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A Mean Value Theorem

Tadashi F. Tokieda

Several theorems go by this name. The present note adds to the assortment an
unusual variant (Theorem 1), which involves the shape of the underlying region in
an interesting way.

We work in Euclidean spaces, although Lemma 2 and the second inequality of
Lemma 3 carry over to general Riemannian manifolds. V and | | denote gradient
and norm with respect to the standard inner product <, >, and ¢ stands for
boundary. All our functions are real-valued. A gradient curve of a function f is an
integral curve of Vf.

Theorem 1. Let f be a C'-function on a closed ball B. Then there exists b € B at
which |Vf(b)| - diam(B) = max f — minf.

The proof is obtained via Lemmas 2 and 3.

Lemma 2. Let f be a C'-function without critical points on a compact region B. Then
every gradient curve of f begins and ends on JB.

Proof: Say a gradient curve y(s) is defined for s from s_ to s,. We have

Jim f(y(s)) = lim f(y(s)) = ] (Vf, dy)

= fIVf| |dyl because v is tangent to Vf ()
Y

> min|Vf] - length(y).

On compact B, f is bounded, so if f has no critical points (min|Vf| > 0), (%)
shows that length(y) is finite and y(s, ) exist. Unless both y(s_) and y(s,) lic on
dB, y can be extended beyond s_ or s, by the existence theorem for solutions of
differential equations, contradicting the choice of s, . ]

Remark. In Lemma 2, compactness is indispensable: think of the height function
on an infinite vertical cylinder.

Lemma 3. Let f be a C'-function on a closed ball B. Then
max f — min

o maxf — minf
min [Vl < =G (B

< max|Vf]|.

Proof: First inequality: If f has critical points on B, then min|Vf] = 0. Otherwise
consider the gradient curve vy through the center of B. y reaches JB by Lemma 2,
so that length(y) > diam(B); combine this with () to get

max f — minf > min|Vf| - diam(B).
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Second inequality: Let / be a line segment that joins a minimum and a maximum
of f. Since length(/) < diam(B),

max f — minf = f<Vf, dly < fIVfI |dl| < max|Vfl - diam(B). n
1 1

/

Remark. In Lemma 3, the first inequality is true only on a ball: f(x,y) =x is a
counterexample on [0, 1] X [0,1]. The second inequality holds on any convex
region. Both become equalities for affine functions on balls.

Theorem 1 is now immediate:

Proof of Theorem 1 Apply Lemma 3 and the intermediate value theorem to |Vf].
|

I do not know how close the mean value property of Theorem 1 comes to
characterizing balls. However, Theorem 1 does admit a partial converse. To state
it, we need a definition.

The width wg(e) of a compact region B in the direction of a unit vector e is
defined as follows. ‘Sandwich’ B by a pair of parallel planes perpendicular to e;
wg(e) is the distance between these planes:

wg(e) = max{e,r) — min{e,r).
reB reB

B has constant width if wg(e) has the same value for all directions e. A ball has
constant width, but there are shapes of constant width that are not balls (e.g.,
Reuleaux’s tetrahedron).

Aside. Why are lids on manholes round? Answer: because a lid whose rim is not a
curve of constant width can fall into the hole if (un)suitably rotated. Of course, the
lid and the hole need not be circular; any shape of constant width would be safe.

Return to the partial converse to Theorem 1.

Theorem 4. Let B be a compact region such that for every linear function f on it, there
exists b € B at which |Vf(b)| - diam(B) = max f — min f. Then B has constant width.

Proof: Suppose B has maximal width in the direction of e, minimal width in the
direction of e_, and wy(e_) < wy(e,). Then the linear function f(r) = {e_,r)
violates the assumed property of f, as |Vf| = 1, diam(B) = wpg(e, ), maxf — minf
= wgle_). [ |
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