a number of different measures of nonlinearity in a time series is compared numerically.
Their power to distinguish noisy chaotic data from linear stochastic surrogates is determined by Monte Carlo
simulation for a number of typical data problems. The main result is that the ratings of the different measures
vary from example to example. It therefore seems preferable to use an algorithm with good overall perfor-
mance, that is, higher order autocorrelations or nonlinear prediction €r&i863-651X%97)16205-3

PACS numbes): 05.45+b

I. INTRODUCTION Il. TESTING FOR NONLINEARITY
WITH SURROGATE DATA

The theory of nonlinear, deterministic dynamical systems .
. . : - Currently, the most general null hypothesis we know how
provides powerful theoretical tools to characterize geometri- 7 .
to test against is that the data were generated by a stationary

cal and dynamical properties of the attractors of such YSGaussian linear stochastic process, maybe measured through

tems. Alongside the theoretical understanding of these sys- . o

tems, many of the typical phenomena have been realized i n mstantaneous_measurement funcfioh Dewa’qons from

laboratory experiments. Many attempts have also been ma E'S nuIIbhypotr:jss Cat‘ﬂ bg q[etescfced bt);]compgjtlglglqtsogj? _nbon-

to detect behavior characteristic of deterministic systems i near observab’e on the data. since the probability distribu-
tions of such observables are generally not known analyti-

field data, that is, time series recordings of real world phe X .
nomena. Not surprisingly, the coarse nature of these tim ally, they must _be estimated by Monte Carlo resampling of
series(finite number of points with finite resolutipmakes it e data. For t.h's purpose one generates_random data sets
difficult to obtain unambiguous results. As a particular ex_(su_rrogate}s which conserve thosg properties of the da_ta
ample, it has been pointed ofdf] that linear stochastic pro- which are |rrelevapt for a given qhomg of the null hy_potheS|s.
cesses with long range autocorrelations can lead to Spur_or the hypothesis of a Gaussian linear stochastic process,
ously small estimates of the attractor dimensifee also he data and the surrogates must have the same autocorrela-
the discussion in Ref2].) The method of surrogate d&ta] tion fu_nct|0r_1 or, equwale_ntly, the_ same power spectrum. For
af nonlinearity test allowing for simple rescalings, the single

provides a rigorous statistical test for the null hypothesis th oo e
the data have been generated by a linear stochastic procefg]e probability distribution also must be conservednan-

If this null hypothesis cannot be rejected, the results of 4¢2) Oobservablet=t({xn}) IS estlmkated on the original
nonlinear analysis have to be regarded as spurious. In suchdgta{xn} and all of theB surrogategx,}, k=1,... B. The
test, the value of some measure of nonlinearity is compareffiStrioution of t can be estimated from the values
for the data and a number of randomized samples, the surré=t({Xn}). One can then test at a given level of significance
gates. The nonlinearity measure should be sensitive to th@r the assumption thag=t({x,}) was drawn from the same
kind of nonlinearity suspected in the data, and it should bdlistribution. If this assumption is rejected, the original data
possible to estimate its value with low variance. In this papefx} are taken to be different from the linear surrogates, and
we will numerically compare the performance of a selectionare thus considered to be nonlinear at this level of signifi-
of measures which have been proposed in the literature. cance.

Apart from the mere detection of nonlinearity, nonlinear The use of surrogate data has been promoted in the con-
observables can be used to discriminate between distinéext of chaotic time series in Ref3]. Although this tech-
states of a system on the base of time series data. Mosique has made distinguishing chaos from noise much safer,
notably, claims have been made that measures derived froepme caveats remain. These will not be discussed in this
chaos theory are able to distinguish healthy patients fronpaper; Refs[8—-10] provide noteworthy material. Through-
those with pathological biological rhythms, for example, car-out we will use examples where the known problefmen-
diac arrhythmiagd4—6]. The results presented in this paper stationarity, long coherence timesre of no concern.
are also of relevance for the question of the preferable dis- There are two important parameters which characterize
criminating statistic in such a context. The most striking ob-the performance of a statistical test. One issit® «, which
servation is that, although the simplest observables, notablg the probability that the null hypothesis is rejected, al-
simple prediction errors, show good overall performance, rethough it is in fact true. Specifying kevel of significance
sults differ immensely from application to application, which 1—p of the test amounts to the statement that its size does
may explain the partially contradicting claims in the litera- not exceedp. It is customary to specifyp a priori, and
ture. If enough data are available to be split into a training setlesign the test accordingly. The important question of
and a test set, and if a model for a reasonable alternativehether the surrogate data test indeed has the specified size
hypothesis can be constructed, then optimization of the tedtas been previously addressed; see R&i8,10. If the ac-
on typical data may be worthwhile. tual probability of a false rejection is larger than the test
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yields incorrect results. The above references give examples (2) Brock et al. (BDS) [14] showed that for a sequence of
where this situation can occur with surrogate data testdindependent random numbef,,(€)=C;(e)™ holds, where
While excessive size renders the test useless, an actual sizeis the embedding dimension. In the same paper, a formal
which is smaller thamp is formally admissible. However, it test for this property was also introduced. Instead of the
can result in a dramatic decrease in discrimination power. loriginal BDS statistic, which was introduced in order to be
such casegfor example, if a fitted linear model is run to able to give the asymptotic form of the probability distribu-
generate surrogatest is therefore advisable to calibrate the tion, we use the simpler expression

test by using “surrogate surrogate datgf0]. Since the size BDS, o

of the test may depend on the particular realization of the t2(m, 7,€) = Cpy(€)/Cy(e)™. ()

null hypothesis, this calibration is usually quite cumbersome . . .
We verified the correct test size for all the numerical ex-Other choices we tried are values Gfe) at fixed length

amples in this paper by performing a series of tests on suns-cglrfls’t V;'h'gh ggvencor}ﬁlti\';?nthéirlﬁsﬁ ?Or\lNerI,n ?Rd Id![rt'n?nsmn
rogate data fulfilling the null hypothesis. estimators based on po e ensions. € latter case,

While the size predominantly assesses the quality of théh:ds]cacl)'.rr:?si)(p;g?;t o_f”r:glggtb(;rl g'g’;ae?C:slés.gte;g]n:'hn:g]fezn
surrogate data sets, in this paper we want to evaluate theach POl P Y- u v :

abilities of differentobservables to detect nonlinearity. This or th'e medlgn Oc]; th.es.e valgéé,lﬂ. Since wef dr':j not f|_nd
property is quantified by thpower 3 of the test. It is defined ?le_;]nte;estm_g eV|StL|ons ;9(;“ t € pcIJV\(/jerg t .F C:naanlum
as the probability to reject the null hypothesis correctly when <€/M00 estimatot™, we did not include detailed results
it is indeed false. The power of a statistical test can be de!" this paper. . . : .
Many quantities which have been proposed in the litera-

termined empirically by repeating the test many times o : ; Lo
different realizations of the data. Since we cannot make- ¢ for nonl_mearlty testing in some way or the other guan-
strong assumptions about the distributions of the obser ify the non_llnear predlgtablllty of the signal. Examples in-
ables, there is no alternative to this computationally expe”ﬁ:lédsetagfs?ilé'n?ofoéigzsgn?(;nﬁgﬁoﬁg'b?ggglﬂmgtgﬁfe
sive approach. However, in order to limit the computationalextent the faﬂsepneares{ neiphbor technigiiés. We use a
effort, we performed tests at a rather low level of signifi- . 9 Quie. ) .
cance, for which only a few surrogate data sets are necessa rticularly stable representative of the class of predictability
' easures:

(3) A nonlinear prediction error with respect to a locally

constant predictoF can be defined by

We evaluated a number of different nonlinear observ- 2
ables. Most of them are at least inspired by the theory of tPEm, r,e)=| > [Xne1—F(X0)12] . (4)
nonlinear dynamical systems, and rely on a time delay em-
bedding of the scalar time series. Embedding vectorsin

Ill. MEASURES OF NONLINEARITY

N The prediction over one time step is performed by averaging
dimensions are formed as usuak=(X,—m-1), -- - Xn),  over the future values of all neighboring delay vectors closer
where 7 is the delay time. Since the Grassberger-ProcaccCighan e in m dimensions.
correlation dimensio, [11] seems to be among the most  |n Ref.[19] a nonlinear Volterra-Wiener model is claimed
popular measures, we considered several variants of this ag pe superior to other techniques when applied to short
gorithm. The correlation sur@(e) at a scalee is given by noisy signals. We compared the maximal feasible noise level
for a detection of nonlinearity quoted in Rdfl9] to the
C(€)=consix @(H)zi_;j”_ €). (1) pgrformance of the locally coqstant predictor above for the
li— Tt Henon, lkeda, and Lorenz series. We found tht gave
either better(Henon, lkeda or comparablgLoren? perfor-
Dynamically correlated pairs are discarded as usual, anghance, and therefore did not include the Volterra-Wiener
const refers to the normalization. Since none of the examplegodel in this study.
in this study would allow for the identification of a true Further, we used the following nonlinear observables:
scaling region, we will choose the length scales for good (4) Linear (two point autocovariances can be generalized
discrimination power. Of course, this will make an interpre-py introducing more than one lag. In the spectral domain,
tation as a fractal dimension or complexity measure imposthis generalization leads to the bispectrum and polyspectra
sible. In particular, we implemented two ways of turning [20]. Our (somewhat arbitranychoice of a higher-order au-

C(e) into a single number: tocovarianceor cumulant is
(1) A maximum likelihood (ML) estimator of the
Grassberger-Procaccia correlation dimendignis given by O3 7) = (XnXn— Xn—2,)- )
Cr(€) (5) A simple guantity which is frequently used to detect
tMt(m, 7€) =T C (&) (2)  deviations from time-reversibility is
m
€ - d€I
o R(7) = (X)), ©®)

This expression is taken from R¢f.2]. The maximum like- We explicitly indicated the adjustable parameters which can

lihood estimation of the correlation dimension goes back tde chosen using several different strategies. One possibility
Ref.[13]. Therefore such quantities are generally referred tds to optimize the adjustable parameters. This has to be done
as theTakens’ estimator either for data which is not subsequently used for the test, or
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it has to be done individually for each data set and surrogate. TABLE |. Maximal feasible noise level for the detection of
The former requires a knowledge of the correct answer fononlinearity with3=0.95(0.7). Results for the Heon map.

the “training data” which is rather uncommon. The latter is

computationally extremely expensive, and care has to be Feasible noise leved
taken in order to avoid overfitting of the data. Note, for ex- Statistic Parameters B=0.95 B=0.7
ample, that minimizing prediction errors does not necessariI¥ML —

i LI m=2 0.7 0.9
optimize the discrimination power. {BDS _3 11 13

In the present work, we fix as many parameters as poSqg m=3 1'2 1'5
sible to reasonablad hocvalues prior to the tests. Before , __1 1'1 1'5
each test, a brief survey was performed as to which embed:_,, 7_1 14 18

T= . .

ding dimensions and delay times lead to satisfactory results
for each quantity. We feel that this procedure comes closest
to what one can do in practice, where also a formal optimi- . - L . .
zation of the discrimination power is impossible. The Iengthrc.)gates na specn‘l_ed direction. In this case and at a given
scalee was either determined as a fixed fractioh ¢f the = SIZ& @ We createB=1/a—1 surrogate data sets, and com-

) - N N pute the test statistit on the original data set and its value
(r)ofotthzgzlt'la'square(i), (2) or the peak-to-peak amplitudg) ty,k=1,... B on each of the surrogates. Since we have a

total of 1l/x sets, the probability for each of them to have the
smallest value of by chance is justy, as desired. For two-
IV. IMPLEMENTATION AND RESULTS sided tests, we generaBe=2/a— 1 surrogates. The probabil-

The surrogate data sets will be generated as described iy for any of the 24 sets to have either the smallest or
Ref.[7], which is the appropriate method when the null hy-largest value of is then againe.
pothesis is that the data have been generated by a Gaussiant0r the nonlinearity measures inspired by the theory of
linear stochastic process, possibly measured through a mon@@terministic dynamical systenitl)—(3) abovd, we expect
tonic, instantaneous, time-independent measurement fung0nlinearity in the data to result in lower values. Thus it is
tion. In brief, the method is based on an ordinary phase raratural to perform one-sided tests. For the remaining two
domized surrogate seried8={s,,n=1,... N} which has Mmeasures we perform two-sided tests. In order to limit the
the same sample power spectrum as the time Seriég)mputatlpna}l_ burden, all tests are _carrled out at t_he 90%
X={x,,n=1, ... N}. Such a surrogate is obtained by tak- level of significance; that is, with r_1|n(a_19 for two-sided
ing the Fourier transform ok, randomizing the phases, and tests surrogates. For practical applications, at least a 95%

inverting the transform. Now the following two steps are confidence. is usually required. The power can pe increased
iterated alternatingly: by performing tests based on more than the minimal number

(1) The surrogate series is brought to the sample distribu®f Surrogate data sets. o
tion of X by rank ordering, For purely dgterr_nlmstl_c signals, we would almost invari-
ably obtain a discrimination power g8=1. Therefore we
contaminate deterministic sequendes} with noise{7,},
which consists of a phase-randomized copy of the sequence.
Thus the noise is random, but with the same power spectrum
as the datdin-band nois¢ The noisy data are given by

Sr’1 = Xindexranks,))) - (7)

Here, ranké,) =k and indexk) =n if s, is thekth smallest
value inS. After this step,S’ and X have the same distribu-
tion of values, but the power spectrum may have changed.

(2) The Fourier amplitudes &' ={s/,,n=1, ... N} are Sp=
replaced by those of. The resulting serieS” has the same

sample power spectrum &s This step may, however, alter .
the distribution of values. The way the noise is generated and added guarantees that the

In Ref. [7], numerical evidence and heuristic argumentspower is not dominated by changes in the autocorrelations or

are given that this scheme indeed converges to a sequengéeova”ance of the ]fjt""tat' . ‘ d at diff t noise |
with the same distributiomnd the same power spectrum as | ne sgqu?ncctia f[) ests ltshper orme Ia:‘ : 'glren OO'ST evl-
the data. While formal convergence can only be expected foy'> !N order to determine the maximal feasible noise leve

infinitely long sequences, the approximation is satisfactory TABLE II. Fracti ¢ ful reiecti t of 1000 fest
for finite data length. If the deviation from a Gaussian distri- . - rraction of successiul rejections out o ests,
noisy Lorenz data. The errors are based on the assumption of a

bution or linear correlations in the time series are not toqb. S . . N -
. . . inomial distribution for independent trials. No significant rejection
strong, the usual amplitude-adjusted phase-randomized sur-

. ible witht®® andtR&Y.
rogateq 3] yield an accurate test as well. Our results do notIS possible Wi an
explicitly depend on the particular method of generating CONgyatistic
strained Monte Carlo realizations.

As mentioned above, we do not know the probability dis-t™- m=3 0.25+0.02

112
(Xnt+amny). ()

1
1+a’

Parameters Powgr

tributions of the nonlinear observables used in this paper. Im5°S m=2 0.24-0.02
particular, Gaussianity cannot be assumed. Therefore wéE m=4 0.66+0.02
have to employ a nonparametric, rank-based test, as has bega =3 0.09+0.01
suggested in Ref9]. A test is calledone sidedif the null  Rev =3 0.10+0.01

hypothesis is rejected only if the data deviate from the sur
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FIG. 1. Comparison of discrimination power for different non-
linearity measures and noise levels, fornda data with in-band
noise. Curves from the left: correlation statisti¢$ andt®PS, pre-
diction errort™E (crossej third-order cumulant®®, and time asym-
metry tREV. The size of the test was taken to be 0.1.

which allows for the detection of nonlinearity with a power

of 8=0.95 (0.7). The practical usefulness of tests with
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FIG. 2. Discrimination power for uncoupled tent maps. In this
figure, results are shown for three selected nonlinearity measures.
From above: time asymmettff=Y, prediction errot”, m=4, and
ML dimension estimatot™-, m=2. The number of maps was var-
ied in steps of two, and each point was obtained with 200 tests. The
size of the test was taken to be 0.1.

V. CONCLUSIONS

power less thaB=0.7 seems questionable. In this sequence,

2000 individual tests with Heon time series of length 2048

The results presented in Tables -1V and the figures sug-

were carried out for each point. The results are summarize@iest that the root-mean-squared error of a simple nonlinear
in Table | and Fig. 1. For this discrete time system, a unitoredictor gives consistently good discrimination power.

time delay seems most appropriate.

Other nonlinearity measures give even better performance in

Further, we evaluated the different quantities for a num-some cases, but fail in others. In particular, the time, reversal
ber of particular data problems, time series from the Loren2symmetry does very well most of the time. but can also fail
equations' an NMR laser experiment, and an assemb|y (ﬁomplet6|y Asymmetry under time reversal is a sufficient
uncoupled tent maps. In Table Il we show the results forand powerful indicator of nonlinearity, but not a necessary
time series of the Lorenz system at standard parameter vagondition. Which algorithm is to be preferred in a particular

ues. 2048 samples of thecoordinate were recorded every
0.08 time units. We added noise of amplitumte 1.3. It was
checked for each of the different observaklest with fewer

situation depends on the availability of an independent check
for the discrimination power. In the typical situation that
only few precious data sets, or even just one recor¢sgn

tests that other choices of the lag time and the embeddindong-term geophysical observations available, it seems

dimension did not lead to significantly better results.

advisable to use a robust, general purpose statistic with few

A long experimental time series from a NMR laser ex-adjustable parameters, for example a simple prediction error.
periment[21] was split into 600 segments with 1000 points If asymmetry under time reversal appears under visual in-

each. We added in-band noise of amplitete0.8. Results
are shown in Table IlI.

spection of the data, a simple statistic [#&" will probably
give the best results.

Finally, we consider an assembly of uncoupled tent maps. The null hypothesis we adopted in this work was chosen

Each individual map is given by, ;=2x, if x<0.5 and

since it is the most general one that excludes nonlinear de-

X+ 1=2—2X, if x=0.5. The recorded variable is the sum of terminism and that can be tested for properly. If we are in

the variables oN individual tent maps. No noise is added.
The discrimination power is measured as a functioiofn

fact looking for deterministic structure in a signal, then
simple statistics like¢REY andt®3 which are based on higher-

Fig. 2 we show the results for the time asymmetry, predic.Order cumulants are not very attractive because they are also
tion error, and ML statistics. Table IV shows the results forduite sensitive to those deviations from the null hypothesis

all the nonlinearity measures Bt=16. In this example, the

time asymmetry statistic is doing extremely well. The pre-

we arenot looking for. The formal test discussed in this
paper answers the questioraifiy deviation from arescaled

diction error also gives a reasonable power, while all othefaussian linear stochastic process can be detected. Surrogate

quantities basically fail, although different settings fior
were considered.

TABLE IIl. Fraction of successful rejections out of 600 tests,
noisy NMR laser data.

data tests have, however, been mostly used with the question
in mind if it is legitimate and useful to use methods from

TABLE IV. Fraction of successful rejections out of 100 tests,
sum of 16 uncoupled tent maps.

Statistic Parameters Powgr Statistic Parameters Powgr
ML m=3 0.61+0.03 Mt m=2 0.11+0.03
tBDS m= 0.86+0.02 tBDS m=2 0.10+0.03
tPE m=3 0.79+0.02 tPE m=4 0.92+0.03
tc3 =3 0.45+0.03 t©3 =1 0.10+0.03
tREV =1 0.35+0.02 tREV =1 1.00+0.00
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dynamical systems theory. This amounts to specifying a parassumes Gaussianity and independence of the sequence
ticular class as an alternative hypothesis. In such a case wWe,}, while Ref. [19] needs only independence. We do not
should choose the discriminating statistic accordingly, thatee what should justify the assumption of point-to-point in-
is, from the arsenal of dynamical systems methods. dependence oft,} for autocorrelated time series data; in-
Let us finally remark that a couple of tests for nonlineargeed, we empirically find the assumption to be wrong at least
properties of time series have been proposed which use sUigr prediction errors and pointwise dimensions. The common
rogate data in a different way or not at all. Rather than estipositive correlation among the leads to an underestimation

mating the distribution of the observatifrom a random-  of the variance of the average and thus to a dangerous
ized sample, it is sometimes calculated on the base of somgerestimation of the significance of the test.

assumptions. If the null hypothesis is that of a purely Gauss-
ian linear random procedsvithout distortion, significance
levels for higher-order correlation functions can be derived.
Some authors, e.g., Ref®,19], observe that most observ-
ablest are temporal averages over individual quantitigs We thank James Theiler, Daniel Kaplan, Peter Grass-
determined for each point in a time sequence. In order tdoerger, and Holger Kantz for stimulating discussions. This
derive the distribution of from the knowledge oft,,}, how-  work was supported by the SFB 237 of the Deutsche Fors-
ever, one has to make certain assumptions. Referfice chungsgemeinschatt.
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