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Discrimination power of measures for nonlinearity in a time series

Thomas Schreiber and Andreas Schmitz
Physics Department, University of Wuppertal, D-42097 Wuppertal, Germany

~Received 22 January 1997!

The performance of a number of different measures of nonlinearity in a time series is compared numerically.
Their power to distinguish noisy chaotic data from linear stochastic surrogates is determined by Monte Carlo
simulation for a number of typical data problems. The main result is that the ratings of the different measures
vary from example to example. It therefore seems preferable to use an algorithm with good overall perfor-
mance, that is, higher order autocorrelations or nonlinear prediction errors.@S1063-651X~97!16205-5#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

The theory of nonlinear, deterministic dynamical syste
provides powerful theoretical tools to characterize geome
cal and dynamical properties of the attractors of such s
tems. Alongside the theoretical understanding of these
tems, many of the typical phenomena have been realize
laboratory experiments. Many attempts have also been m
to detect behavior characteristic of deterministic system
field data, that is, time series recordings of real world p
nomena. Not surprisingly, the coarse nature of these t
series~finite number of points with finite resolution! makes it
difficult to obtain unambiguous results. As a particular e
ample, it has been pointed out@1# that linear stochastic pro
cesses with long range autocorrelations can lead to sp
ously small estimates of the attractor dimension.~See also
the discussion in Ref.@2#.! The method of surrogate data@3#
provides a rigorous statistical test for the null hypothesis t
the data have been generated by a linear stochastic pro
If this null hypothesis cannot be rejected, the results o
nonlinear analysis have to be regarded as spurious. In su
test, the value of some measure of nonlinearity is compa
for the data and a number of randomized samples, the su
gates. The nonlinearity measure should be sensitive to
kind of nonlinearity suspected in the data, and it should
possible to estimate its value with low variance. In this pa
we will numerically compare the performance of a select
of measures which have been proposed in the literature.

Apart from the mere detection of nonlinearity, nonline
observables can be used to discriminate between dis
states of a system on the base of time series data. M
notably, claims have been made that measures derived
chaos theory are able to distinguish healthy patients fr
those with pathological biological rhythms, for example, c
diac arrhythmiae@4–6#. The results presented in this pap
are also of relevance for the question of the preferable
criminating statistic in such a context. The most striking o
servation is that, although the simplest observables, not
simple prediction errors, show good overall performance,
sults differ immensely from application to application, whic
may explain the partially contradicting claims in the liter
ture. If enough data are available to be split into a training
and a test set, and if a model for a reasonable alterna
hypothesis can be constructed, then optimization of the
on typical data may be worthwhile.
551063-651X/97/55~5!/5443~5!/$10.00
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II. TESTING FOR NONLINEARITY
WITH SURROGATE DATA

Currently, the most general null hypothesis we know h
to test against is that the data were generated by a statio
Gaussian linear stochastic process, maybe measured thr
an instantaneous measurement function@7#. Deviations from
this null hypothesis can be detected by computing some n
linear observable on the data. Since the probability distri
tions of such observables are generally not known ana
cally, they must be estimated by Monte Carlo resampling
the data. For this purpose one generates random data
~surrogates! which conserve those properties of the da
which are irrelevant for a given choice of the null hypothes
For the hypothesis of a Gaussian linear stochastic proc
the data and the surrogates must have the same autoco
tion function or, equivalently, the same power spectrum. F
a nonlinearity test allowing for simple rescalings, the sing
time probability distribution also must be conserved. A~non-
linear! observablet5t($xn%) is estimated on the origina
data$xn

0% and all of theB surrogates$xn
k%, k51, . . . ,B. The

distribution of t can be estimated from the value
tk5t($xn

k%). One can then test at a given level of significan
for the assumption thatt05t($xn

0%) was drawn from the same
distribution. If this assumption is rejected, the original da
$xn

0% are taken to be different from the linear surrogates, a
are thus considered to be nonlinear at this level of sign
cance.

The use of surrogate data has been promoted in the
text of chaotic time series in Ref.@3#. Although this tech-
nique has made distinguishing chaos from noise much sa
some caveats remain. These will not be discussed in
paper; Refs.@8–10# provide noteworthy material. Through
out we will use examples where the known problems~non-
stationarity, long coherence times! are of no concern.

There are two important parameters which characte
the performance of a statistical test. One is itssizea, which
is the probability that the null hypothesis is rejected,
though it is in fact true. Specifying alevel of significance
12p of the test amounts to the statement that its size d
not exceedp. It is customary to specifyp a priori, and
design the test accordingly. The important question
whether the surrogate data test indeed has the specified
has been previously addressed; see Refs.@7,8,10#. If the ac-
tual probability of a false rejection is larger thanp, the test
5443 © 1997 The American Physical Society
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5444 55THOMAS SCHREIBER AND ANDREAS SCHMITZ
yields incorrect results. The above references give exam
where this situation can occur with surrogate data te
While excessive size renders the test useless, an actua
which is smaller thanp is formally admissible. However, i
can result in a dramatic decrease in discrimination power
such cases~for example, if a fitted linear model is run t
generate surrogates!, it is therefore advisable to calibrate th
test by using ‘‘surrogate surrogate data’’@10#. Since the size
of the test may depend on the particular realization of
null hypothesis, this calibration is usually quite cumbersom
We verified the correct test size for all the numerical e
amples in this paper by performing a series of tests on
rogate data fulfilling the null hypothesis.

While the size predominantly assesses the quality of
surrogate data sets, in this paper we want to evaluate
abilities of differentobservables tto detect nonlinearity. This
property is quantified by thepowerb of the test. It is defined
as the probability to reject the null hypothesis correctly wh
it is indeed false. The power of a statistical test can be
termined empirically by repeating the test many times
different realizations of the data. Since we cannot ma
strong assumptions about the distributions of the obs
ables, there is no alternative to this computationally exp
sive approach. However, in order to limit the computatio
effort, we performed tests at a rather low level of sign
cance, for which only a few surrogate data sets are neces

III. MEASURES OF NONLINEARITY

We evaluated a number of different nonlinear obse
ables. Most of them are at least inspired by the theory
nonlinear dynamical systems, and rely on a time delay e
bedding of the scalar time series. Embedding vectors inm

dimensions are formed as usual:xWn5„xn2(m21)t , . . . ,xn…,
wheret is the delay time. Since the Grassberger-Procac
correlation dimensionD2 @11# seems to be among the mo
popular measures, we considered several variants of thi
gorithm. The correlation sumC(e) at a scalee is given by

C~e!5const3 (
u i2 j u.tmin

Q~ ixW i2xW j i2e!. ~1!

Dynamically correlated pairs are discarded as usual,
const refers to the normalization. Since none of the exam
in this study would allow for the identification of a tru
scaling region, we will choose the length scales for go
discrimination power. Of course, this will make an interpr
tation as a fractal dimension or complexity measure imp
sible. In particular, we implemented two ways of turnin
C(e) into a single number:

~1! A maximum likelihood ~ML ! estimator of the
Grassberger-Procaccia correlation dimensionD2 is given by

tML~m,t,e!5
Cm~e!

*0
e Cm~e8!

e8
de8

. ~2!

This expression is taken from Ref.@12#. The maximum like-
lihood estimation of the correlation dimension goes back
Ref. @13#. Therefore such quantities are generally referred
as theTakens’ estimator.
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~2! Brock et al. ~BDS! @14# showed that for a sequence o
independent random numbers,Cm(e)5C1(e)

m holds, where
m is the embedding dimension. In the same paper, a for
test for this property was also introduced. Instead of
original BDS statistic, which was introduced in order to
able to give the asymptotic form of the probability distrib
tion, we use the simpler expression

tBDS~m,t,e!5Cm~e!/C1~e!m. ~3!

Other choices we tried are values ofC(e) at fixed length
scales, which gave consistently less power, and dimen
estimators based on pointwise dimensions. In the latter c
the scaling exponent of neighbor distances is determined
each point separately. The actual observable is then the m
or the median of these values@6,15#. Since we did not find
any interesting deviations from the power of the maximu
likelihood estimatortML, we did not include detailed result
in this paper.

Many quantities which have been proposed in the lite
ture for nonlinearity testing in some way or the other qua
tify the nonlinear predictability of the signal. Examples i
clude genuine forecasting methods~e.g., Ref.@16#! but also
the statistic proposed by Kaplan and Glass@17# and to some
extent the false nearest neighbor techniques@18#. We use a
particularly stable representative of the class of predictab
measures:

~3! A nonlinear prediction error with respect to a local
constant predictorF can be defined by

tPE~m,t,e!5S ( @xn112F~xn!#
2D 1/2. ~4!

The prediction over one time step is performed by averag
over the future values of all neighboring delay vectors clo
thane in m dimensions.

In Ref. @19# a nonlinear Volterra-Wiener model is claime
to be superior to other techniques when applied to sh
noisy signals. We compared the maximal feasible noise le
for a detection of nonlinearity quoted in Ref.@19# to the
performance of the locally constant predictor above for
Hénon, Ikeda, and Lorenz series. We found thattPE gave
either better~Hénon, Ikeda! or comparable~Lorenz! perfor-
mance, and therefore did not include the Volterra-Wien
model in this study.

Further, we used the following nonlinear observables:
~4! Linear ~two point! autocovariances can be generaliz

by introducing more than one lag. In the spectral doma
this generalization leads to the bispectrum and polyspe
@20#. Our ~somewhat arbitrary! choice of a higher-order au
tocovariance~or cumulant! is

tC3~t!5^xnxn2txn22t&. ~5!

~5! A simple quantity which is frequently used to dete
deviations from time-reversibility is

tREV~t!5^~xn2xn2t!
3&. ~6!

We explicitly indicated the adjustable parameters which c
be chosen using several different strategies. One possib
is to optimize the adjustable parameters. This has to be d
either for data which is not subsequently used for the test
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55 5445DISCRIMINATION POWER OF MEASURES FOR . . .
it has to be done individually for each data set and surrog
The former requires a knowledge of the correct answer
the ‘‘training data’’ which is rather uncommon. The latter
computationally extremely expensive, and care has to
taken in order to avoid overfitting of the data. Note, for e
ample, that minimizing prediction errors does not necessa
optimize the discrimination power.

In the present work, we fix as many parameters as p
sible to reasonablead hocvalues prior to the tests. Befor
each test, a brief survey was performed as to which emb
ding dimensions and delay times lead to satisfactory res
for each quantity. We feel that this procedure comes clo
to what one can do in practice, where also a formal opti
zation of the discrimination power is impossible. The leng
scalee was either determined as a fixed fraction (1

4! of the
root-mean-squared~1!, ~2! or the peak-to-peak amplitude~3!
of the data.

IV. IMPLEMENTATION AND RESULTS

The surrogate data sets will be generated as describe
Ref. @7#, which is the appropriate method when the null h
pothesis is that the data have been generated by a Gau
linear stochastic process, possibly measured through a m
tonic, instantaneous, time-independent measurement f
tion. In brief, the method is based on an ordinary phase
domized surrogate seriesS5$sn ,n51, . . . ,N% which has
the same sample power spectrum as the time se
X5$xn ,n51, . . . ,N%. Such a surrogate is obtained by ta
ing the Fourier transform ofX, randomizing the phases, an
inverting the transform. Now the following two steps a
iterated alternatingly:

~1! The surrogate series is brought to the sample distr
tion of X by rank ordering,

sn85xindex„rank~sn!… . ~7!

Here, rank(sn)5k and index(k)5n if sn is thekth smallest
value inS. After this step,S8 andX have the same distribu
tion of values, but the power spectrum may have change

~2! The Fourier amplitudes ofS85$sn8 ,n51, . . . ,N% are
replaced by those ofX. The resulting seriesS9 has the same
sample power spectrum asX. This step may, however, alte
the distribution of values.

In Ref. @7#, numerical evidence and heuristic argume
are given that this scheme indeed converges to a sequ
with the same distributionand the same power spectrum a
the data. While formal convergence can only be expected
infinitely long sequences, the approximation is satisfact
for finite data length. If the deviation from a Gaussian dis
bution or linear correlations in the time series are not
strong, the usual amplitude-adjusted phase-randomized
rogates@3# yield an accurate test as well. Our results do n
explicitly depend on the particular method of generating c
strained Monte Carlo realizations.

As mentioned above, we do not know the probability d
tributions of the nonlinear observables used in this paper
particular, Gaussianity cannot be assumed. Therefore
have to employ a nonparametric, rank-based test, as has
suggested in Ref.@9#. A test is calledone sidedif the null
hypothesis is rejected only if the data deviate from the s
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rogates in a specified direction. In this case and at a gi
sizea, we createB51/a21 surrogate data sets, and com
pute the test statistict0 on the original data set and its valu
tk ,k51, . . . ,B on each of the surrogates. Since we have
total of 1/a sets, the probability for each of them to have t
smallest value oft by chance is justa, as desired. For two-
sided tests, we generateB52/a21 surrogates. The probabil
ity for any of the 2/a sets to have either the smallest
largest value oft is then againa.

For the nonlinearity measures inspired by the theory
deterministic dynamical systems@~1!–~3! above#, we expect
nonlinearity in the data to result in lower values. Thus it
natural to perform one-sided tests. For the remaining t
measures we perform two-sided tests. In order to limit
computational burden, all tests are carried out at the 9
level of significance; that is, with nine~19 for two-sided
tests! surrogates. For practical applications, at least a 9
confidence is usually required. The power can be increa
by performing tests based on more than the minimal num
of surrogate data sets.

For purely deterministic signals, we would almost inva
ably obtain a discrimination power ofb51. Therefore we
contaminate deterministic sequences$xn% with noise $hn%,
which consists of a phase-randomized copy of the seque
Thus the noise is random, but with the same power spect
as the data~in-band noise!. The noisy data are given by

sn5S 1

11a2D
1/2

~xn1ahn!. ~8!

The way the noise is generated and added guarantees th
power is not dominated by changes in the autocorrelation
the variance of the data.

One sequence of tests is performed at different noise
els in order to determine the maximal feasible noise le

TABLE I. Maximal feasible noise level for the detection o
nonlinearity withb50.95 ~0.7!. Results for the He´non map.

Feasible noise levelamax
Statistic Parameters b50.95 b50.7

tML m52 0.7 0.9
tBDS m53 1.1 1.3
tPE m53 1.2 1.5
tC3 t51 1.1 1.5
tREV t51 1.4 1.8

TABLE II. Fraction of successful rejections out of 1000 tes
noisy Lorenz data. The errors are based on the assumption
binomial distribution for independent trials. No significant rejecti
is possible withtC3 and tREV.

Statistic Parameters Powerb

tML m53 0.2560.02
tBDS m52 0.2460.02
tPE m54 0.6660.02
tC3 t53 0.0960.01
tREV t53 0.1060.01
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5446 55THOMAS SCHREIBER AND ANDREAS SCHMITZ
which allows for the detection of nonlinearity with a pow
of b50.95 ~0.7!. The practical usefulness of tests wi
power less thanb50.7 seems questionable. In this sequen
2000 individual tests with He´non time series of length 204
were carried out for each point. The results are summar
in Table I and Fig. 1. For this discrete time system, a u
time delay seems most appropriate.

Further, we evaluated the different quantities for a nu
ber of particular data problems, time series from the Lore
equations, an NMR laser experiment, and an assembl
uncoupled tent maps. In Table II we show the results
time series of the Lorenz system at standard parameter
ues. 2048 samples of thex coordinate were recorded eve
0.08 time units. We added noise of amplitudea51.3. It was
checked for each of the different observables~but with fewer
tests! that other choices of the lag time and the embedd
dimension did not lead to significantly better results.

A long experimental time series from a NMR laser e
periment@21# was split into 600 segments with 1000 poin
each. We added in-band noise of amplitudea50.8. Results
are shown in Table III.

Finally, we consider an assembly of uncoupled tent ma
Each individual map is given byxn1152xn if x,0.5 and
xn115222xn if x>0.5. The recorded variable is the sum
the variables ofN individual tent maps. No noise is adde
The discrimination power is measured as a function ofN. In
Fig. 2 we show the results for the time asymmetry, pred
tion error, and ML statistics. Table IV shows the results
all the nonlinearity measures atN516. In this example, the
time asymmetry statistic is doing extremely well. The p
diction error also gives a reasonable power, while all ot
quantities basically fail, although different settings form
were considered.

TABLE III. Fraction of successful rejections out of 600 tes
noisy NMR laser data.

Statistic Parameters Powerb

tML m53 0.6160.03
tBDS m53 0.8660.02
tPE m53 0.7960.02
tC3 t53 0.4560.03
tREV t51 0.3560.02

FIG. 1. Comparison of discrimination power for different no
linearity measures and noise levels, for He´non data with in-band
noise. Curves from the left: correlation statisticstML and tBDS, pre-
diction errortPE ~crosses!, third-order cumulanttC3, and time asym-
metry tREV. The size of the test was taken to be 0.1.
,
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V. CONCLUSIONS

The results presented in Tables I–IV and the figures s
gest that the root-mean-squared error of a simple nonlin
predictor gives consistently good discrimination pow
Other nonlinearity measures give even better performanc
some cases, but fail in others. In particular, the time, reve
asymmetry does very well most of the time. but can also
completely. Asymmetry under time reversal is a sufficie
and powerful indicator of nonlinearity, but not a necessa
condition. Which algorithm is to be preferred in a particul
situation depends on the availability of an independent ch
for the discrimination power. In the typical situation th
only few precious data sets, or even just one recording~as in
long-term geophysical observations! is available, it seems
advisable to use a robust, general purpose statistic with
adjustable parameters, for example a simple prediction e
If asymmetry under time reversal appears under visual
spection of the data, a simple statistic liketREV will probably
give the best results.

The null hypothesis we adopted in this work was chos
since it is the most general one that excludes nonlinear
terminism and that can be tested for properly. If we are
fact looking for deterministic structure in a signal, the
simple statistics liketREV andtC3 which are based on higher
order cumulants are not very attractive because they are
quite sensitive to those deviations from the null hypothe
we arenot looking for. The formal test discussed in th
paper answers the question ifanydeviation from a~rescaled!
Gaussian linear stochastic process can be detected. Surr
data tests have, however, been mostly used with the que
in mind if it is legitimate and useful to use methods fro

TABLE IV. Fraction of successful rejections out of 100 tes
sum of 16 uncoupled tent maps.

Statistic Parameters Powerb

tML m52 0.1160.03
tBDS m52 0.1060.03
tPE m54 0.9260.03
tC3 t51 0.1060.03
tREV t51 1.0060.00

FIG. 2. Discrimination power for uncoupled tent maps. In th
figure, results are shown for three selected nonlinearity measu
From above: time asymmetrytREV, prediction errortPE, m54, and
ML dimension estimatortML, m52. The number of maps was var
ied in steps of two, and each point was obtained with 200 tests.
size of the test was taken to be 0.1.
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55 5447DISCRIMINATION POWER OF MEASURES FOR . . .
dynamical systems theory. This amounts to specifying a p
ticular class as an alternative hypothesis. In such a case
should choose the discriminating statistic accordingly, t
is, from the arsenal of dynamical systems methods.

Let us finally remark that a couple of tests for nonline
properties of time series have been proposed which use
rogate data in a different way or not at all. Rather than e
mating the distribution of the observablet from a random-
ized sample, it is sometimes calculated on the base of s
assumptions. If the null hypothesis is that of a purely Gau
ian linear random process~without distortion!, significance
levels for higher-order correlation functions can be deriv
Some authors, e.g., Refs.@6,19#, observe that most observ
ables t are temporal averages over individual quantitiestn
determined for each point in a time sequence. In orde
derive the distribution oft from the knowledge of$tn%, how-
ever, one has to make certain assumptions. Reference@6#
D.
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ol

st
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we
t

r
ur-
i-

e
s-
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to

assumes Gaussianity and independence of the sequ
{ tn} , while Ref. @19# needs only independence. We do n
see what should justify the assumption of point-to-point
dependence of$tn% for autocorrelated time series data; i
deed, we empirically find the assumption to be wrong at le
for prediction errors and pointwise dimensions. The comm
positive correlation among thetn leads to an underestimatio
of the variance of the averaget, and thus to a dangerou
overestimation of the significance of the test.
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