PHYSICAL REVIEW B VOLUME 58, NUMBER 24 15 DECEMBER 1998-I
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We investigate theoretically the Zeeman effect on the lowest confined electron in quantum wires and
guantum dots. A general relation is established between the symmetry of a low-dimensional system and
properties of the electrog factor tensorg,z. The powerful method used earlier to calculate the trans\grse
factor in quantum wells is extended to one-dimensigiél) and OD zinc-blende-based nanostructures and
analytical expressions are derived in the frame of Kane’'s model fag faetors in quantum wells, cylindrical
wires, and spherical dots. The role of dimensionality is illustrated on two particular heteropairs,
GaAs/ALGa _,As and Ga_,In,As/InP. The efficiency of the developed theoretical concept is demonstrated
by calculating the three principal values of thdactor tensor in rectangular quantum wires in dependence on
the wire width to establish also the connection with the 2D cg8@163-18288)01547-]

I. INTRODUCTION systems, i.e., in quantum wird®WR'’s) and quantum dots
(QD’s). In the next two sections we present the general the-
In bulk semiconductors with zinc-blende lattice the effec-oretical considerations and derive an equation for the tensor
tive electron Landeactor depends strongly on the funda- components of the electrapfactor in the Kane model. The
mental energy gap and the spin-orbit splitting of the topmostesults on cylindrical QWR’s and spherical QD’s are given
valence band. It varies in a wide range from a large negativénh Sec. IV. Theg-factor tensor in a rectangular QWR is
value in narrow-gap semiconductofs.g., about —50 in calculated in Sec. V.
InSb) to positive valuegg<2 in wide-gap materials. This
behavior is accounted for by the well-known Roth equation Il. GENERAL THEORY
derived in second-ordek-p perturbation theory=> The
k-p theory was extended from bulk materials to zinc-blende For a pair of Kramers-conjugate states, the Zeeman con-
based heterostructures, quantum wées\V’s), and superlat-  tribution to the electron effective Hamiltonian is written as
tices, including calculations of the conduction electgdiac-
tor as a function of the layer widtfsThe theory predicted a 1
large confinement-induced anisotropy of the Zeeman effect: EMO‘TagaﬁBB’
the difference between the longituding)] and transverse
(g,) components of thg-factor tensorobtained for mag- whereo, (a=X,y,z) are the Pauli matrice® is the mag-
netic fieldsB || or L, respectively, to the growth ax® was  netic field,u, is the Bohr magneton and, for a low-symmetry
found in the same order of magnitude as these values themsystem, the real tensg,; is characterized by nine linearly
selves. The Zeeman splitting of electron spin states in biaseiddependent components.
QW structures has been calculated in Ref. 5. In general, the effectivg factor results from second-order
Detailed measurements performed on the transverse eleperturbation theoryand, thus, is expressed as a sum over
tron g factor, g, (L,), as a function of the well widtl., for  intermediate states. For an electron in the lowest
GaAs/Al 5Ga, As QW structure®®showed the sign change s-antibonding conduction band dfs, symmetry in a zinc-
of g, atL,~65 A. Moreover, a giant difference betwegn blende semiconductor witily symmetry, one hagy,g
andg, has been observed #Bs andA;Bg based hetero- =gd,z with
structures, namely in GaAs/fba, _,As, GaAs/AlAs,

Ga _,In,As/InP, and CdTe/CdMgTe, under optical orienta- 1 |pc+1/2_n|2_|pc—1/2_n|2
tion of free carriers in tilted magnetic fields!! in optically 9=0ot — > s —, (1)
detected magnetic resonan@@DMR) experiments!® by on#Tec Er,.~En

using the quantum beat technigtfegnd in resonant spin-flip R
Raman scatterin®’ ™!’ First measurements of the electron wheremy andgo~2 are the free-electron mass and Lande
and holeg factors for InP/InpGa, _,P quantum dots as re- factor, the index runs over higher and lower bandéﬁ is
ported more recenth indicate the interest in extending the the electron energy at th& point, Pci’s;n=<cl“6,s| Py
theoretical concepts of the electrgnfactor to systems of iiPy|n>, the spin indexs= +1/2, andP is the momentum
lower dimension. operator. It should be noted that Hd) can be as well de-

In the present paper we develop a theory of the Zeemarived straightforwardly as a first-order correction due to mag-
effect for electrons in quasi-one- and quasi-zero-dimensionaietic field-induced perturbation

0163-1829/98/5@4)/163537)/$15.00 PRB 58 16 353 ©1998 The American Physical Society



16 354 A. A. KISELEV, E. L. IVCHE

oH

e
—A-V
c

to the electron Hamiltonian. HeMé is the velocity operator,
—e is the electron charge, ar&lr) is the vector-potential,
which for a homogeneous magnetic field is a linear functio
of the radius vector. In order to derive the second term on
the right-hand side of Eq(l), one can rewrite the matrix
element(cl',1/2|A-V|cI,1/2) as a product of the matrix
elementgcl'g,1/2|A|n) and(n|V|cT'¢,1/2) summed up over
all statesn and use the equatiaisee, e.g., Refs. 19 and )20

d
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1 1 ,
E:Uvoo'a,ss’gaBBB:Egoﬂona;ss'8a+<elvsl 5H|e1,s ),

(4)

wheres,s’ = +1/2 andn,.s¢ =(els|a,|els’). The differ-
ence betweem,..y ando, sy arises from an admixture in

"the statgel,s) of the opposite spir-s. Numerical estimates

show that this difference is very small in all particular cases
considered below and hereatfter it is neglected. Equddpn

is applicable as well for the electron state at #iesubband
bottom in a QWR provided that the vector potential gauge is
chosen in such a way tha(r) depends on a coordinate
perpendicular to the wire principal axis and the diamagnetic
contribution

e
c <AZ><61,S| Vz| els’ >

is excluded from the matrix elemefel,s|sH|els’'). Note,
that the averagéA,)=(els|A, els) is independent of the

for the matrix element of the radius-vector taken between th&Pinsand the matrix element®1s|V,|els’) determine the

Bloch state®™ "u,,(r) ande’® "u, . (r). At the final stage

of derivation one can use the identitgk|P|n’k)=0 for de-
generate states and the conventional relation between the i
terband matrix elements of coordinate and velocity. It fol-
lows then that for the Bloch states in bulk semiconductor
the approach based on the first-order correctibngives no
advantages as compared with the second-okdertheory
and in both approaches one has eventually to perform t
summation in Eq(1). In typical zinc-blende semiconductors
the main contribution tay comes from the upper valence
bandsI'g, ,I';, and the electromy factor is given by

A mP? A
9709073 T2 E(EgtA)

)

whereE, is the band gap) is the spin-orbit splitting of the
valence band, anB=i(%/mg)(S|P,|Z) is the Kane momen-
tum matrix element formed between te@ntibonding con-
duction andp-bonding valence-band states.

Of course an equation similar to E(l) can be used for
heterostructures, particularly for QW structures and
superlatticed. In this case, however, the indexruns not

S

linear-ink, terms in the electron energy dispersion in
QWR’s with low-symmetry cross sections.
In the multiband model, the effective Hamiltonib{k) is

21_ matrix ~with the components Hpy (k) =ES&,n
+ (AImo)K- P + (A%k212mp) 8, . If One neglects the

small contribution arising from the third term, then the ve-
locity operatorV=#"1gH(k)/dk is represented by a matrix

nwith  k-independent components. This means that the

magnetic-field-induced correctiofH is a matrix with com-
ponents linearly dependent @n Therefore, in order to cal-
culate the component,, it suffices to find, first, the elec-
tronic stategel,s)=3,¢,(r)|n) at zero magnetic field and,
second, the matrix element&re} (r){¢,/(r), where the
integration is performed separately over every structure vol-
ume bounded by interfaces. We would like to stress that here
n is the index enumerating only the electronic bands in the
corresponding bulk compositional semiconductors but not
the quantum-confined states. In the following section, we
derive an equation for the matrix eleméetl,s| SH|el,s’) in

Eq. (4) by using the Kane model.

Ill. ELECTRON g FACTOR IN THE KANE MODEL

only over the different bands but also over subbands or mini- The Kane model explicitly takes into consideration the
bands formed as a result of the quantum confinement witk- p mixing between the lowest conduction bakigl and the
the consequence that the convergence is as a rule rather pohighest valence banBg,, I';, states and ignores coupling
the calculation procedure turns out to be cumbersome, angith other bands. The multibarkl p HamiltonianH (k) re-
actually excludes possibilities for the analysis of simple lim-duces to an &8 matrix. Following Suri§' we present the
iting cases. electron wave function in the form

On the other hand, low-dimensional structures allow an
efficient alternative approach based on the spatial confine-

ment of the electron wave function which has been applied . .
recently to calculate the transvergefactor in QW's® In- whereu(r) andwv(r) are spinor envelope functions. In terms

deed, if the wave function is localized in the directignthe  ©f U @ndv, the Schrdinger equation is conveniently written
diagonal matrix element of the coordinafeis no longer a as follows:
functional like Eq.(2) and the matrix element ofH for

V=uS+v,X+v,Y+v,Z,

BL ¢ can be calculated avoiding its transformation into the Eu=-iPk-v

sum in Eq.(1). Thus, for the conduction-electron ground A A 5
stateel in a QD, the Zeeman Hamiltonian is written in the E4+E.+—|v=iPku+i —oXuo.

alternative approach as 93 3



PRB 58 ELECTRONg FACTOR IN ONE- AND ZERO- ... 16 355

HereE is the electron energy with respect to the bottom ofFor QWR’s with a cross section in the form of a regular
the conduction band’e,, k=—iV, and the parameters N-sided polygon, h,(r)=Im(x+iy)"M,(x,y), where
Ey. A, andP are introduced in Eq3). By using the second M:(X,y) is an invariant of the point group,;,. For ex-
equation(5) one can express the vector spinorvia the ample, forn=4, i.e., in the case of a quadratic cross section,

gradientVu as > 2
h,(r)=xy(x=y)(x+Yy)F(x%,y%), (12
h? 2 2,2 2 2 pp—— ;
- i _ where F(x4,y9)=F(y%,x%). In cylindrical wires, f(r)
PU 2mC(E)Vu I4mo[g(E) go](O'XV)U, (6)

=f(X?+y?) while the three functionk,(r) are identically
equal to zero because there exist no polynomials

where
ELmCme'ym which transform as pseudovector components
1 2p2/ 2 1 with respect to the grou®., operations. Due to similar
=—— reasons, in a spherical QDi(r)=f(\x*+y?+2z°) and
Mo(E) 3 72\ Eg+E  E,+E+A)’ h (D)o, P QDHN=f(x+y™+2)
(7) Substituting Eq.(10) into Egs. (6) and (9), we finally
4 myP? A arrive at the following main equations:

9(E)=go— 3 :
3 #2 (EqtE)(Eg+E+A)
L Gap=900apt Uap T g (13
Substituting Eq(6) into the first Eq.(5) we naturally come
to a second-order differential equation for the conduction- e _ _ 1)
band envelope, UapBp=4 | dr{f(A-V)h,—h (A-V)f+H, "},

202 (14)
hk u=Eu (8) 9'3B =2J dr{f(Ax V), f—f[(AXV)xh],+H?}G
2m.(E) ' appB a «THL}G,
Boundary conditions are the continuity of the spindr) HO=hx(AV)h, H@=(AXV)hh,—h(AXV) h

and of the normal component of the vecteo(r) at the

interfaces. Note thatn_*(0) and the differencgy(0)—g,  governing the electrog-factor calculation in the approach
describe the valence-barid p contributions to the inverse outlined by Eq.(4). It is worth mentioning that for vanishing
effective mass and thg factor at the bottom of the conduc- h,(r) the contributiongglg vanishes as well.

tion band.

In the Kane model, the velocity operatoV IV. SPHERICAL QD’s AND CYLINDRICAL QWR'’s
=% "19H(k)/k is an 8< 8 matrix with k-independent com-

ponents. Using the explicit form for this matrix, we obtain For QD’s of the spherical form, symmetry considerations

and Eq.(6) allow us to write the spinora andv as

e
(el,S|5H|el,S’>:iEf PL(A-vg)ug—ug (A-vg)]dr. us(r)=f(r)cs,
© (19
Po.(1) w2 or h? () ! df
= ——i - —||==Cs.
One can present the spinor wave functign) in the gen- sl 2me(E) r 4m0[g 9ol| o7/ gr S
eral form as

Due to the spherical symmetry of the functib(r), the g-
ugn=[f(N+ioh,(r)]cs, (10) factor ten;or !s isotropi'cga.ﬁ:géaﬁ. Since the r]ormal to

the spherical interface is directed along the radius vector

where f(r),h,(r) are real functions ands (s==*1/2) are the normal component d?v, is given by

the spin-up and spin-down states, respectively. Symmetry of

a quantum heterosystem imposes restrictions on the coordi- h?  df

nate dependence of these functions. In particular, for the 2m.(E) ﬁCS'

ground electron statel in a QD of the point symmetrip,,

(the symmetry of a rectangular box or an ellipgpiohe has Therefore, the boundary conditions for a dot of the radtus
reduce to the continuity of(r) and mc’l(E)df/dr atr

f(N=1(x2y%2%), h(r)=yzM(x%y? 2%, =R. In what follows, we denote the dot, wire, or well semi-
conductor material byA, the barrier material b, and the
hy(N=zxM,(x?,y%,2%), hy(r)=xyM,(x?y?z?), massm,(E) in the A or B materials bym,(E),mg(E). For
] ) s o ) the ground-state solution of EQq(8), one has f(r)
wheref andM , are arbitrary functions of%, y*, andz®. For  _ = 1gjkr if r<R and CsinkRrtexg —ze( —R)] for r

the conduction-electron stagl at the subband bottork,  —~R \yhere
=0 in a QWR with rectangular cross section, the envelopes
u,v are independent of, wherez is the wire principal axis, k=[2ma(E)E/A2]Y?,  s=[2mg(E)(AE.—E)/#?]Y?,
and, hence,
AE. is the conduction-band offset at ti¢B interface, and
h,(r)=xyM,(x?,y%), h,(r)=hy(r)=0. (11)  the coefficientC is fixed by the normalization condition
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0.6
f dr(ufu+ov*-v)=1. (16) I (a)

GaAs/Al ,.Ga, As

Note that taking into account the band offset, the mass 0.4

mg(E) is defined asm.(E—AE,;). It follows from Egs.
(13)—(15) that the electromy factor in a spherical QD can be
presented by

. 2 df
g9=0o— gf drrfa[g(E)—go]- (17

Equation(15) is valid as well for a cylindrical QWR of the
radius R provided the radius vector=(x,y,z) and the
modulusr =|r| are replaced by the two-dimensional vector
p=(x,y) and p=|p|. The el solution is given byf(p)
=CJy(kp) if p<R, andDKy(ap) if p=R, whereJy(x), R T T B

Electron g factor

Ko(x) are the Bessel functions amdl= CJy(kR)/Ky(aR). 0 50 100 150 200 250 300
A nontrivial point is that the electrog factor in this case is . 2

also isotropic in spite of the uniaxial symmetry of the sys- Radius (A)
tem. One can show straightforwardly thgt, g,,, andg,,
coincide and are described by 1k (b)

\ Ga, ,In, ,,As/InP

df
0=00- | dxdyt S T9E) -] (19

The isotropy is a consequence of the equatiogp)
=f(p)cs, which means in particular that the three diagonal
components g,, are proportional to the same two-
dimensional integral with proportionality coefficients inde-
pendent of the wire size. The coefficients must be equal be-
cause with increasinR—o the values ofg,, tend to the
same limit, i.e., to the electrog factor in the bulk semicon-
ductorA.

After the partial integration, Eq917) and (18) can be
transformed into

Electron g factor

[ga(E)—do] [9&(E)— 9ol 0 | 50 . 100 150 200 . 250 . 300
=0ot - Wy + — w '
RN Radius (A)

+[gs(E) —ga(E) Vs _¢(RfA(R), (19
FIG. 1. The electrorg factor calculated as a function of the

where V,, is a volume of the sphere in thedimensional radiusR in spherical quantum dotssolid), cylindrical quantum
spaceV,=mR? andV;=47R%3, gA(E) andgg(E) are the  wires (dashetl and quantum wellgdotted,R=L,/2) for the het-
values ofg(E) andg(E— AE,) in the A andB materials, see eropairs GaAs/A3:Ga 6sAs () and Gg 474NosAS/INP (b).
Eq. (7), and w, and wg are the integralsfdrf?(r) or o _ _ .
fdpfz(p) taken, respective|y, over thA and B volumes. Spllttlng. In the next section we derive a CompaCt equatlon
Note that the sumv,+wg differs from unity because of the for g allowing a comparison witly, given by Eq.(19) for
normalization(16). In the presentation by E¢19), the sec- d=2.
ond and third terms can be attributed to volume contributions Figure 1 shows the dependence of the electyéactor on
whereas the last term allows a natural interpretation as thée radiusRin QD’s and QWR'’s calculated for the isomor-
interface contribution. An important point is that Eq9  Phic nanostructure GaAs/fba _,As and pseudomorphic
describes as well the transvergsactor in a QW of the width ~ structure GgyuAng s;As/InP. For comparison, in the same
L,=2R. In this case the dimensionalily=2, the volume draph we present a variation of the longitudinal and trans-
V;3_4=2R, the spinor envelope(r)=f(z)cs, f=Ccoskz  Verseg factors in a QW. The parameters used in the calcu-
inside the QW, andCcoskRexd —ae(z|—R)] outside the lation of the first heterosystem are as follows:
QW. For the longitudinaly factor in a QW, the proposed Eg=1.52 eV, A=0.34 eV, 2;/my=28.9 eV for
procedure cannot be applied in a straightforward manner bdbulk ~ GaAs (here  p.,=i(S/P,|Z)=m,P/%); and
cause, ifB||z, then for any gauge the vector potentfaide- E;=1.94 eV, A=0.32 eV, 22,/my=26.7 eV for bulk
pends on the in-plane coordinates and the matrix element dbaAs/Al 3:Ga ¢5AS, the band offset ratidE,:AE.=2:3.
x or y taken between the quasi-two-dimensional electronicThe contribution of remote bands is taken into account by
states is a functional. In Ref. 5, the compongntvas found  adding the constantg= —0.12 to the Kane-model values of
in a numerical calculation of the Landau levels and their spirg. For the second heterosystem we used the following pa-
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FIG. 3. The electromy factor components,, (¢=Xx,y,z) ina
GaAs/ALGa, _,As rectangular QWR vs the lengthb2of one side.
The other side, &, is kept constant. The inset shows the orientation
of the coordinate system. The arrows indicate values of the trans-
verse and longitudinay factors in the 80-A-thick QW.

x (R) at least one of the functiorts,(r) in Eq. (10) is nonzero and
where the tensog, is characterized by three different di-
FIG. 2. Contour plots of the envelopééx,y) andh(x,y) for agonal components. This is the case for rectangular QWR’s
the electron lowest subbarell (at the bottomk,=0) in a 2a  whereh,(p)=h,(p)=0 but h,(p)=h(p)+#0. The continu-
X2b rectangular GaAs/ABa, ,As QWR witha=40 A andb  ous envelopesf(p) and h(p) satisfy Eq. (8); they are
=60 A. coupled at the interfaces by the continuity condition for the
normal component of the spinor vectBw related toVug
rameters: E;=0.813 eV, A=0.356 eV, 22,/my by Eqg. (6). This condition imposes the continuity require-
=25.5 eV for bulk GgsingsAs and Eg=1.423 eV, A ment on the following two linear combinations of the deriva-
=0.108 eV, D?,/my=20.4 eV for InP, the valence-band tives Vf andVh:
offset AE,=0.356 eV, the contribution from remote bands

Ag= —0.13. With increasingdr the curves approach the bot- (o ‘9_f+o ﬁ _ E(o @—o @)

tom value ofg in the bulk materia, in agreement with Eq. U%ax " ay) 2\ Pxay ~ Yax)

(19), where, forR—o, w, saturates to unity and values of (20)
wg, E, andV;_4(R)f?(R) tend to zero. The asymptotic dh ohy G| of of

behavior ofg at largeR is described byg(R)=g(0)+A M OX&J“OV@) + E( OX@_OVK)'

+(Rq/R)? with the hierarchyRy>R; >R} >R}, whereRr; ! , ,
characterize the convergence @f andg in QW’s. In the where the axeg,y are directed alon.g the .rectangL_JIar sides,
opposite limit,R—0, the curvegy(R) tend to theg-factor 04,0, are components of the two—tTmensmnal un_|t veaior
value in the bulk barrier semiconductayg(0)+Ag=0.57 nog;mal to theA/B boundary, andu=mo/mc(E),G=g(E)

in Alg3GaygsAs and 1.2 in InP. The relatiog®P>g?"R  ~Ho- _ _
g% can be understood taking into account that the reduc. ! 0rder to find the ground-state solutipet.s) of Eq. (8)

tion in dimensionality enhances the role of electron spatial? & Wiré of the cross sectiona2b, we applied the free
confinement. relaxation technigque described in Ref. 22. The envelopes

The estimation shows that the contribution of the termf(”)Aa“ﬂ'dh("’3:\Calcmated for the GaAs/fksGg eAs QWR
proportional tof2(R) in Eq. (19) is not relatively small, 80 Ax120 A are shown in Fig. 2 as contour maps. The
which excludes in general an approximate description of th@"9in of the coordinate systenxy) is chosen in the wire

dependence(R) in the simple formga(E)Wa+gs(E)Wg center. Due to the rectangular symmetry it is enough to
+Ag. present the variation of and h only in the quadrani,y

>0. The functionf(x,y) has the maximum valué,,,~7
x10"2 at the center and monotonously decreases with in-
creasing radial distance. In accordance with Eql1), the
Figure 1 demonstrates the main features of the effect ofunctionh(x,y) is zero ifx=0 ory=0. It follows from Eqg.
dimensionality on the electrog factor. Nevertheless, it is (12) that for coincidinga andb this function should vanish
interesting to realize the proposed calculation scheme to also at the diagonak=y and have opposite signs at the
greater extent and consider less symmetrical structures whepaints x,y) and (y,x). One can see in Fig. 2 areas of oppo-

V. RECTANGULAR QWR'’s
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site signs in the map oh(x,y) in spite of a remarkable With increasingb the componentg,, andg,, converge on
difference betweea andb. As a result, in every quadrant the the electron transversgfactor in a QW of thickness 80 A
function h(x,y) exhibits a maximum and a minimum. As and the componerd,, approaches the QW value gf . In
compared withf .., the extremum values dfi(x,y) are the square-shaped QWR=a, the two components,, and
smaller by three orders of magnitude. g,y coincide as the symmetry predicts. Moreover, one can

The symmetry allows for thg-factor tensor, Eq(13), to  gee from Fig. 3 that at the poift=a the anisotropy|g,,
have only nonzero diagonal corznponents. Because of the g | is in fact quite small because, as it follows from Eq.
small values o, we can |gnorezh -like terms in the inte- (1) “the functionh(x,y) vanishes at the four lines=0,y
grals of Eq.(14) and retain onlyf“- andfh-like terms. Tak- —0y=x,y=—x and its values are too suppressed to pro-
ing into account that, for rectangular QWRHs,=h,=0 and duc,e a s’ignificanfh—like contribution.

gxri]é)zg iﬁf;gﬁ%ﬂ%egg Lsegl?(rzzl(lje:nttc;the wire principal In the Kane model defined by E¢5) we neglected the

» E0S- small free-electron-mass contributioh%?/2mg) 8, to the
of Jh HamiltonianH - (k) and the corresponding additional term

G( ) SH! ,=(eh?/cmg)A-ké,, in the magnetic-field-induced

perturbationsH . In this connection we would like to note

dh that the symmetry of a rectangular box or wire forbids non-
gyy=go—2J dXdyX%fa_x_f@)’ zero values for the matrix elemen¢sl,s|oH’|el;s’) be-
(22 cause the produol\aRa (a=x,y,z) inverts its sign under
9o go—2f dxdy{Gfa—f—ZM( £ @—hﬂ” reflection in th.e'plane perpe.ndiculgr to the a@tls .
X ay ady In the remaining part of this section we derive an equation

for the electron longitudinay factor in QW’s by considering
of oh  of .
Ego_2J dxdyy Gf—+2u| f——h— a rectangular QWR of the cross sectioa>2b and per-
ay X Ix forming the asymptotic transition to infinite values laf If
Figure 3 shows the dependence @f,, 9yy, and g,, in b>a, then one can use an adiabatic approximation and write
GaAs/Al 3G ¢As QWR’s on one of the rectangular sizes the envelopef(x,y) inside the interval {b,b) and far
while another size is kept constant and equal &=-80 A.  enough from the endg=*b in the factorized form

coskx if |x|=<a,

coska exd —a&d|x|—a)] if |x|=a, 22

f(x,y)=C<I>(y)[
where ®(y) is a smooth function which for the equivalent fages —b andy=b can be approximated by cas{/2b).
Substituting Eq(22) into Eq. (20) and takingo,=1,0,=0 for the facesx=*+a, we can derive the functioh in the first
approximation as

N ay [ sinkx if |x|<a,
,y)=CQsi . . 23

(%) QSI% sgrix)sinka exgd —&g|x|—a)] if |x|=a, 3
|

where The value ofg; marked in Fig. 3 by the arrow is calculated
by using Eq.(24); it coincides within the computational ac-

7 Ga(E)—ga(E) curacy with values obtained by the previous mettbus.
= ma Tcoszka,
Ha VI. SUMMARY
1a(E)=mg/my(E). Substitutingf andh in the form of Egs. We have studied consequences of the dimensionality re-

(22) and(23) into Eq.(21), we finally obtain in the limito  duction upon the Zeeman effect in semiconductor nanostruc-
— o the longitudinalg factor in the QW of the thicknessa®2  tures and developed a theory of the electron Lagdactor
of the lowest confined state in zinc-blende-based QWR's and
gH=go+GAWA(1+§Ac0§ka)+GBwB(1+nginzka), QD’;. For this purpose we have extended' the agpgoach used
(24)  earlier to calculate the transvergefactor in QW'’s” Our
concept allows us to obtain tlgefactor components in one-
and zero-dimensional systems avoiding the cumbersome
summation over numerous quantum-confined electronic
states. The further considerations have been carried out in the
_19s(E)—ga(E) _19a(E)—gs(E) Kane model. The restrictions imposed by the structure sym-
AT2 ua(E) To%BT2 ue(E) ' metry have been analyzed and formulated. The effect of di-

where
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mensionality has been demonstrated on spherical QD’s andependent term and is characterized by two linearly indepen-
cylindrical QWR’s. Compact analytical expressions havedent scalar functions.

been derived for the electrapfactor including the longitu-
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