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Electron g factor in one- and zero-dimensional semiconductor nanostructures
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We investigate theoretically the Zeeman effect on the lowest confined electron in quantum wires and
quantum dots. A general relation is established between the symmetry of a low-dimensional system and
properties of the electrong factor tensor,gab . The powerful method used earlier to calculate the transverseg
factor in quantum wells is extended to one-dimensional~1D! and 0D zinc-blende-based nanostructures and
analytical expressions are derived in the frame of Kane’s model for theg factors in quantum wells, cylindrical
wires, and spherical dots. The role of dimensionality is illustrated on two particular heteropairs,
GaAs/AlxGa12xAs and Ga12xInxAs/InP. The efficiency of the developed theoretical concept is demonstrated
by calculating the three principal values of theg factor tensor in rectangular quantum wires in dependence on
the wire width to establish also the connection with the 2D case.@S0163-1829~98!01547-1#
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I. INTRODUCTION

In bulk semiconductors with zinc-blende lattice the effe
tive electron Lande´ factor depends strongly on the fund
mental energy gap and the spin-orbit splitting of the topm
valence band. It varies in a wide range from a large nega
value in narrow-gap semiconductors~e.g., about –50 in
InSb! to positive valuesg<2 in wide-gap materials. This
behavior is accounted for by the well-known Roth equat
derived in second-orderk•p perturbation theory.1–3 The
k•p theory was extended from bulk materials to zinc-blen
based heterostructures, quantum wells~QW’s!, and superlat-
tices, including calculations of the conduction electrong fac-
tor as a function of the layer widths.4 The theory predicted a
large confinement-induced anisotropy of the Zeeman eff
the difference between the longitudinal (gi) and transverse
(g') components of theg-factor tensor~obtained for mag-
netic fieldsB i or', respectively, to the growth axisz) was
found in the same order of magnitude as these values th
selves. The Zeeman splitting of electron spin states in bia
QW structures has been calculated in Ref. 5.

Detailed measurements performed on the transverse
tron g factor,g'(Lz), as a function of the well widthLz for
GaAs/Al0.3Ga0.7As QW structures6–8 showed the sign chang
of g' at Lz'65 Å. Moreover, a giant difference betweengi
andg' has been observed onA3B5 andA2B6 based hetero-
structures, namely in GaAs/AlxGa12xAs, GaAs/AlAs,
Ga12xInxAs/InP, and CdTe/CdMgTe, under optical orient
tion of free carriers in tilted magnetic fields,9–11 in optically
detected magnetic resonance~ODMR! experiments,12,13 by
using the quantum beat technique,14 and in resonant spin-flip
Raman scattering.15–17 First measurements of the electro
and holeg factors for InP/InxGa12xP quantum dots as re
ported more recently18 indicate the interest in extending th
theoretical concepts of the electrong factor to systems of
lower dimension.

In the present paper we develop a theory of the Zeem
effect for electrons in quasi-one- and quasi-zero-dimensio
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systems, i.e., in quantum wires~QWR’s! and quantum dots
~QD’s!. In the next two sections we present the general t
oretical considerations and derive an equation for the ten
components of the electrong factor in the Kane model. The
results on cylindrical QWR’s and spherical QD’s are giv
in Sec. IV. Theg-factor tensor in a rectangular QWR
calculated in Sec. V.

II. GENERAL THEORY

For a pair of Kramers-conjugate states, the Zeeman c
tribution to the electron effective Hamiltonian is written a

1

2
m0sagabBb ,

wheresa (a5x,y,z) are the Pauli matrices,B is the mag-
netic field,m0 is the Bohr magneton and, for a low-symmet
system, the real tensorgab is characterized by nine linearl
independent components.5

In general, the effectiveg factor results from second-orde
perturbation theory1 and, thus, is expressed as a sum o
intermediate states. For an electron in the low
s-antibonding conduction band ofG6c symmetry in a zinc-
blende semiconductor withTd symmetry, one hasgab
5gdab with

g5g01
1

m0
(

nÞG6c

uPc,1/2;n
1 u22uPc,1/2;n

2 u2

EG6c

0 2En
0

, ~1!

wherem0 and g0'2 are the free-electron mass and Lan`
factor, the indexn runs over higher and lower bands,En

0 is
the electron energy at theG point, Pc,s;n

6 5^cG6 ,suPx

6 iPyun&, the spin indexs561/2, andP is the momentum
operator. It should be noted that Eq.~1! can be as well de-
rived straightforwardly as a first-order correction due to ma
netic field-induced perturbation5
16 353 ©1998 The American Physical Society
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dH5
e

c
A•V

to the electron Hamiltonian. HereV is the velocity operator,
2e is the electron charge, andA(r) is the vector-potential,
which for a homogeneous magnetic field is a linear funct
of the radius vectorr. In order to derive the second term o
the right-hand side of Eq.~1!, one can rewrite the matrix
element^cG6,1/2uA•VucG6,1/2& as a product of the matrix
elementŝ cG6,1/2uAun& and^nuVucG6,1/2& summed up over
all statesn and use the equation~see, e.g., Refs. 19 and 20!

^nkurun8k8&5 idnn8

]

]k
dkk81Vnn8~k!dkk8 ,

~2!

Vnn8~k!5 i E drunk*
]

]k
un8k~r!,

for the matrix element of the radius-vector taken between
Bloch stateseik–runk(r) andeik8–run8k8(r). At the final stage
of derivation one can use the identity^nkuPun8k&50 for de-
generate states and the conventional relation between th
terband matrix elements of coordinate and velocity. It f
lows then that for the Bloch states in bulk semiconduct
the approach based on the first-order correctiondH gives no
advantages as compared with the second-orderk•p theory
and in both approaches one has eventually to perform
summation in Eq.~1!. In typical zinc-blende semiconductor
the main contribution tog comes from the upper valenc
bandsG8v ,G7v and the electrong factor is given by1–3

g5g02
4

3

m0P2

\2

D

Eg~Eg1D!
, ~3!

whereEg is the band gap,D is the spin-orbit splitting of the
valence band, andP5 i (\/m0)^SuPzuZ& is the Kane momen-
tum matrix element formed between thes-antibonding con-
duction andp-bonding valence-band states.

Of course an equation similar to Eq.~1! can be used for
heterostructures, particularly for QW structures a
superlattices.4 In this case, however, the indexn runs not
only over the different bands but also over subbands or m
bands formed as a result of the quantum confinement w
the consequence that the convergence is as a rule rather
the calculation procedure turns out to be cumbersome,
actually excludes possibilities for the analysis of simple li
iting cases.

On the other hand, low-dimensional structures allow
efficient alternative approach based on the spatial confi
ment of the electron wave function which has been app
recently to calculate the transverseg factor in QW’s.5 In-
deed, if the wave function is localized in the directionz, the
diagonal matrix element of the coordinatez is no longer a
functional like Eq. ~2! and the matrix element ofdH for
B'z can be calculated avoiding its transformation into t
sum in Eq. ~1!. Thus, for the conduction-electron groun
statee1 in a QD, the Zeeman Hamiltonian is written in th
alternative approach as
n

e

in-
-
s
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1

2
m0sa,ss8gabBb5

1

2
g0m0ha;ss8Ba1^e1,sudHue1,s8&,

~4!

wheres,s8561/2 andha;ss85^e1,susaue1,s8&. The differ-
ence betweenha;ss8 andsa,ss8 arises from an admixture in
the stateue1,s& of the opposite spin2s. Numerical estimates
show that this difference is very small in all particular cas
considered below and hereafter it is neglected. Equation~4!
is applicable as well for the electron state at thee1-subband
bottom in a QWR provided that the vector potential gauge
chosen in such a way thatA(r) depends on a coordinat
perpendicular to the wire principal axis and the diamagne
contribution

e

c
^Az&^e1,suVzue1,s8&

is excluded from the matrix element^e1,sudHue1,s8&. Note,
that the averagêAz&[^e1,suAzue1,s& is independent of the
spins and the matrix elementŝe1,suVzue1,s8& determine the
linear-in-kz terms in the electron energy dispersion
QWR’s with low-symmetry cross sections.

In the multiband model, the effective HamiltonianH(k) is
a matrix with the components Hnn8(k)5En

0dnn8
1(\/m0)k•Pnn81(\2k2/2m0)dnn8 . If one neglects the
small contribution arising from the third term, then the v
locity operatorV5\21]H(k)/]k is represented by a matri
with k-independent components. This means that
magnetic-field-induced correctiondH is a matrix with com-
ponents linearly dependent onz. Therefore, in order to cal-
culate the componentsgab , it suffices to find, first, the elec
tronic statesue1,s&5(nwn(r)un& at zero magnetic field and
second, the matrix elements*drwn* (r)zwn8(r), where the
integration is performed separately over every structure v
ume bounded by interfaces. We would like to stress that h
n is the index enumerating only the electronic bands in
corresponding bulk compositional semiconductors but
the quantum-confined states. In the following section,
derive an equation for the matrix element^e1,sudHue1,s8& in
Eq. ~4! by using the Kane model.

III. ELECTRON g FACTOR IN THE KANE MODEL

The Kane model explicitly takes into consideration t
k•p mixing between the lowest conduction bandG6c and the
highest valence bandG8v , G7v states and ignores couplin
with other bands. The multibandk•p HamiltonianH(k) re-
duces to an 838 matrix. Following Suris21 we present the
electron wave function in the form

C5uS1vxX1vyY1vzZ,

whereu(r) andv(r) are spinor envelope functions. In term
of u andv, the Schro¨dinger equation is conveniently writte
as follows:

Eu52 iP k̂•v
~5!

S E1Eg1
D

3 Dv5 iP k̂u1 i
D

3
s3v.
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HereE is the electron energy with respect to the bottom
the conduction bandG6c , k̂52 i¹, and the parameter
Eg , D, andP are introduced in Eq.~3!. By using the second
equation~5! one can express the vector spinorv via the
gradient¹u as

Pv5
\2

2mc~E!
¹u2 i

\2

4m0
@g~E!2g0#~s3¹!u, ~6!

where

1

mc~E!
5

2

3

P2

\2S 2

Eg1E
1

1

Eg1E1D D ,

~7!

g~E!5g02
4

3

m0P2

\2

D

~Eg1E!~Eg1E1D!
.

Substituting Eq.~6! into the first Eq.~5! we naturally come
to a second-order differential equation for the conducti
band envelope,

\2k̂2

2mc~E!
u5Eu. ~8!

Boundary conditions are the continuity of the spinoru(r)
and of the normal component of the vectorPv(r) at the
interfaces. Note thatmc

21(0) and the differenceg(0)2g0

describe the valence-bandk•p contributions to the inverse
effective mass and theg factor at the bottom of the conduc
tion band.

In the Kane model, the velocity operatorV̂
5\21]H(k)/]k is an 838 matrix withk-independent com-
ponents. Using the explicit form for this matrix, we obtain

^e1,sudHue1,s8&5 i
e

c\E P@~A•vs
1!us82us

1~A•vs8!#dr.

~9!

One can present the spinor wave functionu(r) in the gen-
eral form as

us~r!5@ f ~r!1 isaha~r!#cs , ~10!

where f (r),ha(r) are real functions andcs (s561/2) are
the spin-up and spin-down states, respectively. Symmetr
a quantum heterosystem imposes restrictions on the co
nate dependence of these functions. In particular, for
ground electron statee1 in a QD of the point symmetryD2h
~the symmetry of a rectangular box or an ellipsoid!, one has

f ~r!5 f ~x2,y2,z2!, hx~r!5yzMx~x2,y2,z2!,

hy~r!5zxMy~x2,y2,z2!, hz~r!5xyMz~x2,y2,z2!,

wheref andMa are arbitrary functions ofx2, y2, andz2. For
the conduction-electron statee1 at the subband bottomkz
50 in a QWR with rectangular cross section, the envelo
u,v are independent ofz, wherez is the wire principal axis,
and, hence,

hz~r!5xyMz~x2,y2!, hx~r![hy~r![0. ~11!
f

-

of
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For QWR’s with a cross section in the form of a regul
N-sided polygon, hz(r)5Im(x1 iy)NMz(x,y), where
Mz(x,y) is an invariant of the point groupDnh . For ex-
ample, forn54, i.e., in the case of a quadratic cross secti

hz~r!5xy~x2y!~x1y!F~x2,y2!, ~12!

where F(x2,y2)5F(y2,x2). In cylindrical wires, f (r)
[ f (Ax21y2) while the three functionsha(r) are identically
equal to zero because there exist no polynom
( l ,mCl ,mxlym which transform as pseudovector compone
with respect to the groupD`h operations. Due to similar
reasons, in a spherical QD,f (r)[ f (Ax21y21z2) and
ha(r)[0.

Substituting Eq.~10! into Eqs. ~6! and ~9!, we finally
arrive at the following main equations:

gab5g0dab1gab
~1!1gab

~2! , ~13!

gab
~1!Bb54E dr$ f ~A•¹!ha2ha~A•¹! f 1Ha

~1!%m,

~14!

gab
~2!Bb52E dr$ f ~A3¹!a f 2 f @~A3¹!3h#a1Ha

~2!%G,

H~1!5h3~A¹!h, Ha
~2!5~A3¹!hha2h~A3¹!ah,

governing the electrong-factor calculation in the approac
outlined by Eq.~4!. It is worth mentioning that for vanishing
ha(r) the contributiongab

(1) vanishes as well.

IV. SPHERICAL QD’s AND CYLINDRICAL QWR’s

For QD’s of the spherical form, symmetry consideratio
and Eq.~6! allow us to write the spinorsu andv as

us~r!5 f ~r !cs ,
~15!

Pvs~r!5F \2

2mc~E!

r

r
2 i

\2

4m0
@g~E!2g0#S s3

r

r D Gd f

dr
cs .

Due to the spherical symmetry of the functionf (r ), the g-
factor tensor is isotropic:gab5gdab . Since the normal to
the spherical interface is directed along the radius vector,
the normal component ofPvs is given by

\2

2mc~E!

d f

dr
cs .

Therefore, the boundary conditions for a dot of the radiusR
reduce to the continuity off (r ) and mc

21(E)d f /dr at r
5R. In what follows, we denote the dot, wire, or well sem
conductor material byA, the barrier material byB, and the
massmc(E) in the A or B materials bymA(E),mB(E). For
the ground-state solution of Eq.~8!, one has f (r )
5Cr21sinkr, if r<R, andCsinkRr21exp@2æ(r 2R)# for r
>R, where

k5@2mA~E!E/\2#1/2, æ5@2mB~E!~DEc2E!/\2#1/2,

DEc is the conduction-band offset at theA/B interface, and
the coefficientC is fixed by the normalization condition
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E dr~u1u1v1
•v !51. ~16!

Note that taking into account the band offset, the m
mB(E) is defined asmc(E2DEc). It follows from Eqs.
~13!–~15! that the electrong factor in a spherical QD can b
presented by

g5g02
2

3E drr f
d f

dr
@g~E!2g0#. ~17!

Equation~15! is valid as well for a cylindrical QWR of the
radius R provided the radius vectorr5(x,y,z) and the
modulusr 5uru are replaced by the two-dimensional vect
r5(x,y) and r5uru. The e1 solution is given byf (r)
5CJ0(kr) if r<R, and DK0(ær) if r>R, whereJ0(x),
K0(x) are the Bessel functions andD5CJ0(kR)/K0(æR).
A nontrivial point is that the electrong factor in this case is
also isotropic in spite of the uniaxial symmetry of the sy
tem. One can show straightforwardly thatgxx , gyy , andgzz
coincide and are described by

g5g02E dxdyr f
d f

dr
@g~E!2g0#. ~18!

The isotropy is a consequence of the equationus(r)
5 f (r)cs , which means in particular that the three diagon
components gaa are proportional to the same two
dimensional integral with proportionality coefficients ind
pendent of the wire size. The coefficients must be equal
cause with increasingR→` the values ofgaa tend to the
same limit, i.e., to the electrong factor in the bulk semicon-
ductorA.

After the partial integration, Eqs.~17! and ~18! can be
transformed into

g5g01@gA~E!2g0#wA1@gB~E!2g0#wB

1@gB~E!2gA~E!#V32d~R! f 2~R!, ~19!

where Vn is a volume of the sphere in then-dimensional
space:V25pR2 andV354pR3/3, gA(E) andgB(E) are the
values ofg(E) andg(E2DEc) in theA andB materials, see
Eq. ~7!, and wA and wB are the integrals*dr f 2(r ) or
*drf 2(r) taken, respectively, over theA and B volumes.
Note that the sumwA1wB differs from unity because of the
normalization~16!. In the presentation by Eq.~19!, the sec-
ond and third terms can be attributed to volume contributi
whereas the last term allows a natural interpretation as
interface contribution. An important point is that Eq.~19!
describes as well the transverseg factor in a QW of the width
Lz52R. In this case the dimensionalityd52, the volume
V32d52R, the spinor envelopeus(r)5 f (z)cs , f 5Ccoskz
inside the QW, andCcoskRexp@2æ(uzu2R)# outside the
QW. For the longitudinalg factor in a QW, the proposed
procedure cannot be applied in a straightforward manner
cause, ifBiz, then for any gauge the vector potentialA de-
pends on the in-plane coordinates and the matrix elemen
x or y taken between the quasi-two-dimensional electro
states is a functional. In Ref. 5, the componentgi was found
in a numerical calculation of the Landau levels and their s
s
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s
e
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splitting. In the next section we derive a compact equat
for gi allowing a comparison withg' given by Eq.~19! for
d52.

Figure 1 shows the dependence of the electrong factor on
the radiusR in QD’s and QWR’s calculated for the isomo
phic nanostructure GaAs/AlxGa12xAs and pseudomorphic
structure Ga0.47In0.53As/InP. For comparison, in the sam
graph we present a variation of the longitudinal and tra
verseg factors in a QW. The parameters used in the cal
lation of the first heterosystem are as follow
Eg51.52 eV, D50.34 eV, 2pcv

2 /m0528.9 eV for
bulk GaAs ~here pcv5 i ^SuPzuZ&5m0P/\); and
Eg51.94 eV, D50.32 eV, 2pcv

2 /m0526.7 eV for bulk
GaAs/Al0.35Ga0.65As, the band offset ratioDEv :DEc52:3.
The contribution of remote bands is taken into account
adding the constantDg520.12 to the Kane-model values o
g. For the second heterosystem we used the following

FIG. 1. The electrong factor calculated as a function of th
radius R in spherical quantum dots~solid!, cylindrical quantum
wires ~dashed!, and quantum wells~dotted,R5Lz /2) for the het-
eropairs GaAs/Al0.35Ga0.65As ~a! and Ga0.47In0.53As/InP ~b!.
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rameters: Eg50.813 eV, D50.356 eV, 2pcv
2 /m0

525.5 eV for bulk Ga0.47In0.53As and Eg51.423 eV, D
50.108 eV, 2pcv

2 /m0520.4 eV for InP, the valence-ban
offset DEv50.356 eV, the contribution from remote ban
Dg520.13. With increasingR the curves approach the bo
tom value ofg in the bulk materialA, in agreement with Eq
~19!, where, forR→`, wA saturates to unity and values o
wB , E, and V32d(R) f 2(R) tend to zero. The asymptoti
behavior ofg at largeR is described byg(R)5gA(0)1Dg
1(Rd /R)2 with the hierarchyR0.R1.R2

'.R2
i , whereR2

',i

characterize the convergence ofg' and gi in QW’s. In the
opposite limit,R→0, the curvesg(R) tend to theg-factor
value in the bulk barrier semiconductor,gB(0)1Dg50.57
in Al0.35Ga0.65As and 1.2 in InP. The relationgQD.gQWR

.gQW can be understood taking into account that the red
tion in dimensionality enhances the role of electron spa
confinement.

The estimation shows that the contribution of the te
proportional to f 2(R) in Eq. ~19! is not relatively small,
which excludes in general an approximate description of
dependenceg(R) in the simple formgA(E)wA1gB(E)wB
1Dg.

V. RECTANGULAR QWR’s

Figure 1 demonstrates the main features of the effec
dimensionality on the electrong factor. Nevertheless, it is
interesting to realize the proposed calculation scheme
greater extent and consider less symmetrical structures w

FIG. 2. Contour plots of the envelopesf (x,y) and h(x,y) for
the electron lowest subbande1 ~at the bottomkz50) in a 2a
32b rectangular GaAs/AlxGa12xAs QWR with a540 Å and b
560 Å.
c-
l

e

of

a
re

at least one of the functionsha(r) in Eq. ~10! is nonzero and
where the tensorgab is characterized by three different d
agonal components. This is the case for rectangular QW
wherehx(r)5hy(r)50 but hz(r)[h(r)Þ0. The continu-
ous envelopesf (r) and h(r) satisfy Eq. ~8!; they are
coupled at the interfaces by the continuity condition for t
normal component of the spinor vectorPvs related to¹us
by Eq. ~6!. This condition imposes the continuity require
ment on the following two linear combinations of the deriv
tives ¹ f and¹h:

mS ox

] f

]x
1oy

] f

]yD2
G

2 S ox

]h

]y
2oy

]h

]xD ,

~20!

mS ox

]h

]x
1oy

]h

]yD1
G

2 S ox

] f

]y
2oy

] f

]xD ,

where the axesx,y are directed along the rectangular side
ox ,oy are components of the two-dimensional unit vectoo
normal to theA/B boundary, andm5m0 /mc(E),G5g(E)
2g0 .

In order to find the ground-state solutionue1,s& of Eq. ~8!
in a wire of the cross section 2a32b, we applied the free
relaxation technique described in Ref. 22. The envelo
f (r) andh(r) calculated for the GaAs/Al0.35Ga0.65As QWR
80 Å3120 Å are shown in Fig. 2 as contour maps. T
origin of the coordinate system (x,y) is chosen in the wire
center. Due to the rectangular symmetry it is enough
present the variation off and h only in the quadrantx,y
.0. The functionf (x,y) has the maximum valuef max'7
31023 at the center and monotonously decreases with
creasing radial distancer. In accordance with Eq.~11!, the
function h(x,y) is zero if x50 or y50. It follows from Eq.
~12! that for coincidinga andb this function should vanish
also at the diagonalx5y and have opposite signs at th
points (x,y) and (y,x). One can see in Fig. 2 areas of opp

FIG. 3. The electrong factor componentsgaa (a5x,y,z) in a
GaAs/AlxGa12xAs rectangular QWR vs the length, 2b, of one side.
The other side, 2a, is kept constant. The inset shows the orientat
of the coordinate system. The arrows indicate values of the tra
verse and longitudinalg factors in the 80-Å-thick QW.
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site signs in the map ofh(x,y) in spite of a remarkable
difference betweena andb. As a result, in every quadrant th
function h(x,y) exhibits a maximum and a minimum. A
compared withf max, the extremum values ofh(x,y) are
smaller by three orders of magnitude.

The symmetry allows for theg-factor tensor, Eq.~13!, to
have only nonzero diagonal components. Because of
small values ofh, we can ignoreh2-like terms in the inte-
grals of Eq.~14! and retain onlyf 2- and f h-like terms. Tak-
ing into account that, for rectangular QWR’s,hx5hy50 and
f, hz[h arez independent (z is parallel to the wire principa
axis!, Eqs.~13! and ~14! are reduced into

gxx5g022E dxdyyGS f
] f

]y
1 f

]h

]xD ,

gyy5g022E dxdyxGS f
] f

]x
2 f

]h

]yD ,

~21!

gzz5g022E dxdyxFG f
] f

]x
22mS f

]h

]y
2h

] f

]yD G
[g022E dxdyyFG f

] f

]y
12mS f

]h

]x
2h

] f

]xD G .
Figure 3 shows the dependence ofgxx , gyy , and gzz in
GaAs/Al0.35Ga0.65As QWR’s on one of the rectangular size
while another size is kept constant and equal to 2a580 Å.
he

With increasingb the componentsgyy andgzz converge on
the electron transverseg factor in a QW of thickness 80 Å
and the componentgxx approaches the QW value ofgi . In
the square-shaped QWR,b5a, the two componentsgxx and
gyy coincide as the symmetry predicts. Moreover, one c
see from Fig. 3 that at the pointb5a the anisotropyugzz

2gxxu is in fact quite small because, as it follows from E
~12!, the functionh(x,y) vanishes at the four linesx50,y
50,y5x,y52x and its values are too suppressed to p
duce a significantf h-like contribution.

In the Kane model defined by Eq.~5! we neglected the
small free-electron-mass contribution (\2k2/2m0)dnn8 to the
HamiltonianHnn8(k) and the corresponding additional ter

dHnn8
8 5(e\2/cm0)A• k̂dnn8 in the magnetic-field-induced

perturbationdHnn8 . In this connection we would like to note
that the symmetry of a rectangular box or wire forbids no
zero values for the matrix elements^e1,sudH8ue1,s8& be-

cause the productAak̂a (a5x,y,z) inverts its sign under
reflection in the plane perpendicular to the axisa.

In the remaining part of this section we derive an equat
for the electron longitudinalg factor in QW’s by considering
a rectangular QWR of the cross section 2a32b and per-
forming the asymptotic transition to infinite values ofb. If
b@a, then one can use an adiabatic approximation and w
the envelopef (x,y) inside the interval (2b,b) and far
enough from the endsy56b in the factorized form
f ~x,y!5CF~y!H coskx if uxu<a,

coska exp@2æ~ uxu2a!# if uxu>a,
~22!

where F(y) is a smooth function which for the equivalent facesy52b and y5b can be approximated by cos(py/2b).
Substituting Eq.~22! into Eq. ~20! and takingox51,oy50 for the facesx56a, we can derive the functionh in the first
approximation as

h~x,y!5CQsin
py

2b H sin kx if uxu<a,

sgn~x!sin ka exp@2æ~ uxu2a!# if uxu>a,
~23!
d
-

re-
ruc-

and
sed

-
me
nic
the
m-
di-
where

Q5
p

4kb

gA~E!2gB~E!

mA~E!
cos2ka,

mA(E)5m0 /mA(E). Substitutingf andh in the form of Eqs.
~22! and ~23! into Eq. ~21!, we finally obtain in the limitb
→` the longitudinalg factor in the QW of the thickness 2a:

gi5g01GAwA~11zAcos2ka!1GBwB~11zBsin2ka!,
~24!

where

zA5
1

2

gB~E!2gA~E!

mA~E!
, zB5

1

2

gA~E!2gB~E!

mB~E!
.

The value ofgi marked in Fig. 3 by the arrow is calculate
by using Eq.~24!; it coincides within the computational ac
curacy with values obtained by the previous methods.4,5

VI. SUMMARY

We have studied consequences of the dimensionality
duction upon the Zeeman effect in semiconductor nanost
tures and developed a theory of the electron Lande´ g factor
of the lowest confined state in zinc-blende-based QWR’s
QD’s. For this purpose we have extended the approach u
earlier to calculate the transverseg factor in QW’s.5 Our
concept allows us to obtain theg-factor components in one
and zero-dimensional systems avoiding the cumberso
summation over numerous quantum-confined electro
states. The further considerations have been carried out in
Kane model. The restrictions imposed by the structure sy
metry have been analyzed and formulated. The effect of
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p-
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mensionality has been demonstrated on spherical QD’s
cylindrical QWR’s. Compact analytical expressions ha
been derived for the electrong factor including the longitu-
dinal g factor in QW’s. The proposed theoretical scheme h
been most completely realized by calculating the three
ferentg-factor components in rectangular QWR’s where t
conduction-band spinor envelopeu(r) contains a spin-
-

,

e

.

.
r-

,

R.
s
ce

iz
nd
e

s
f-

dependent term and is characterized by two linearly indep
dent scalar functions.
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