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Few-electron systems in quantum cylinders

B. Szafran, J. Adamowski, and S. Bednarek
Faculty of Physics and Nuclear Techniques, University of Mining and Metallurgy (AGH), Krako´w, Poland

~Received 10 August 1999!

Systems of excess electrons confined in cylindrical semiconductor quantum dots, i.e., artificial atoms of
cylindrical symmetry, are studied by the unrestricted Hartree-Fock method. The confinement potential is
assumed in the form of three-dimensional cylindrically symmetric potential well of finite depth. The calcula-
tions have been performed for artificial atoms with the number of electrons from 1 to 10. We have taken into
account the external magnetic field applied parallel to the axis of the cylinder and studied the influence of
quantum-dot geometry on the maximum number of confined electrons and the ground-state spinorbital con-
figuration. The applicability of the quasi-two-dimensional model of quantum dots has been discussed and the
magnetic-field behavior has been predicted for quantum cylinders of comparable diameter and height. We have
applied the present model to a description of single-electron charging of self-assembled quantum dots and
obtained a good agreement with capacitance-spectroscopy data.
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I. INTRODUCTION

In semiconductor quantum dots,1 the charge carriers ar
confined in all three dimensions. The confinement poten
results from either different compositions of semiconduct
materials of the dot and the surrounding medium or the e
trostatic potential applied to the microelectrodes. Man
electron systems confined in quantum dots exhibit atom
properties and are called artificial atoms.2 A discrete energy
spectrum of artificial atoms is observed in absorpt
measurements.3 Shell-filling effects are observed i
capacitance4 and transport spectroscopy.5

Nowadays, the quantum dots of cylindrical symmetry a
the subject of extensive experimental and theoretical inv
tigations. These are the self-assembled quantum dots6–11 or
gate-controlled quantum dots.12–16 In theoretical papers7–11

on electron systems in self-assembled quantum dots, var
confinement potentials have been used. The confinemen
tential of finite depth was used for one-electron problem i
lens-shape8 or pyramidal self-assembled quantum dot9,10

grown on a thin wetting layer. Many-electron problem f
these potentials has not been solved so far. A qualita
description of theN-electron systems confined in sel
assembled quantum dots has been obtained7 within a two-
dimensional parabolic potential model. A recent pape11

showed, however, that this model potential does not al
for a quantitative description of the single-electron charg
experiment.6 In order to obtain a quantitative agreement w
the capacitance-spectroscopy data,6 the authors11 were forced
to decouple two intrinsically coupled parameters, name
the oscillator energy and oscillator length, and treat them
two independent adjustable parameters. A pronounced br
ing of the generalized Kohn theorem2,17 observed in the far-
infrared absorption spectrum of InAs self-assembled qu
tum dots,18 suggests that the confining potential of t
quantum dots differs significantly from the harmoni
oscillator form. The applicability of the two-dimension
model for quantum dots is usually justified by a large ene
separation between the ground-state and first excited-
energy level of the size quantized motion in thez direction.
PRB 610163-1829/2000/61~3!/1971~7!/$15.00
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In the present paper, we discuss the limitation of this mo
and obtain conditions under which this model fails.

In our recent papers,19,20 we have presented a theoretic
description of electron systems confined in spherical qu
tum dots, i.e., artificial atoms of spherical symmetry. In t
present paper, we extend the previous theory19,20 to systems
of lower symmetry, i.e., electrons in cylindrical quantu
dots with the confinement potential well of finite dept
Since the experiments on electron properties of cylindri
quantum dots are usually done in external magne
field,4,6,12,13 which gives information about the strength
electron localization and symmetries of the observed sta
in the present paper we take into account the effect of
field. We have applied the present approach to a descrip
of single-electron charging of self-assembled quantum do6

In this paper, we present a consistent quantitative the
of the single-electron charging experiment.6 The present the-
oretical description of the self-assembled quantum dots
fully three dimensional. The applied model confinement p
tential takes into account the conduction-band offset betw
the dot region and surrounding material. Therefore,
present approach is free of the following shortcomings of
two-dimensional harmonic-oscillator model:~i! a strictly pla-
nar movement of interacting electrons has to be assumed~ii !
this confinement potential does not possess a definite ra
which means that the localization radius of the confine
electron system rapidly grows with the number of electro
~iii ! this model potential possesses an infinite depth and
bind an infinite number of electrons;~iv! the three-
dimensional Coulomb interaction is inadequately describe21

by the strictly two-dimensional model.
In contrast to~ii !, the electrons confined in the three

dimensional potential well of finite depth are spread out o
the entire quantum-dot volume with only a small penetrat
into the barrier region. In this case, the localization radius
electron system is almost independent of the number of e
trons. The Schro¨dinger equation for the potential well of fi
nite depth possesses not only bound but also unbound~delo-
calized! solutions, i.e., the continuum threshold exis
Therefore, in the frame of this model, we can discuss a m
1971 ©2000 The American Physical Society
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mum number of confined electrons and the quant
capacity19,20 of the nanostructure.

The paper is organized as follows: in Sec. II, we pres
the theoretical model, in Sec. III, we apply this model to
description of self-assembled quantum dots, in Sec. IV,
discuss the influence of geometry of the confinement on
electronic properties of quantum dots, and in Sec. V we p
vide the conclusions.

II. THEORY

The effective-mass Hamiltonian ofN excess electrons
confined in a cylindrical quantum dot in the presence of
ternal magnetic field applied parallel to thez axis of the
cylinder has the form

H5(
i 51

N

h~r i !1
1

4p««0
(
i 51

N

(
j . i

N
1

r i j
, ~1!

whereh(r i) is the one-electron Hamiltonian

h~r !52
\2

2m*
¹21V~r !1

1

8
m* vc

2~x21y2!1
1

2
\vcl z .

~2!

Here,m* is the electron effective band mass,« is the static
dielectric constant of the quantum dot material,vc
5eB/m* is the cyclotron frequency in magnetic fieldB, and
l z is thez -component angular momentum operator. The c
finement potential of the cylindrical quantum dot of diame
D and heightH is taken on in the form

V~r !5H 2V0 , if Ax21y2,D/2 and uzu,H/2,

0, otherwise,
~3!

where V0.0 is the conduction-band discontinuity at th
quantum well/barrier interface. The conduction-band mi
mum of the barrier material in the absence of external m
netic field is set equal to zero and taken as the refere
energy level. We neglect the change of effective mass
dielectric constant at the well/barrier surface.19,22

Let us remind the basic properties of the one-elect
Hamiltonian~2!. Due to the cylindrical symmetry of the con
finement potential, one-electron Hamiltonian~2! commutes
with l z operator and the operator of reflection with respec
thez50 plane. Therefore, we can assign to the one-elec
eigenstates of Hamiltonian~2! the magnetic quantum numbe
M, i.e., the eigenvalue ofl z operator, and the parity quantum
number. In the absence of external magnetic field the st
with M50 are twofold degenerate, the other states are fo
fold degenerate. The interaction of an electron with the
ternal magnetic field is included in the last two terms
Hamiltonian~2!. The third term leads to an increased loc
ization of an electron in thex2y plane. The fourth lifts the
degeneracy of states with different signs of the magn
quantum number. In the present paper, we neglect the
Zeeman effect, which in the III-V semiconducting com
pounds is two orders of magnitude smaller than the orb
Zeeman effect.13

The Schro¨dinger equation for theN-electron system ha
been solved by the unrestricted Hartree-Fock method.
many-electron wave function is constructed in the form o
t
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single Slater determinant of one-electron spinorbitals. T
Slater determinant built from the one-electron wave fun
tions of the proper symmetry is an eigenfunction of thez
component of total angular momentum and has a definiz
parity. The one-electron Hartree-Fock operator23 conserves
the symmetry of Hamiltonian~2!.

The spatial one-electron wave functionc has been
expanded24 into the Gaussian variational basis as follows:

c~x,y,z!5 (
klmpq

cklmpqx
kylzme2ap(x21y2)2bqz2

, ~4!

where the sums overk and l run from 0 tok1 l<2, m50,1,
andp,q51,2. cklmpq,ap , andbq are the variational param
eters. The nonlinear parametersap and bq account for the
electron localization in thex2y plane andz direction respec-
tively, and are optimized to yield the minimum value of th
total energy. The linear variational parameterscklmpq for all
the occupied spin orbitals are obtained by the self-consis
iterative diagonalization of the Hartree-Fock equations.
our previous papers,19,22we discussed the applicability of th
Slater and Gaussian bases to the problem of one par
confined in the finite quantum well. The Gaussian basis c
not reproduce the discontinuity of the second derivative
the exact wave function on the well/barrier surface.25 How-
ever, as we have shown,22 the variational cost of this discrep
ancy is small. Basis~4! possesses the proper cylindrical sym
metry and yields accurate estimates of the lowest o
electron energy levels corresponding toM50,61,62. In
the present calculations, we take into account the low
energy state of even parity and the lowest-energy state of
parity for the quantized motion in thez direction. Through-
out the present paper, we denote the one-electron state
follows: anz ,6 , where a5s,p,d for uM u50,1,2, respec-

tively, the quantum numbernz labels the states associate
with the size-quantized motion in thez direction (nz50 for
the state of even parity andnz51 for the state of odd parity!,
and6 stands for the sign ofM.

The unrestricted Hartree-Fock method was used by s
eral authors19,26–28 to a description of artificial atoms. Th
properties of electron systems in quantum dots were a
studied with the correlation effects included by th
configuration-interaction approach2,14,15,29–31 and density-
functional theory.16,32,33 We have shown in our previou
papers19,20 that in the case of spherically symmetric potent
well of finite depth, the Hartree-Fock method yields reliab
solutions of the many-electron Schro¨dinger equation in the
strong- and intermediate-confinement regimes,34 i.e., if the
range of the confinement potential does not exceed;10 do-
nor Bohr radii~i.e., ;100 nm for GaAs!. This condition is
fulfilled in the case of self-assembled quantum dots, t
have a base length of order of 10-30 nm.6,18,35–38We can
therefore expect that the neglect of electron-electron corr
tion is justified for these systems.

III. SINGLE-ELECTRON CHARGING OF SELF-
ASSEMBLED QUANTUM DOTS

We have applied the present model to a theoretical
scription of the capacitance-spectroscopy experiment w
self-assembled InAs/GaAs quantum dots.6 The samples6
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PRB 61 1973FEW-ELECTRON SYSTEMS IN QUANTUM CYLINDERS
were fabricated by a molecular-beam epitaxy and InAs qu
tum dots were grown in a Stranski-Krastanow grow
mode36 on a GaAs substrate. The quantum dots6 were almost
uniform in size~within 10-percent fluctuations! with average
diameter 20 nm and height 7 nm. The layer sequence6 con-
sisted of a Si-doped GaAs back contact, undoped GaAs
nel barrier, InAs wetting layer with InAs self-assemble
quantum dots, undoped GaAs layer, blocking barrier~made
of GaAs/AlAs superlattice!, and GaAs cap layer with a
Schottky gate contact. The number of excess electrons
dot was tuned with the voltage applied between the gate
back contact.6 In the measurements of capacitance-volta
characteristics,6 the Nth peak of capacitance was detected
the gate voltage for which the Fermi level of the back cont
and the chemical potential ofN excess electrons confined
the quantum dot were aligned. The condition of the sing
electron charging has the form

EF5mN
0 1el~VS2Vg!, ~5!

wheremN
0 is the chemical potential of theN-electron system

confined in the dot in the absence of external electric fie
Vg is the gate voltage,VS is the Schottky barrier between th
metal gate and semiconductor,e is the elementary charge
and l is the voltage-to-energy conversion coefficient. W
have taken onVS5650 meV according to Ref. 40 and th
value l51/7 deduced from the geometrical position of t
dot layer with respect to the electrodes.6,11 The change of
electrostatic potential inside the dot has been neglecte
Eq. ~5!, which is justified by the small height of the dot. Th
Fermi energy of the doped GaAs back contact is fixed at
position of the donor energy level. The variation of the Fer
level in the external magnetic field calculated by the fir
order perturbation theory can be expressed asEF5ED
18.28 @meV/T2#31023B2, whereED526 meV is the do-
nor energy. The chemical potential has been determine
follows: mN

0 5EN2EN21, whereEN is the ground-state en
ergy of theN-electron artificial atom.

Since the parameters of the quantum dots are not kn
with the required precision, in the present calculations,
diameterD and heightH of the cylinder, the depth of the
potential wellV0, and dielectric constant« of the dot mate-
rial have been adjusted to reproduce all the experiment
measuredVg vs B plots.6 The best results have been obtain
for D522 nm, H56.3 nm,V05317 meV, and «513.5.
Moreover, the value of the electron effective band mass
the strained InAs dot has been taken from Refs. 6 and
(me50.057me0, whereme0 is the free-electron rest mass!.
Such a procedure allows us to account partially for the st
effects9 and alloying of the quantum dots material due to t
diffusion of indium atoms after the GaAs overgrowth.39

The calculated gate voltage corresponding to the cap
tance peaks forN51, . . . ,8electrons is plotted in Fig. 1 as
function of the magnetic fieldB and compared with the re
sults of the capacitance spectroscopy.6 The magnetic field
lifts the degeneracy of states with the quantum numberM
and 2M , which gives rise to a change of symmetry of t
N-electron ground state at certain critical magnetic fie
~marked by arrows in Fig. 1!. The critical fieldsB1 andB6
correspond to a magnetic-field-induced breaking of Hun
rule in the 4- and 8-electron artificial atoms, respective
n-
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The cusp corresponding to the breaking of Hund’s rule
4-electron artificial atom (B1) is not clearly visible in the
experimental data6 because of significant inhomogeneo
broadening resulting from the size distribution of quantu
dots. However, this feature has been clearly observed
transport spectroscopy of gated quantum dots.12,13 The criti-
cal magnetic fields giving rise to the breaking of the Hund
rule cannot be described with the use of local-dens
approximation approach,16 which does not resolve spin an
replace the exchange operator by its local approximation

If the magnetic field exceeds critical valuesB2 , . . . ,B5,
then in the 5-, 6-, and 7-electron artificial atoms, the on
electron d0,2 spinorbitals become occupied and thep0,1
spinorbitals become empty. These ground-state transfor
tions are explained in detail in Table I, in which we list th
estimated critical magnetic fields and electron configurati
before and after the transformation. Figure 1 shows that
calculated positions of the capacitance peaks on the g
voltage scale agree very well with the experimental data6

IV. INFLUENCE OF QUANTUM DOT GEOMETRY ON
THE PROPERTIES OF CONFINED ELECTRON SYSTEMS

Having at our disposal the theoretical method, whi
leads to the very good agreement with experiment, we h
solved by this method the problem of the influence of na
structure geometry on the properties of electrons confine
cylindrical quantum dots. In Fig. 2, we report the results
the lowest-energy levels of a single electron in the cylind
cal quantum dot in the absence of magnetic field. The val

FIG. 1. Calculated~solid curves! and measured~squares! gate
voltage, which corresponds to the charging of the quantum do
the Nth electron, as a function of magnetic field. Arrows sho
critical magnetic fieldsB1 , . . . ,B6, at which the N-electron
ground-state configuration changes~see text and Table I!.
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of all the material parameters are the same as in Fig. 1.
see that the increase of the cylinder height more stron
affects the states withnz51 than those withnz50. In par-
ticular, thes1 energy level, which corresponds to the state
odd parity, becomes lower than the energy levels ofd0 and
p0 states, if the height of the dot exceeds 12 nm and 19.5
respectively. In Fig. 3, we have plotted the chemical pot
tials for N51, . . . ,10electrons as functions of the cylinde
height ~the values of material parameters are the same a
Figs. 1 and 2!. The one-electron levels occupied by theNth
electron are marked in the figure. The kinks in the curv
result from the changes of the ground-state configuration
to the crossing of one-electron energy levels presente
Fig. 2.

Using the results shown in Fig. 3, we have estimated

TABLE I. Estimated critical magnetic fieldsBi ~in tesla!, for
which the transformation ofN-electron ground state occurs. Th
values of parameters of the quantum dot are the same as in F
The occupation of one-electron spinorbitals and quantum num
(Mtot ,Stot), whereMtot corresponds to thez component of total
angular momentum andStot – the z-component of total spin, are
listed for B<Bi(B.Bi) in the fourth and fifth~sixth and seventh!
columns. For all the spinorbitalsnz50 and this index is omitted.

Bi @T# N B<Bi B.Bi

B1 1.25 4 s2p2p1 (0,1) s2p2
2 (22,0)

B2 15.3 5 s2p2
2 p1 (21,1

2 ) s2p2
2 d2 (24,1

2 )
B3 14.4 6 s2p2

2 p1
2 (0,0) s2p2

2 p1d2 (23,1)
B4 15.6 6 s2p2

2 p1d2 (23,1) s2p2
2 d2

2 (26,0)
B5 14.8 7 s2p2

2 p1
2 d2 (22,1

2 ) s2p2
2 p1d2

2
(25,1

2 )
B6 0.25 8 s2p2

2 p1
2 d2d1 (0,1) s2p2

2 p1
2 d2

2 (24,0)

FIG. 2. Energy levels of the single electron confined in t
cylindrical quantum dot of diamaterD522 nm in the absence o
external magnetic field as functions of heightH of the dot. Solid
~dashed! curves display the results for the states withnz50(nz

51). The sign ofM is not shown, since the energy levels corr
sponding to6M are degenerate.
e
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maximum number of electrons confined in the cylindric
quantum dot. TheN-electron system can form a bound sta
in the quantum dot if19,20

EN,EN21 . ~6!

This condition of binding can be expressed in terms
chemical potential as follows:

mN,0. ~7!

The values of critical heights of the quantum cylinder, abo
which the binding of subsequent electrons is possible, h
been listed in Table II. In particular we have obtained t
result that 10 electrons can be bound in the cylinder of he
H56.3 nm and diameterD522 nm, which correspond to
the self-assembled quantum-dot nanostructure studied in
6. In the experiment,6 only 8 capacitance peaks have be
resolved. Moreover, at low-magnetic fields the charging
the dot with 7th and 8th electron is masked by the stro
capacitance signal resulting from the charging of the wett
layer6 and only 6 single-electron charging lines are clea
visible. Because the added 7th and 8th electrons occupy
d02 shell ~cf. Table I!, the chemical potentials of 7- an
8-electron artificial atoms decrease with the magnetic fi
and the corresponding capacitance peaks emerge from

1.
rs

FIG. 3. Chemical potentials ofN-electron systems confined in
cylindrical quantum dot of diameterD522 nm as functions of its
heightH. Symbols denote the one-electron orbitals occupied by
Nth electron. The kinks on the curves correspond to the change
the ground-state symmetry.

TABLE II. Critical heights of cylindrical quantum dot, abov
which the binding ofN electrons is possible. Parameters of t
quantum dot are the same as in Fig. 1 (D522 nm,V05317 meV,
«513.5,me50.057m0)

N 1 2 3 4 5 6 7 8 9 10

H @nm# 0.725 1.2 1.9 2.15 2.5 2.75 3.9 4.35 4.9 5
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PRB 61 1975FEW-ELECTRON SYSTEMS IN QUANTUM CYLINDERS
strong wetting-layer background atB;7 T. The chemical
potentials forN59 andN510 electron-systems, for whic
the d01 shell is filled, increase with increasing magne
field. Therefore, the corresponding capacitance peaks
within the range of the wetting layer charging and are
observed. On the other hand, the binding of 9 and 10 e
trons in the self-assembled quantum dots6 predicted by the
present quantum-cylinder model may result from the neg
of the presence of wetting layer in the confinement poten
~3!. The inclusion of the wetting-layer confinement potent
in many-electron calculations should clear up the problem
the exact maximum number of electrons confined in s
assembled quantum dots.

The geometry of the nanostructure determines the s
metry of the ground state of many-electron systems confi
in the quantum dots. If the range of vertical confinemen
much smaller than the lateral one~cf. results of Fig. 1 for
H56.3 nm andD522 nm), the separations between the e
ergy levels corresponding to the states with different pa
are much larger than those between the energy levels
different magnetic quantum number. In such a case, all
occupied one-electron levels correspond to the lowest-en
state of even parity (nz50). For the small height of the
cylinder (H,12 nm) the relative positions of chemical p
tentials exhibit the filling of shells12,14,19 of a quasi-two-
dimensional confinement potential. In the absence of ex
nal magnetic field, the electrons occupy subsequent en
levels according to Hund’s rule, i.e., 2 electrons fill thes
shell ~M50!, 6 electrons thep shell (M561) and 10 elec-
trons thed shell (M562). The large difference betweenm2
andm3 (m6 andm7) in Fig. 3 corresponds to the fully filled
s0 (p0) shell. The visible increments of spacings betweenm4
and m5 as well as betweenm8 and m9 are signatures o
Hund’s rule and correspond to the half-filledp0 and d0
shells, respectively. The ground-state configurations of
electron artificial atoms withN51, . . . ,10remain the same
up to H512 nm ~cf. Fig. 3!.

For H.12 nm, the levels of oddz parity become occu-
pied and the symmetry of theN-electron ground state
changes; therefore the artificial atom looses the quasi-t
dimensional character. In this case, the reaction of the a
cial atom to the external magnetic field is essentially diff
ent. In Fig. 4, we have presented the magnetic-fi
dependence of one-electron energy levels~dashed curves!
and N-electron chemical potentials~solid curves! of N
51, . . . ,8 artificial atoms in a cylindrical quantum well o
height H518 nm and diameterD522 nm. The critical
fields of the ground-state transformations of the ground s
have been marked by arrows. The behavior of chemical
tentials forN51, . . . ,4 isqualitatively the same as in Fig. 1
The magnetic fieldB1 at which the Hund’s rule for
4-electron artificial atom is broken, is slightly smaller f
H522 nm than forH56.3 nm, because in the case of lar
dots the electron-electron interactions are weaker.
magnetic-field dependence of chemical potentials forN
55, . . . ,8 isdifferent than that forH56.3 nm, because th
new orbitals1 affects the spectrum. The new cusps at criti
fieldsB2 , . . . ,B5 result from the change of order ofp0,1 and
s1 energy levels. These critical fields do not appear in
quasi-two-dimensional case. The critical fieldsB6 ,B7, and
ay
t
c-

ct
l

l
f

f-

-
d

s

-
y
ith
e
gy

r-
gy

e

o-
fi-
-
d

te
o-

e

l

e

B8 for N57 and 8 result from the change of order ofp0,1
andd0,2 energy levels. The effect of crossing of these lev
has already appeared for flat quantum dots, but forN55 and
N56 electrons~cf. critical fieldsB2 ,B3, andB4 in Fig. 1!.
The ground-state transformations are listed in detail in Ta
III. To the best of our knowledge, we have presented the fi
results of magnetic field-influence on theN-electron quantum
dots beyond the quasi-two-dimensional limit.

The shape of the self-assembled quantum dots6 can be
approximated by the cylinder of rather small height. In t
gated quantum dots12–15the disproportion between the diam
eter and height of the dot is even larger. However,

FIG. 4. Chemical potential~solid curves, left scale! for N
51, . . . ,8electrons and one-electron energy levels~dashed curves,
right scale! for the cylindrical quantum dot with 18-nm height an
22-nm diameter as functions of magnetic field. The arrows co
spond to the ground-state transformations, described in the text
quoted in Table III.

TABLE III. Estimated critical magnetic fieldsBi ~in tesla!, for
which the transformation ofN-electron ground state occurs. Th
values of material parameters are the same as in Fig. 4. The o
pation of one-electron spinorbitals and quantum numb
(Mtot ,Stot), whereMtot corresponds to thez component of total
angular momentum andStot – the z component of total spin, are
listed for B<Bi (B.Bi) in the fourth and fifth~sixth and seventh!
columns. Fors1 spinorbital nz51, and for all other spinorbitals
nz50 and this index is omitted.

Bi @T# N B<Bi B.Bi

B1 1 4 s2p2p1 (0,1) s2p2
2 (22,0)

B2 6.5 5 s2p2
2 p1 (21,1

2 ) s2p2
2 s1 (22,1

2 )
B3 4.9 6 s2p2

2 p1
2 (0,0) s2p2

2 p1s1 (21,1)
B4 8.2 6 s2p2

2 p1s1 (21,1) s2p2
2 s1

2 (22,0)
B5 6.8 7 s2p2

2 p1
2 s1 (0,1

2 ) s2p2
2 p1s1

2
(21,1

2 )
B6 16.6 7 s2p2

2 p1s1
2

(21,1
2 ) s2p2

2 s1
2d2 (24,1

2 )
B7 16.2 8 s2p2

2 p1
2 s1

2 (0,0) s2p2
2 p1s1

2d2 (23,1)
B8 17.1 8 s2p2

2 p1s1
2d2 (23,1) s2p2

2 s1
2d2

2 (26,0)
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1976 PRB 61B. SZAFRAN, J. ADAMOWSKI, AND S. BEDNAREK
present technology enables a fabrication of quantum dot
almost arbitrary shapes.41 Therefore, the present extension
the theory of artificial atoms to the confinement potenti
with comparable range in all the three dimensions should
useful for future experiments.

V. CONCLUSION

We have presented a theory of electronic properties
cylindrical quantum dots using the unrestricted Hartree-F
method and a confinement potential in the form of the fin
potential well of cylindrical symmetry. The present theor
ical model has been successfully applied to the sing
electron charging of self-assembled quantum dots in exte
magnetic field.6 We have discussed the influence of t
nanostructure geometry on the spin-orbital configurations
en

.J.

.

r,

P
ff

n

L.

M

of

s
e

f
k

e
-
-
al

f

the confinedN-electron system. The maximum number
electrons, that can be bound in the cylindrical quantum d
have been determined. In a future study, the wetting la
should be included in the calculations in order to clear up
question of binding ofN59 andN510 electron systems in
self-assembled quantum dots. We have discussed the a
cability of the quasi-two-dimensional model and predict
the magnetic-field dependence of chemical potentials
quantum dots of comparable diameter and height. These
sults should be useful for quantum dots of new geometri
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