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Few-electron systems in quantum cylinders
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Systems of excess electrons confined in cylindrical semiconductor quantum dots, i.e., artificial atoms of
cylindrical symmetry, are studied by the unrestricted Hartree-Fock method. The confinement potential is
assumed in the form of three-dimensional cylindrically symmetric potential well of finite depth. The calcula-
tions have been performed for artificial atoms with the number of electrons from 1 to 10. We have taken into
account the external magnetic field applied parallel to the axis of the cylinder and studied the influence of
guantum-dot geometry on the maximum number of confined electrons and the ground-state spinorbital con-
figuration. The applicability of the quasi-two-dimensional model of quantum dots has been discussed and the
magnetic-field behavior has been predicted for quantum cylinders of comparable diameter and height. We have
applied the present model to a description of single-electron charging of self-assembled quantum dots and
obtained a good agreement with capacitance-spectroscopy data.

[. INTRODUCTION In the present paper, we discuss the limitation of this model
and obtain conditions under which this model fails.

In semiconductor quantum dotghe charge carriers are In our recent papers:?°we have presented a theoretical
confined in all three dimensions. The confinement potentiatiescription of electron systems confined in spherical quan-
results from either different compositions of semiconductingtum dots, i.e., artificial atoms of spherical symmetry. In the
materials of the dot and the surrounding medium or the elecpresent paper, we extend the previous thEof3to systems
trostatic potential applied to the microelectrodes. Many-of lower symmetry, i.e., electrons in cylindrical quantum
electron systems confined in quantum dots exhibit atomlikelots with the confinement potential well of finite depth.
properties and are called artificial atoma. discrete energy ~ Since the experiments on electron properties of cylindrical
spectrum of artificial atoms is observed in absorptionquantum dots are usually done in external magnetic
measurements. Shell-filing effects are observed in field*®*?*which gives information about the strength of
capacitanckand transport spectroscopy. electron localization and symmetries of the observed states,

Nowadays, the quantum dots of cylindrical symmetry arein the present paper we take into account the effect of this
the subject of extensive experimental and theoretical invesfield. We have applied the present approach to a description
tigations. These are the self-assembled quantunfddtsr  of single-electron charging of self-assembled quantum Hots.
gate-controlled quantum dot&:%° In theoretical papefs'! In this paper, we present a consistent quantitative theory
on electron systems in self-assembled quantum dots, variows the single-electron charging experimérithe present the-
confinement potentials have been used. The confinement poretical description of the self-assembled quantum dots is
tential of finite depth was used for one-electron problem in gully three dimensional. The applied model confinement po-
lens-shap® or pyramidal self-assembled quantum %8t tential takes into account the conduction-band offset between
grown on a thin wetting layer. Many-electron problem for the dot region and surrounding material. Therefore, the
these potentials has not been solved so far. A qualitativpresent approach is free of the following shortcomings of the
description of theN-electron systems confined in self- two-dimensional harmonic-oscillator modél a strictly pla-
assembled quantum dots has been obtdimdthin a two-  nar movement of interacting electrons has to be assuined
dimensional parabolic potential model. A recent paper this confinement potential does not possess a definite range,
showed, however, that this model potential does not allowwhich means that the localization radius of the confined-
for a quantitative description of the single-electron chargingelectron system rapidly grows with the number of electrons;
experiment In order to obtain a quantitative agreement with (iii ) this model potential possesses an infinite depth and can
the capacitance-spectroscopy ditiae authors' were forced  bind an infinite number of electronstiv) the three-
to decouple two intrinsically coupled parameters, namelydimensional Coulomb interaction is inadequately descfibed
the oscillator energy and oscillator length, and treat them aby the strictly two-dimensional model.
two independent adjustable parameters. A pronounced break- In contrast to(ii), the electrons confined in the three-
ing of the generalized Kohn theoréri observed in the far- dimensional potential well of finite depth are spread out over
infrared absorption spectrum of InAs self-assembled quanthe entire quantum-dot volume with only a small penetration
tum dots'® suggests that the confining potential of theinto the barrier region. In this case, the localization radius of
gquantum dots differs significantly from the harmonic- electron system is almost independent of the number of elec-
oscillator form. The applicability of the two-dimensional trons. The Schrdinger equation for the potential well of fi-
model for quantum dots is usually justified by a large energynite depth possesses not only bound but also unbédeid-
separation between the ground-state and first excited-statalized solutions, i.e., the continuum threshold exists.
energy level of the size quantized motion in thdirection.  Therefore, in the frame of this model, we can discuss a maxi-
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mum number of confined electrons and the quantunsingle Slater determinant of one-electron spinorbitals. The

capacity®?° of the nanostructure. Slater determinant built from the one-electron wave func-
The paper is organized as follows: in Sec. I, we presentions of the proper symmetry is an eigenfunction of the

the theoretical model, in Sec. Ill, we apply this model to acomponent of total angular momentum and has a definite

description of self-assembled quantum dots, in Sec. IV, wearity. The one-electron Hartree-Fock operataonserves

discuss the influence of geometry of the confinement on théhe symmetry of Hamiltoniaii2).

electronic properties of quantum dots, and in Sec. V we pro- The spatial one-electron wave functiopn has been

vide the conclusions. expandetf into the Gaussian variational basis as follows:
Il. THEORY Wxy.2)= > Cklmpquy|Zmewp(xzwz),ﬁqzz, @)
kimpq

The effective-mass Hamiltonian dfl excess electrons
confined in a cylindrical quantum dot in the presence of exwhere the sums ovdrand| run from 0 tok+1=<2, m=0,1,
ternal magnetic field applied parallel to tzeaxis of the andp,q=1,2. Cympq.@p, andB, are the variational param-
cylinder has the form eters. The nonlinear parameterg and 3, account for the
electron localization in thg&—y plane andz direction respec-

N N N R .. . ..
H=S h(r)+ 1 S i 1 tively, and are optimized to yield the minimum value of the
= (ri) Ameeg SL 1S 1y @ total energy. The linear variational parameteyg,  for all
) o the occupied spin orbitals are obtained by the self-consistent
whereh(r;) is the one-electron Hamiltonian iterative diagonalization of the Hartree-Fock equations. In

our previous paperS:>?we discussed the applicability of the
Slater and Gaussian bases to the problem of one particle
confined in the finite quantum well. The Gaussian basis can-
2) not reproduce the discontinuity of the second derivative of
. , , _ the exact wave function on the well/barrier surfatéiow-
Here,m™ is the electron effective band massis the static  gyer, as we have shoviAthe variational cost of this discrep-
dielectric constant of the quantum dot materiab.  ancy is small. Basiéd) possesses the proper cylindrical sym-
=eB/m* is the cyclotron frequency in magnetic fistdand  eqry and yields accurate estimates of the lowest one-
|, is thez -component angular momentum operator. The cong|ectron energy levels corresponding Mb=0,+1,+=2. In
finement potent_ial of the cyllindrical quantum dot of diameterypqo present calculations, we take into account the lowest-
D and heightH is taken on in the form energy state of even parity and the lowest-energy state of odd
. > arity for the quantized motion in thedirection. Through-
~Vo, if x*+y?<D/2 and[z|<H/2, gut t)ée preselcfllt paper, we denote the one-electron sgtates as
0, otherwise, follows: a, ., wherea=s,p,d for [M[=0,1,2, respec-

where V>0 is the conduction-band discontinuity at the Vely, the quantum numben, labels the states associated
quantum well/barrier interface. The conduction-band mini-With the size-quantized motion in tredirection (1,=0 for
mum of the barrier material in the absence of external magthe state of even parity ang =1 for the state of odd parily
netic field is set equal to zero and taken as the referenc@"d * stands for the sign d¥.

energy level. We neglect the change of effective mass and_The unrestricted Hartree-Fock method was used by sev-
dielectric constant at the well/barrier surfacé? eral author¥?°~%to a description of artificial atoms. The

Let us remind the basic properties of the one-electrorProperties of electron systems in quantum dots were also
Hamiltonian(2). Due to the cylindrical symmetry of the con- Studied with the correlation effects included by the
finement potential, one-electron Hamiltonié?) commutes conflguratlon-lnte%ascztlsgn approacH1>2%~ ~and density-
with |, operator and the operator of reflection with respect tJU”C“OQ% the(_)ryl. ~* We have shown in our previous
thez=0 plane. Therefore, we can assign to the one-electroR@pers®*°that in the case of spherically symmetric potential
eigenstates of Hamiltoniai2) the magnetic quantum number well Qf finite depth, the Hartree—FqcI_< method ylglds. reliable
M, i.e., the eigenvalue df, operator, and the parity quantum Selutions of the many-electron Scldinger equation in the
number. In the absence of external magnetic field the state¥rong- and intermediate-confinement regirfese., if the
with M =0 are twofold degenerate, the other states are fourl@nge of the confinement potential does not exced® do-
fold degenerate. The interaction of an electron with the ex!0r Bohr radii(i.e., ~100 nm for GaAg This condition is
ternal magnetic field is included in the last two terms offulfilled in the case of self-assembled quantum dots, that
Hamiltonian(2). The third term leads to an increased local-Nave a base length of order of 10-30 Arf:*>~**we can
ization of an electron in the—y plane. The fourth lifts the thergfo_re g)gpect that the neglect of electron-electron correla-
degeneracy of states with different signs of the magnetidion is justified for these systems.
guantum number. In the present paper, we neglect the spin
Zeeman effect, which in the Ill-V semiconducting com- lIl. SINGLE-ELECTRON CHARGING OF SELF-
pounds is two orders of magnitude smaller than the orbital ASSEMBLED QUANTUM DOTS
Zeeman effect?

The Schrdinger equation for thé\-electron system has We have applied the present model to a theoretical de-
been solved by the unrestricted Hartree-Fock method. Thscription of the capacitance-spectroscopy experiment with
many-electron wave function is constructed in the form of aself-assembled InAs/GaAs quantum dbt3he samples

h(r)=—h—2V2+V(r)+}m* 2(x2+ 2)+1ﬁ |
om* 3 We y 2 Welz.

V(r)=
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were fabricated by a molecular-beam epitaxy and InAs quan-
tum dots were grown in a Stranski-Krastanow growth
mode® on a GaAs substrate. The quantum fetsre almost
uniform in size(within 10-percent fluctuationsvith average
diameter 20 nm and height 7 nm. The layer sequ&noe- 200
sisted of a Si-doped GaAs back contact, undoped GaAs tun

nel barrier, InAs wetting layer with InAs self-assembled
guantum dots, undoped GaAs layer, blocking barfieade 0
of GaAs/AlAs superlattice and GaAs cap layer with a -
Schottky gate contact. The number of excess electrons pee

dot was tuned with the voltage applied between the gate aniy’ .5gq
back contact. In the measurements of capacitance-voltageg
characteristic the Nth peak of capacitance was detected at's
the gate voltage for which the Fermi level of the back contact »
and the chemical potential &f excess electrons confined in &,
the quantum dot were aligned. The condition of the single-
electron charging has the form

400

-400

-600 |—
0 N=2

Er=unten(Vs—Vy), ) T T T T T T TR RS R TR A -
whereu is the chemical potential of this-electron system -800 T____"______________,..............'\1.11...
confined in the dot in the absence of external electric field,
V, is the gate voltage/s is the Schottky barrier between the | l I | | I
metal gate and semiconducta ,is the elementary charge, 0 4 8 12 16 20 24
and \ is the voltage-to-energy conversion coefficient. We magnetic field [ T |

have taken orWVs=650 meV according to Ref. 40 and the
value s = 1/7. deduced from the geometrical position of thevoltage, which corresponds to the charging of the quantum dot by
dot layer W'th reSp,eCt,tO,the electrodes. The change of the Nth electron, as a function of magnetic field. Arrows show
electrostatic potential inside the dot has been neglected igiical magnetic fieldsB,, ... B at which the N-electron

Eqg. (5), which is justified by the small height of the dot. The grqynd-state configuration changege text and Table.l

Fermi energy of the doped GaAs back contact is fixed at the

position of the donor energy level. The variation of the Fermitpe cusp corresponding to the breaking of Hund’s rule in
level in the ext(_arnal magnetic field calculated by the first-4_gjectron artificial atom B,) is not clearly visible in the
order perturbation theory can be expressedEas=Ep  experimental dafabecause of significant inhomogeneous
+8.28[ meV/T?]x 10" °B?, whereEp=—6 meV is the do- proadening resulting from the size distribution of quantum
nor energy. The chemical potential has been determined agts. However, this feature has been clearly observed in
follows: ug=Ey—Ey-1, WhereEy is the ground-state en- transport spectroscopy of gated quantum ddt€ The criti-
ergy of theN-electron artificial atom. cal magnetic fields giving rise to the breaking of the Hund’s

Since the parameters of the quantum dots are not knowfule cannot be described with the use of local-density-
with the required precision, in the present calculations, theypproximation approaclf, which does not resolve spin and
diameterD and heightH of the cylinder, the depth of the replace the exchange operator by its local approximation.
potential wellV,, and dielectric constant of the dot mate- If the magnetic field exceeds critical valuBs, . . . ,Bs,
rial have been adjusted to reproduce all the experimentallyhen in the 5-, 6-, and 7-electron artificial atoms, the one-
measured/y vs B plots® The best results have been obtainedelectron do_ spinorbitals become occupied and thg
for D=22 nm, H=6.3 nmV,=317 meV, ande=13.5.  spinorbitals become empty. These ground-state transforma-
Moreover, the value of the electron effective band mass fofions are explained in detail in Table I, in which we list the
the strained InAs dot has been taken from Refs. 6 and léstimated critical magnetic fields and electron configurations
(me=0.057n¢;, wheremg, is the free-electron rest mass before and after the transformation. Figure 1 shows that the
Such a procedure allows us to account partially for the straigalculated positions of the capacitance peaks on the gate-
effects and alloying of the quantum dots material due to thevoltage scale agree very well with the experimental fata.
diffusion of indium atoms after the GaAs overgrowth.

The calculated gate voltage corresponding to the capaci-
tance peaks foN=1, . .. ,8electrons is plotted in Fig. 1 as a
function of the magnetic fiel® and compared with the re-
sults of the capacitance spectrosc8pyhe magnetic field Having at our disposal the theoretical method, which
lifts the degeneracy of states with the quantum numbérs leads to the very good agreement with experiment, we have
and —M, which gives rise to a change of symmetry of the solved by this method the problem of the influence of nano-
N-electron ground state at certain critical magnetic fieldsstructure geometry on the properties of electrons confined in
(marked by arrows in Fig.)1 The critical fieldsB; andBg  cylindrical quantum dots. In Fig. 2, we report the results for
correspond to a magnetic-field-induced breaking of Hund’she lowest-energy levels of a single electron in the cylindri-
rule in the 4- and 8-electron artificial atoms, respectively.cal quantum dot in the absence of magnetic field. The values

FIG. 1. Calculatedsolid curve$ and measuredsquares gate

IV. INFLUENCE OF QUANTUM DOT GEOMETRY ON
THE PROPERTIES OF CONFINED ELECTRON SYSTEMS
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TABLE |. Estimated critical magnetic fieldB; (in tesla, for 0
which the transformation oN-electron ground state occurs. The
values of parameters of the quantum dot are the same as in Fig. ]
The occupation of one-electron spinorbitals and quantum number:
(Miot,Siot), WhereM,,, corresponds to thea component of total
angular momentum an8,,; — the zcomponent of total spin, are
listed for B<B;(B>B;) in the fourth and fifth(sixth and seventh
columns. For all the spinorbitals,=0 and this index is omitted.

-100

B, [T] B<B; B>B,

B, 1.25
B, 15.3
By 14.4
B, 15.6
By 14.8

Bg 0.25

s?p_p. (0,1) p2 (—20)
s?p2p. (-1d) s?p2d_ (-4}
s’p?p? (000 sp’pid. (-31)
s?p?p.d_ (=3,1) s%p?d®>  (—6,0)
sp2pid. (-21) $pip.d® (-5l
s?p?p2d_d, (0,1) s?p?p2d® (—4,0)

-200

chemical potential [meV]

o ~No o o hn|Z

. N -300
of all the material parameters are the same as in Fig. 1. Wk 0 10 20

see that the increase of the cylinder height more strongly H [nm]
affects the states with,=1 than those witm,=0. In par-
ticular, thes, energy level, which corresponds to the state of _FIG_. 3. Chemical potentia_\ls df-electron systems cqnfined i_n a
odd parity, becomes lower than the energy levelslpand cyl.lndrlcal quantum dot of diametdd =22 nm as functlon§ of its
p, states, if the height of the dot exceeds 12 nm and 19.5 nr[pelghtH. Symbols o!enote the one-electron orbitals occupied by the
respectively. In Fig. 3, we have plotted the chemical poten_Nth electron. The kinks on the curves correspond to the changes of
. _ ’ . . the ground-state symmetry.
tials for N=1, ... ,10electrons as functions of the cylinder
height(the values of material parameters are the same as i
Figs. 1 and 2 The one-electron levels occupied by tith guantum dot. Thé\-electron system can form a bound state
electron are marked in the figure. The kinks in the CUNVes  'the quantL.lm dot 120
result from the changes of the ground-state configuration due
th th; crossing of one-electron energy levels presented in EN<En_1. (6)
ig. 2.
Using the results shown in Fig. 3, we have estimated thdhis condition of binding can be expressed in terms of
chemical potential as follows:

Maximum number of electrons confined in the cylindrical

0

Mn<0. (7)

The values of critical heights of the quantum cylinder, above
which the binding of subsequent electrons is possible, have
been listed in Table Il. In particular we have obtained the
result that 10 electrons can be bound in the cylinder of height
H=6.3 nm and diameteD =22 nm, which correspond to
the self-assembled quantum-dot nanostructure studied in Ref
6. In the experimerft,only 8 capacitance peaks have been
resolved. Moreover, at low-magnetic fields the charging of
the dot with 7th and 8th electron is masked by the strong
capacitance signal resulting from the charging of the wetting
layef and only 6 single-electron charging lines are clearly
visible. Because the added 7th and 8th electrons occupy the
do_ shell (cf. Table ), the chemical potentials of 7- and
8-electron artificial atoms decrease with the magnetic field
and the corresponding capacitance peaks emerge from the

energy [meV]
2
I

300 ! | . |
0 10 20 TABLE II. Critical heights of cylindrical quantum dot, above
Hlnm] which the binding ofN electrons is possible. Parameters of the

. ! . qguantum dot are the same as in Fig.%22 nmV,=317 meV,
FIG. 2. Energy levels of the single electron confined in thes:13.5,me:0.057mo)

cylindrical quantum dot of diamatdd =22 nm in the absence of
external magnetic field as functions of heigttof the dot. Solid
(dashedl curves display the results for the states with=0(n,

=1). The sign ofM is not shown, since the energy levels corre- H [nm] 0.725 1.2 1.9 2.15 25 275 3.9 435 49 54
sponding to=M are degenerate.

N 1 2 3 4 5 6 7 8 9 10
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strong wetting-layer background &~7 T. The chemical
potentials forN=9 andN=10 electron-systems, for which Nog™ ~ -
the dy; shell is filled, increase with increasing magnetic _;\_/’Ek\

field. Therefore, the corresponding capacitance peaks sta % = 5, —] -200
within the range of the wetting layer charging and are not + ~ - .
observed. On the other hand, the binding of 9 and 10 elec:
trons in the self-assembled quantum Gqisedicted by the

present quantum-cylinder model may result from the neglect
of the presence of wetting layer in the confinement potential® o7

o -

(3). The inclusion of the wetting-layer confinement potential g =z 2 _
in many-electron calculations should clear up the problem ofg R
the exact maximum number of electrons confined in self-£ 240 |- I [
assembled quantum dots.
The geometry of the nanostructure determines the sym: N=2
metry of the ground state of many-electron systems confinec
in the quantum dots. If the range of vertical confinementis o=/ _ _ _ _ - ------
much smaller than the lateral oref. results of Fig. 1 for ]
H=6.3 nm andD =22 nm), the separations between the en- 0
ergy levels corresponding to the states with different parity
are much larger than those between the energy levels with FIG. 4. Chemical potentialsolid curves, left scajefor N
different magnetic quantum number. In such a case, all the-1, ..., 8electrons and one-electron energy levelashed curves,
occupied one-electron levels correspond to the lowest-energyght scalg for the cylindrical quantum dot with 18-nm height and
state of even parityr(,=0). For the small height of the 22-nm diameter as functions of magnetic field. The arrows corre-
cylinder (H<12 nm) the relative positions of chemical po- spond to the ground-state transformations, described in the text and
tentials exhibit the filling of shell$*'° of a quasi-two- duoted in Table Iil.
dimensional confinement potential. In the absence of exter-
nal magnetic field, the electrons occupy subsequent enerdyg for N=7 and 8 result from the change of ordermf,
levels according to Hund’s rule, i.e., 2 electrons fill the andd,_ energy levels. The effect of crossing of these levels
shell (M=0), 6 electrons the shell (M= *1) and 10 elec- has already appeared for flat quantum dots, bulNfer5 and
trons thed shell (M = £ 2). The large difference betweern N=6 electrongcf. critical fieldsB,,B;, andB, in Fig. 1).
andus (g and u7) in Fig. 3 corresponds to the fully filled The ground-state transformations are listed in detail in Table
Sg (Po) shell. The visible increments of spacings betwggn Ill. To the best of our knowledge, we have presented the first
and us as well as betweeng and ug are signatures of results of magnetic field-influence on tNeelectron quantum
Hund's rule and correspond to the half-fillgsh and d;  dots beyond the quasi-two-dimensional limit.
shells, respectively. The ground-state configurations of the The shape of the self-assembled quantum ®dots be
electron artificial atoms wittN=1, . . . ,10remain the same approximated by the cylinder of rather small height. In the
up toH=12 nm(cf. Fig. 3. gated quantum dot& *°the disproportion between the diam-
For H>12 nm, the levels of odd parity become occu- eter and height of the dot is even larger. However, the
pied and the symmetry of th&l-electron ground state
changes; therefore the artificial atom looses the quasi-two- TABLE IlI. Estimated critical magnetic fieldB; (in tesla, for
dimensional character. In this case, the reaction of the artifiwhich the transformation oN-electron ground state occurs. The
cial atom to the external magnetic field is essentially differ-values of material parameters are the same as in Fig. 4. The occu-
ent. In Fig. 4, we have presented the magnetic-fielchation of one-electron spinorbitals and quantum numbers
dependence of one-electron energy lev@lashed curvgs (Myo,Sior), WhereM,; corresponds to the component of total
and N-electron chemical potentialgsolid curve$ of N angular momentum an8,, — thez component of total spin, are
=1, ... 8artificial atoms in a cylindrical quantum well of listed forB<B; (B>B;) in the fourth and fifth(sixth and seventh
height H=18 nm and diameteD =22 nm. The critical columns. Fors; spinorbitaln,=1, and for all other spinorbitals
fields of the ground-state transformations of the ground statB.=0 and this index is omitted.
have been marked by arrows. The behavior of chemical po=
tentials forN=1, . . . ,4 isqualitatively the same as in Fig. 1. B [T N
The magnetic fieldB; at which the Hund's rule for g, 1 4
4-electron artificial atom is broken, is slightly smaller forg, g5 5
3—22 nm than forH=6.3 nm, because in the case of large . 49 6 2pipd 00)  $pip.s  (-11)
ots the electron-electron interactions are weaker. Th% > 5 - > 2 o 3
magnetic-field dependence of chemical potentials For =4 &2 3 spepesy (FL1L)  spts o (220)
2
8
8

B L
-200 =4 - 84

ntial [ meV ]
->
&
\
A}

energy [meV ]

n
<«

10
magnetic field [T]

B<B, B>B;

sp_p, (0,1) s?p? (—=2,0)
Spipe (-1h) SIS (-2))
22 2

2n2 2 2,2 2
=5, ... 8 isdifferent than that foH =6.3 nm, because the Bs ©8 SPEPIS1  (03)  SPEPLST (-13)
new orbitals, affects the spectrum. The new cusps at criticalBs  16.6 $pipisi  (—1}) sPisid. (-4l
fieldsB,, . .. Bs result from the change of order pf . and B, 16.2 s?p?p?sf (0,00 s%p?p,sid. (—3,1)
s, energy Igvels. .These critical fleld's' do not appear in thes, 17.1 s?p?p,s2d. (—3,1) s?psid®  (—6,0)
guasi-two-dimensional case. The critical fieldg,B,, and
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present technology enables a fabrication of quantum dots dhe confinedN-electron system. The maximum number of

almost arbitrary shapés Therefore, the present extension of electrons, that can be bound in the cylindrical quantum dots,
the theory of artificial atoms to the confinement potentialshave been determined. In a future study, the wetting layer
with comparable range in all the three dimensions should behould be included in the calculations in order to clear up the

useful for future experiments. question of binding oN=9 andN= 10 electron systems in
self-assembled quantum dots. We have discussed the appli-
V. CONCLUSION cability of the quasi-two-dimensional model and predicted

) ) the magnetic-field dependence of chemical potentials for
We have presented a theory of electronic properties ofyantum dots of comparable diameter and height. These re-

cylindrical quantum dots using the unrestricted Hartree-Fock|ts should be useful for quantum dots of new geometries.
method and a confinement potential in the form of the finite

potential well of cylindrical symmetry. The present theoret-

ical model has been successfully applied to the single- ACKNOWLEDGMENT
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