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Theory of surface noise under Coulomb correlations between carriers
and surface states
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We present a theory of the surface noise in a nonhomogeneous conductive channel adjacent to an
insulating layer. The theory is based on the Langevin approach which accounts for the microscopic
sources of fluctuations originated from trapping—detrapping processes at the interface and
intrachannel electron scattering. The general formulas for the fluctuations of the electron
concentration, electric field as well as the current-noise spectral density have been derived. We show
that due to the self-consistent electrostatic interaction, the current noise originating from different
regions of the conductive channel appears to be spatially correlated on the length scale
correspondent to the Debye screening length in the channel. The expression for the Hooge parameter
for 1/f noise, modified by the presence of Coulomb interactions, has been deriv@@0®
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I. INTRODUCTION In this article, we present a theory of the surface noise in
a nonhomogeneous conductive channel taking into account
the electrostatic effects and transverse electron transport. The

Itheory is based on the Langevin approach, which accounts
for the microscopic sources of fluctuations originated from
trapping—detrapping processes at the interface and intrachan-

éjel electron scattering. The general formulas for the fluctua-

which introduces specific noise sour@eShis is the so- tions of the elgctron concentration, electric field as well as
calledsurface noisecaused by random trapping and detrap-the current-noise spectral density have _been derived. We
how that the electrostati€oulomb correlations among the

ping of carriers to and from the surface states of conductin .
channels. This noise is especially pronounced in the deviceg""pped and channel electrons considerably affect the surface

operating in the high-field regime, since it is proportional tonms_cﬁhleadmg tqt|ts fstuhppreTfsmn. istent treat ¢ .
square of the electric fieft. e necessity of the self-consistent treatment requires an

The surface noise causes a great impact on the devicaedd't'onal discussion. In general, Coulomb correlations ap-

performance, as was observed in different scaled-down gdear when the average distance between the traps in the di-

vices. [See, e.g., recent experimental studies on metal electric is less or of the order of the Debye screening length

oxide—semiconductor field-effect transistaddOSFETS,3° o= (eksT/q?n)""% wheres is the dielectric constant is
thin-film transistors (TFTs),® polysilicon emitter bipolar the temperaturgq the ‘?'e_c"of‘ charge, andthe bulk elec-
junction transistor§BJTS,” and heterostructure field-effect tron concentration. This implies

transistordHFETY.2°] In a class of heterostructure materials

based on the group-lil nitride wide-gap semiconductfrs, mEN=1, ()

the fluctuations are caused mainly by the surface roidee

use of the devices with reduced dimensions implies that thevhereN, is the sheet concentration of traps in the dielectric.
noise modeling for practical design purposes becomes morgherefore, the trap concentration should exceed some char-
complex. The demand for improved theoretical descriptionsacteristic valueN,,=1/(wl3). For a channel of effective

is even more relevant from a device simulation viewpoint:thickness~1p, one may introduce the average sheet electron
most of the 1f-noise models included in standard simulationconcentratiorN=nly. Then, the substitution=N/ly into

tools are too simple, since they ignore the electron correlathe expression for the Debye length gives$y

tions due to electrostatic effects and the inhomogeneous na= (ekgT/G?N). Thus, condition(1) for the self-consistent
ture of the channel transport. These effects may often b&reatment of Coulomb correlations leads to the relation be-
significant, as was recently demonstrated:herefore, the tween the sheet concentration of traps and the sheet electron
currently existing theories should be replaced by more accudensity in the channel:

rate physics-based descriptions that include all those effects.

IBM Corporation has announced recenttjie principal
strategy on silicon-on-insulatgiSOIl) technology as a key
platform to manufacture logic integrated circuits for digita
and rf low-power, low-voltage applicatioRsDownscaling
SOl technologies in general raises thé adise level due to
the increased role of the semiconductor—insulator interfac

1/ g°N\Z
Ne=Nio=| | =N )
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The estimations of the critical valud, for different semi- an(y,t)
conductor materials and channel concentrations will be given ~ ——— =Skn(0, ) = K+ 8Qy(y, 1). (6)
below in Sec. VI C.

The article is organized as follows. In Sec. Il, we de-Here,i, is the transverse electron flu&J, the correspond-
scribe the physical model of a nonhomogeneous conducting!d Langevin source usually called diffusion or thermal noise
channel with Coulomb interactions between the trapped angource,E, = —(d¢/dy) is the electric field perpendicular to
channel electrons. The basic equations are given as well. i€ interfaceu the electron mobilityD the diffusion coef-
Sec. Ill, the equation for the electric field fluctuations is ficient, p(y) the channel charge distributio§, andKy the
solved analytically. Then, the spectral density of carrier numfate constants for trapping and detrapping processes, respec-
ber fluctuations is calculated with the emphasis on the differtively (Appendix B, and 6Qy the trapping noise source. We
ence with the results of McWhorter’s model: the extra fac-assume that inside the channel far away from the interface a
tors associated with Coulomb correlations and transverstcal charge neutrality and zero transversal electric field are
electron transport in the channel. In Sec. IV, the current-noisé€ached. In addition, the conservation of the total charge in
spectral density is calculated and the surface-noise suppreile whole system: the channel and the dielectric layer is im-
sion factor is defined. The spatial correlations of the nois?0sed. Then, the boundary conditions to Hggand(5) can
arising due to the Coulomb interactions between the trappefie written as
and free electrons are considered in Sec. V. Next, in Sec. VI, o) = o) =

. . . p(»)=0, E (*)=0, )
we discuss the results obtained for two different models:
traps uniformly distributed over the layer and in-plane distri-and
bution of traps at a certain distance from the interface. The
frequency and intensity behavior of the noise spectrum is iJ_,s:_J dy>, (Sins—Kynt Q). (8)
analyzed. Finally, some additional derivations are presented y<o —k
in the Appendices: the reduction of three-dimensional sto- We show in Appendix A that the spectral correlators for
chastic equations to a one-dimensional fogppendix A),  the Langevin sources of noise are expressed as
and an analysis of the rate constants for trapping and detrap- Ny !
p|ng processe(sAppendiX 3 <5‘]L(y)5‘JJ_(y )>w_4(D/A)n(y)5(y y )1

(0Qi(Y) QY )) o =4 Ky /AIN(Y) i S(y—Y"), (9

(83,.(y)0Q(Y"))w=0,

wheren(y) andn,(y) are the steady-state concentrations of
We consider a semiconductor channel with electron confree and trapped electrons, respectively, &L ,L, is the
ductivity and with lateral dimensions, XL, near an adja- effective area of the interface. Each Langevin sousde,
cent dielectric laye(Fig. 1). They axis is taken normal to 8J;, and 8Qy is supposed to be correlated only with itself.
the plane of the interface. External electric fi€lgis applied ~ Assuming further for simplicity that the conductive channel
along the directionx parallel to the interface. In the transver- is uniform in thexz plane, the electron density flux along the
sal direction, the spatial profiles of the electrostatic potentiathannel can be written as
¢(y,t) and electron concentratian(y,t) inside the channel
(y>0) are strongly nonhomogeneous and they are deter-
mined by the surface potentigl; and the Fermi levekg. z
lyl'

II. MODEL AND BASIC EQUATIONS

Below, we use the subscript for the values taken at the
surfacey=0. The concentration of trapped electrons in the
dielectric layer §<0) is denoted by, (y,t), where the sub-

index k indicates different traps levels. The trapping poten- e C:Zﬂ:;l S

tial is supposed to be of the short range, which is typical for |

deep levels in the dielectric. (a)
A Energy

generate electrons, including both steady states and fluctua- Ec
tions as well as Langevin noise sources, can be written in a

one-dimensional form with respect to the transversal coordi-

The basic semiclassical transport equations for nonde- /
D|S oo

natey (see Appendix A : (o)
T4
an g ________________EF_A
. q
|L(y,t)=—,uEln—DWwLéJL(y,t), (3 d R
0 y
aEL _ p(y) (4) FIG. 1. (8 Schematic view of a heterostructure formed by a semiconductor
ay e channel adjacent to an insulating barrier. The current flows from “source” to
“drain” along the channel(b) Cross-sectional band-energy diagram of the
an(y,t)  ai heterostructure. Trap state§)(are at the dielectric—semiconductdd {S)
! A (5 interface.¢ is the conduction-band edgey the Fermi level, andj¢s the
ot ay ' surface band bending.
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i(y,t)=—uEn(y,t) +6J3,(y,t), (100  that the fluctuation of the total transverse current is zero, we
may putC(t)=0. Moreover, the characteristic times of the
trapping—detrapping process& ' and K, ! are usually
much greater than the dielectric relaxation time
=e/(qun). Thus, for the relevant frequency range <1,

the displacement current component can be dropped, and
then it follows from Eq.(16) that

8, =0. (17)

wheredJ; is the Langevin longitudinal flux whose correlator
is similar to that for the transverse random flux:

(83)(y)83,(y")) o =4(DIA)N(Y) 3y —y’).
The instantaneous local variables in E(®—(8) can be
split into steady-state and fluctuating quantities:

n(y,t)=n(y)+aon(y,t),
E (y,)=E, (y)+JE (y.1),
i (y,H)=i,(y)+6i (y,t1),

ni(y,t) =ni(y) + oni(y,t),

. 7 J qu q

where the fluctuating components are denoted.bihe sta- + = _ " Oy = — —— §I°(V).
tionary problem is strongly nonlinear, however, all the W D =) dy €D ") SELY) eD L)
steady-state profiles(y), E, (y), andn,(y) can be found as (18)
implicit functions ofy.*? Our main goal is to solve the fluc- Here, the second-order differential operator in square brack-
tuation problem. Substituting Egdll) into Egs.(3)—(6) and  ets may be transformed to a self-adjoint form by the substi-

Using Eq.(17), one can easily find the equation for the Fou-
rier component of the fluctuation of the transverse electric
field SET(y) in the form

(11)

M

retaining the terms linear in fluctuatiofsye have tution wE, /D=—W'/W, where prime stands for the de-
a6n rivative with respect ty. Integrating this relation from 0 to
Si (y,t)=—pu(ndE, +E, 6n)—D v + 683, (y,1), y, one getsW(y)=W(0)exdul ¢(y)—¢s]/D}. In this result,
y (12) the constant factdV(0) can be taken equal to 1, since it will
be canceled when the expression¥éty) is substituted into
doE,  op(y) 13 the general solutioisee below Now, Eq.(18) becomes
ay e q
asn(y,t) N ddi | ~0 (14 LoEL(y) =~ gﬁsw(y), (19
n m with
aon(y,t)
— SN0, ) —Kidn+ aQu(y, ). (19) [t g arny) (20
ay | W(y) dy| €D W(y)’

In the next section, we shall obtain the analytical solution to . .
where we have denoted the effective Langevin source

this system of partial differential equations subject to the5 o) = 53°(v)/[ DW Th | solut Ed1L9

boundary condition$7) and(8). This will allow us to evalu- S ()t/)) :f i(dy). [ (y)]l' . elg];cener% S0 ut;(gn to Eq % h

ate the spectral densities of fluctuations of the electric field@" P€ found in an ana ytical form by making use o the

and carrier density. method of finding solutions of stochastic equations devel-
oped in our previous papet$We get

lIl. FLUCTUATIONS OF ELECTRIC FIELD AND SEY y
CARRIER DENSITY SET(y)= ™ up(y)+us(y) fou2(§)5r‘”(§)d§
1s

First, we reduce Eq$12)—(14) for the channel variables

to a second-order differential equation for the fluctuation of +u2(y)fwu1(§) Sre(&)dé, (21)
the transverse electric field and find the analytical solution to y

this equation. Then, the density fluctuations of free and : . .
trapped electronssn and on,, which are coupled self- whereu,; (y) are two_lmearly mdeper!dent solutions of the
consistently withdE, , can be obtained directly from Egs. hoLnogine(/)US iquatlon _correspoqdlng o hEﬂJ9), and
(13) and (15), respectively. Having found a full solution to or“(y)=(ale) s (y).. It 'S_ CO”YeT"e”‘ toc oqsiejl(y)
the problem described by Eqel2)—(15) and Egs.(7) and = dEL/dy=p(y)/e, since it satisfies the equa2t|dnp(y)
(8), we can evaluate the spectral densities for fluctuations of 0- Then, we can writai,(y) =z p(y) [o[ W(£)/p*(£) 1d¢,
carrier density and electric field that determine the exces§iNce€W is the Wronskian for the functions, ;. To obtain
noise spectrum. Eqg. (21), we have used the conditionsi;(«)=0 and

From Eq.(13) with sp=—qén and Eq.(14), we find u,(0)=0. The correlation properties of the stochastic source
or“(y) follow from Egs.(9):
adiL(y.t)—e ————=C(1), (16) 4g?n(y)
<5r(y)5r*(y’)>w=m5(y—y’). (22
where the integration constafi(t) is independent of the
coordinatey. It has the meaning of the fluctuation of the Having foundSE (' (y), we can evaluate the electron den-
transverse current, which includes two components: theity fluctuation in the channel throughn®(y)=—(e/q)
drift—diffusion and displacement contributions. By assumingXx(ddE?’/dy). This yields
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Having foundSE? ¢, one can obtain any of the fluctu-
ating quantities given in Eq$23)—(25), (28), as well as the
spectral density26) and the excess surface nojsee below,
Eq.(43)]. In particular, the spectral correlatoE, (SET o),
by using Eq.(29) reads

(OE, 0BT 90

g|0EYs |
on“(y)=-— —{ (Y)+U1(Y)j up(§)or(£)dé

+us(y) f:ul(g)ér“’(g)dgl. (23

In particular, at the surface it is given by

|77(w)|}2

S

2
ong=——luoer ot [ wyartdy e 7T W{( 2 (oman. ¢
qul,s y>0

Introducing the average sheet electron density in the channel
N=[gn(y)dy and its fluctuatiorSN= [ Sn(y)dy, one can
find that 6N is related to the fluctuations of the electric field

XJ dy p(y)f, dy’'p(y")
y>0 y'>0

at the boundaries

5N‘”=%[5Ef(0)— SE®()]. (25)

A useful consequence of E(R5) is the relation between the

spectral correlators

2

<5N6N*>w=(§ (5E, $5E¥ O, (26

in which we have taken into account the boundary conditions
(7). It will be used in the next section in evaluation of the

noise spectrum.
The electric field fluctuatio®E? ¢ is still unknown. To

find it, we employ the additional condition: the conservation
of the total charge in the conducting channel and dielectric

layer

6N“’+J dy>, on¢(y)=0. (27
y<0 k

The density fluctuations of trapped electrofig, are ob-
tained from Eq(15) as

N (Y)= B @) S(y) ong + Bi( @) 6Qi(Y), (28

where B (0)=[K,(y) +iw] %, and the fluctuationsn? is
given in Eq.(24). Combining Eqs(24), (25), (27), and(28),
we obtain

SE® - — (a/e) Ng— (Llps) n( @) [ y=op(y) or“(y)dy
s 1—(pslps) n(w) '
(29
Here, we have denoted
SNi= fMonEk Bl ) 5QY, (30)
)= f dy>, Bi(w)S. (3D)
y<0 k

><<5r(y)5r*(y’)>w], (32

with
1
11— (pilps) n(w)|?’

For convenience, ley(w)= n1(w) —in,(w) with posi-
tively defined functionsy; () given by

STk

I'(w)= (33

m(w)=J W2 T (39
and
_ Ska
=0 &3 7o, @)

with 7,=1/K,. By using Eqgs.(26) and (29)—(31), we find
the expression for the noise power of sheet-electron-density
fluctuations

Sn(@)=(NSN*), =M (w)[1+G(w) ] (w). (36)

It is considerably modified in comparison with the well-
known result of McWhorter’s modéP. The factorM (o) is

due to the conventional McWhorter’'s mechantsmith dis-
regarded self-consistent electrostatic interactions between the
conductive and trapped electrons,

4ngm,(w)
Aw

The second factor in square brackets originates from the
transverse electron transport in the channel, with

M (w)=(SNEdN),= (37)

_ I o| 7](0’)|2
1 Dpnatw) o
and
e 39

Note that two different processes contribute to the fluctuation

of the surface electric fieldE? ;. One can see thatNy is

The third factod’(w) on the right-hand side of E¢36) has a

related to the random trapping—detrapping processes in theeaning of the noise-suppression factor, since it is totally
dielectric, while the second integral term in the numerator ordue to the Coulomb interactions between electrons incorpo-
the right-hand side of Eq29) is due to the random flux of rated into the modéf It can be shown thaf (w)<1, which
electrons in the channel towards the surface. Both processéslows from its definition given by Eq.33). The behavior of
are self-consistently coupled by Coulomb correlations bethe latter two factors, extra to McWhorter’s formula, will be
tween the conducting and trapped electrons. analyzed in detail in the next section.
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IV. CURRENT-NOISE SPECTRAL DENSITY N !
_ Ne|Ps (47)
In the previous section, we have obtained the noise Ns | Ps

power of the carrier-density and electric-field fluctuations in g important to note that suppression fackiw) is a func-
a conducting channel causeq by the surface noise. By_usiqg)na| of the steady-state solutions taken at the surface
these results, we now examine the excess current noise, ihqn_, which in turn are determined by the surface potential

particular, the influence of Coulomb correlations on the noisg, . Thus, the level of suppressidhin practically important

g(7) for the decapture time, which runs all over the values
of the reciprocal rate constants<]/. The functionsz; )
defined by Eqgs(34) and (35) are expressed in terms of the
probability distribution functiorg(7) as

Nie
nj(w)= n_Yj(‘U): (40)

Yj(w)ZJ dr(w7)) " 1g(7)/(1+ w?7?), (412)

The spectral factoG(w) is expressed through the inte-
grals(41) as well:

NieZt

G Y
( ngng 0Y,(w)

w)= 1+ (48)

Yi(w)
Yi(w)|

Thus, as seen from Eq&14)—(48), the intensity of the sur-
face noise and its frequency behavior strongly depend on the
functionsY; J(w). These functions can be evaluated explic-
itly by using suitable models for the distribution of traps in
the dielectric. Such an analysis will be carried out in Sec. VI,

with the indexj=1,2 and the sheet concentration of trappedwhere we consider two different models for distribution of

electronsNe.
For the mean current along the channel we have

|—quEL, f:nw)dy. 42

The noise spectral density of the channel curremns ob-

tained by using Eq(10) in the form
Si(@)=4G2NDL,/L,+ (quE L)% SNON*),,
=S4 S w), (43

where S%=4kgT/R is the equilibrium Johnson—Nyquist

traps in the dielectric(i) uniformly distributed traps andi)
traps whose distribution is described by théunction.

V. SPATIAL CORRELATIONS OF NOISE

The results obtained in the previous sections allow us to
study as well the spatial correlations of local fluctuations in
the channel and to elucidate the characteristic correlation
lengthl ;. This is of obvious interest since it gives informa-
tion about the intensity and frequency dependences of fluc-
tuations taken from different regions of the conduction layer.
As an example, we consider the behavior of the local spectral

contribution,R=L,/(quNL,) is the channel resistance, and correlator( 5E, (6E}(y)),,, which gives the magnitude of
S7(w) is the excess surface noise. The latter, under the ashe correlation between the electric-field fluctuations at the
sumed current-driven operation conditions, may be writtersurface and the point located at a distagdaside the chan-

as

L(ONSN®),,

2 € ? *
=1 q_N <6EL,55EL,S>w'

nel. By using Eq(21), it can be expressed as

uy(y)
ul,s

(6B, SET(Y)),= (8E, $OEY O, +Fhly}, (49

It is seen that the excess current noise may be equivalentlyhere 7{f|y} is an integral operator whose kernel depends
represented either as the number fluctuation noise or th@"Yy and its action on a functiof(y, w) is defined according
noise of the electric field at the interface. By using the resultd®

of the previous section, one gets

SHw)=T(0)S()[1+G(w)], (44)
where
12 4N, Y
)= o M(w), Mla)= 3o 22 g

is the conventional surface-noise term for which the Cou-

lomb correlations are disregardétf The surface-noise-
suppression factdr(w) is obtained as

1
T [t yYi(0)]P Y (o)

I'(w) (46)

with the parametety defined by

}'{f|y}=U1(y)foyuz(é)f(é,w)%

Tuy(y) f;ul<§>f<§,w>d§. (50

The spectral correlaton(y,w)=(8E, s6r*(y)), is calcu-
lated using Egs(29) and (9):
_ Ad’p(y)n(y) 7(w)

e’ psDAWA(Y) 1—(pllps) n(w)’

Then, the second term on the right-hand side of &§)
becomes

4q?
s’pDA

(y,w) (51)

pn

%[W y (52

] n(w)
1= (pslps) n(w)”
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Now, defining the corresponding spectral density for the
electric-field fluctuations

Se, (v.0)= H[(SE, SEX(Y)),+c.cl, (53)

we get

ap(y)

S (y.0)= 2 T (@)M(w)

S

1+ G(w)

o[ n1(@) = (pilps)|n(w)|*1 1 . [ pn
Dngn,(w) ; w2

i)

(54)

with the factorﬁ:{(pn/W2)|y} determined according to Eq.
(50). It is seen that the obtained expression is completely
analogous in its structure to E@4) of Sec. IV for the spec-

tral density S7(w). It contains the same factolyw) and
G(w) originated from the Coulomb correlations and the
transverse electron transport, respectively. In &d), the

last factor in parenthesis appears due to the additional cross
correlations between the surface and channel electric-field
fluctuations coupled by the electron random flux perpendicu-
lar to the surface. It is easy to see that E&f) taken aty FIG. 2. Frequency dependences(af relative current—noise spectral den-
=0 coincides with the surface-noise spectral density obsity Si(w)=S(w)/S)(w)*wS(w) and (b) suppression factol (w)
tained previously in Sec. IlI. Since the spatial dependence ofOI'd) calculated under the trap distribution of the McWhorter model for

.. . ifferent values ofy. IntegralsY; (w) are also showridashes Y,(w) is
SEL(y'“’) is imposed by the space-charge profilyy) across  ,omaiized by its maximum valuey=(7,7,)? and 7,/ 7= 1(P.

the nonhomogeneous channel, it is clear that the spatial cor-

relations of fluctuations induced by Coulomb interactions are

determined by the Debye screening lendth. In other

words, the Coulomb correlations in our model result in the=S"{®)/S(w)xfS, /12, the quantity often used in fLhoise

frequency-independent correlation lendtk |5 . literature;” is shown. Forg(7) given by Eq.(55), the inte-
grals(41) become

T\ 1+ szi

In this section, we apply the results of the developed
general theory of surface noise with the incorporated Cou-  Y2(@)=Clarctano,) —arctatwry)]. (57)
lomb correlations for two practically important casest 1/ | js easy to verify that;(w) decays monotonically from 1
noise and the generation—recombination noise spectrum. at =0 to zero atw—. The functionY,(w) is nonmono-
A. Traps uniformly distributed over the layer tonic. It increases fromY,(0)=0 to its maximum value
Y5¥=C(arctanyr,/ 7, —arctany'r, / 7,) at = 1/7y with 7,

As a first example, let us consider the McWhorter:m Then. it decreases to zero as—. In the fre-

model® corresponding to a set of identical traps uniformly .
uency range (56), one has approximatelyY
distributed in the dielectric, for which the probability distri- 1C||n3(/w7'1)| ?Nh((areZisYz(w):Cw/Z e mdepe{]dgﬁt’)of

bution function is given by frequency[Fig. 2(b)]. It is important that the functiolY,( )
Clr, m<r<my, has a wide plateau in that frequency range. In the absence of
(55 Coulomb correlations, which formally correspondsye 0,
this leads to the well-known McWhorter resultf Bpectrum
Here, the normalization consta@t=In"Y(r,/r,). The differ-  of the surface noise
ence between the characteristic timgsand 7, may consti-

Suppression factor, T(w)

VI. DISCUSSION OF THE RESULTS Yi(w)=ClIn

9(7)= 0, otherwise.

. N C
tute from Sto 8 decadés:'®These parameters determine the S(w)=1 Zﬁ T (58)
frequency interval
1 1 where f=w/27. Outside the frequency intervgb6), the
o Se<_, (56)  spectrum is white aiw<1/r, and decays as» ? at w
2 1 >1/7, [see the curvey=0 in Fig. 2a)].
where the surface noise behaves as the flickefr)( hoise. For the probability distributiort55), the functionG(w)
The results of our calculations fay/7,=10° are presented in Eq. (48) can be approximated at low frequency Gy0)
in Fig. 2. In Fig. Za), the relative current nois&|(w) =Go/[C(7,— 711)]=G,/(Cr,), and at high frequency it in-
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creases to the values(»)=C?(7,/7)G,, Where G, B Nie
=NZy /(Dp2n?). Finally, within the interval56), the spec- NI+ )2In(ry/ 1) 62
trum of G(w) is approximately being a Hooge parametér® modified by the suppression
- wm effect. Now, if we tak?g/fz, N/N=0.25, and logf,/m) _
G(w)=5G(=) T+ @I (ory) (59 =6, we gete;=2%x 1073, i.e., the value usually observed in

conducting channels with the predominant surface mecha-
Next, for the suppression facté46) we obtain at low fre- nism of the noisé>'®2*
quencyl’(0)=1/(1+ y)2. This is the strongest suppression Another important consequence of the Coulomb correla-
magnitude over the noise spectrum. It is seen that the level dfons is the prediction of a nonmonotonic dependence of
suppression is determined by the parametgjiven by Eq.  hoise spectruni6l) on the concentration of trapped electrons
(47), and it may be significant wheneveris not small with N This can be seen by analyzing the Hooge parameter
respect to IFig. 2(b)]. In the high-frequency limit, the sup- as a function ofN,. For an electron channel with the local
pression effect vanisheB(») = 1. Between these two limits, Space chargg=—qn, the parametery can be expressed

within interval (56), I'(w) is approximated by explicitly through the electron concentratioNg, andN. By
using Egs.(3), (4), and the condition for the transverse
1 steady-state electron flux in the channel=0 [which is
I'w)= (60)

analogous to Eq.17) for fluctuationg, we find the following
relations: p{/ps=— (u/D)Eg and ng= (e u/2q D)Eg. Here,
One can see that the suppression factor changes only slighiiife surface fiel&€,=E, (0) is related to the electron concen-
for frequenciesn<1/7; over many decades. Far=1, we  tration N through the equatio&.=(q/)N [which is analo-
obtainT' (w)~T'(0)=1/(1+7)? i.e., the suppression factor gous to Eq.(25)]. Then, the parametey is simply y
is approximately constant, as shown by the two lower curves= 2N, /N.
in Flg Z(b) Thus, we can conclude that when the Coulomb Figure 3 shows the calculated Hooge parametg@s a
correlations are included into analysisf 14w is practically  function of N,/N. It is seen that without Coulomb correla-
preserved, although with a suppressed value, up to relativeljons, it increases linearlyr,«N,/N, while for the cases
high frequencies. Fon>1/7;, the suppression effect van- \when Coulomb correlations are included, it has a pronounced
ishes[I'(w)~1], as well as the surface noise, since in thismaximum a[1®=C/8 at N,o/N=1/2. We also note that for
case there are no trap states with characteristic times of tr@na” trap ConcentrationNte<N, the Hooge parameter in-
order of 1k and the carrier exchange between the electroreases almost linearly for all the cases, since the Coulomb
channel and the traps becomes ineffective. correlations are small to affect noticeably the noise intensity.
It should be noted that Coulomb correlations cause SigHowever, when the concentrations approat;ggl\l, the in-
nificant changes in the noise spectra. From the above analgrease slows down and even changes todpgosite(de-
sis and the results of Fig. 2, it follows that fgr<1 the shape  creasing dependence ofl,.. This effect is entirely due to
of S{(w) varies considerably in interv#56). The noise sup-  the Coulomb correlations between the channel carriers and
pression at low frequencies is much more pronounced than @fap states, which for such values Bf, considerably affect
high frequencies. For largey, however, the spectral curves the intensity of the surface noise.
are almost flat, since the suppression factor is nearly constant - Figure 4 shows the spatial correlations of the fluctuations
in this frequency range. It is remarkable that an abrupt inof the transverse electric field across the conducting channel.
crease ofl'(w) in the vicinity of w~1/7;, from I'~1/(1  |n Fig. 4, the noise power is normalized according to
+y)?toI'~1 [see Fig. )], gives rise to a maximum in all SL(Y,0)=Se (Y,0)/S2 (w)*wSe (Y,0). Here,S2  (w)
the calculated curves @& (w) in Fig. 2@). We believe that :(q/S)ZM(L:)OCw—l cgrsrespondsLto surface speétsral cor-

this characteristic feature of the noise spectrum, when obg|414(32) in which the Coulomb correlations and electron
served in the experiment, could be a valuable test of th(?

ﬁ ¢ Coulomb \ati h ; o ransverse transport are ignored. It is seen that the spatial
effect of Coulomb correlations on the surface noise In SeMmixq g|ations decay on Debye lendth independently of fre-
conductor heterostructures. We would like to emphasize th

uency within 1f noise interval(56) (see, also, the discus-
the shift down of the spectral curves in FigaRwith in- Y (56) (

. . : . sion in Sec. V. These results also demonstrate the reduction
creasingy makes evident aabsolutenoise suppression: the

. . X _of spectral intensity of the fluctuations with increasing
reduction of the noise power at all frequencies, rather than tS,used by Coulomb correlations of charges

redistribution over the spectrum. This means that the corre-
spondent integral over the noise spectrum also reduces.

To make numerical estimations, let us consider fre-g s distribution of traps
guency interval(56) where the surface noise varies a$,1/

and its spectral densiti4) can be written using the dimen- _ AS another example, we consider the case of a single
sionless Hooge paramettr'® time constantry, describing the exchange of charge carriers

between the channel and traps in the dielectric. Unlike uni-
o 12 formly distributed traps, assumed in the McWhorter model,
S w)= TNAYH: (61)  this situation may be relevant to thedistribution of traps
localized at a certain distance from the interface, as well as to
with the fluctuations in devices with small areas and low interface

" [1+9C|In(w7)|1?+ (ymCI2)?
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FIG. 3. lllustration of the effect of Coulomb correlations on the Hooge
parameteray, plotted vsN,./N for different 7, /7, ratios: 1(dashey ay
correspondent to the McWhorter modeb Coulomb correlationsand 2—4
(solid), ay; modified by Coulomb correlations.

—
o

state densitie& The probability distribution function can be
written as g(7)= 8(7— 19) with the normalization factor
equal to unity. Then, integralgl) yield

o
o

Suppression factor, T(®)
o
(6]

—_
o

70

1+—2 (63) OJ'EO

Yi(w)= v Yo(w)=

1+ wzrg
The functionY () reaches its maximum Vall@ax: 1/2 at FIG. .5. nFrquen(iy dependgnces (a)‘znormalized curren_t—noise spectral

_ . density S}(@) = ST (@) X (AN?/47yNI %) and (b) suppression factof (w)
w=1/7o [Fig. Xb)]. For these functionsG(w) and the sup-  (sglig) calculated with the probability distribution functiod(=— 7o) for
pression factol'(w) read different values ofy. The integralsY; w) are shown by dashes, where
Y,(w) is normalized by its maximum value.

G Go r 1+ wZTS 64
(w)= P (w)= Ry (64)
Note that the factoG is independent of frequency. The lim- Sex(w)_|24N 0 (66)
... . ANZ 1+ 2+ 2 2
iting values forl'(w) at w—0 andw—o are the same as in (1+y)*+om

the previous case. However, in contrast to the McWhorter Figure 5a) shows spectra of the normalized current-
model with widely distributed trapping/detrapping time pa- noise powerS'(w) = S™(w) X (AN2/4roNl?) for several
rameters, now we get a Lorentzian shape of the excess nor\;/glues ofy. The suppression factdi(w) is plotted for the
spectrum same values of in Fig. 5(b). The suppression effect due to
Coulomb correlations is clearly manifested in several as-
(65 pects. First, again, the noise power falls down with increas-
ing of v, attaining the low-frequency valueS™(0)
which is modified due to the Coulomb correlations as =S°(0)/(1+7)? at wry<1. As a result, the total noise
power over the whole spectrui®™ is also suppressed to
S*=5/(1+7y). Here, S’=1?(2wN,/AN?) is the corre-
spondent total noise power calculated with disregarded Cou-

AN 7
0/ \_12 0
SI(0) =" AR Tr o2 272!

1.0 v T . . . : :
A — -0 Iomb_ _Correlatlons. Second_, since the suppression factor is
3 - — y=03 sensitive to frequenchsee Fig. B)], the low-frequency con-
. N —_ et tributions to the noise are much more suppressed than the
Q@; 0 5} N N ] high-frequency contributions. The noise spectra are broad-
o \\ N, ened with a half-power bandwidth given bfiw=(1
L SO~ o= +y)Awy, where Awy=2/7, is the bandwidth with disre-
-‘~\"\-~L§:‘; garded Coulomb correlations. The corresponding magnitude
[ TT=e—.lD of the normalized noise power is S'(AwTp)
0.0, " > —1[2(AwT)2]=1[2(1+7)?]. It is marked by filled

y/Lp squares in Fig. @).
It is convenient to define the dimensionless noise power
FIG. 4. lllustration of spatial correlations of the local field fluctuations ?é((a))ZS?X((U)X(AN/TdZ) Considered as a function of the
across the channel. Electric-field spectral densitie3:(y, w;) ratio Nte/N It has a maximu Id m_1/(1+ m) at
=% (yo )/S‘é (w) are plotted for different values of. For y=0.3 and Ni/N=(1/2) ’—zl-i-w Z with both values dependent on fre-

= 1 each curve is shown for two different frequencies taken from the 1/
interval: w,=0.1/r, (upper curvg and w,=10/r, (lower curve. y is in  duency . The correspondent dimensionless total noise

units of the Debye length, . power can be defined &= S/*x (AN/12). The behavior of
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2 ————— TABLE |. Estimation of characteristic trap concentratiddg, for electron
g I' P densitiesN according to Eq(2) for conducting channels of different mate-
8_ 3, i’ rials at T=300 K (the dielectric permittivitys is given in parenthesisSi
o ! v ] 1 (11.8, GaAs(12.8, InAs (12.3, GaN(9.0), and SiC(9.7).2
2 e
o 1 7 —
SqL 1/ i N (10 cm™2)
@ 1s SHCN) N
1 a2 ; ;
o 1" - -8 (10 cm™?) Si GaAs InAs GaN SiC
c "
2 1 10 - 1P 2.7 190 160
S ,' 2 5 27 1% 2.7 47 40
£ 0 —_— 1 11 0.95 1.0 1.9 1.6
a 0.0 0.5 1.0 0.5 0.27 0.24 0.26 0.47 0.40
Nte/ N aSee Ref. 10.
bThese values were estimated from E67) corresponding to a quantum
FIG. 6. Dimensionless noise spectral den§i{( w) at wy= 1/74 (1,2) and screening of charges in the channel and dielectric layer.

total noise poweB;; (3,4) vs Ni/N calculated with theS(7— 7) probabil-
ity distribution function without(1,3) and with (2,4) Coulomb correlations
taken into account.

of the conducting channel. We list in Table | the characteris-

these 'Fwo guantities is shown _in Fig. 6 for_ two cases: withyj. density of trapsN,, estimated for typical conducting
and without Coulomb correlations taken into account. Aschannels made of materials used in traditional, as well as

seen, both spectral and total noise powers are considerablyyanced, semiconductor heterostructure technoldgié€?
affected by Coulomb correlations whenever electron densithg regults of these estimations indicate that for channels
tiesNc andN are of the same order of magnitude. with the electron density~10' cm 2, the corresponding
density of trapd\,, is of the same order of magnitude. For
C. Restrictions of the model lower electron density in the channel, we obt&g<N,
while with increasingN, the opposite conditiorN;y>N

We conclude this section with the following remarks holds

concerning the validity of the approximations used. In Eq. The temperature dependence of the critical trap densit
(15) we assumed that the fluctuations of voltage drop acros T2 implies anothepr restriction: For a given (F:)hannely
the dielectric layer due to the change in the self-consistent ‘° P : g

electrostatic potential do not affect the rate constants. Frorﬁoncentratlon\l, the higher the temperature, the lower is the

: i ) ritical value ofN, for which the screening effect of Cou-
the comparison of relevant terms on the right-hand side Ofomb correlations in the noise suppression becomes apore-
Eqg. (15, one can see that this assumption is justified for bp PP

4O, d/(kaT)<on,/n,, whered is the thickness of the ciable. On the cher hand, at fixdd the increase oN can
s . . . : - lead to the regime of quantum screening of charges in the
dielectric layer in which the traps effectively interact with : . . . :
system of two-dimensional conducting channel and dielectric

rewritten in terms of the sheet electron concentration aiaye“ In this regime, Eq(2) obviously gives overestimated

qoE, (d/(kgT)<ON/Ng. This requires that the relative ;ﬁ;:ezn(:jfé\lntf ’ofsmgeersf:}trgr?k()jyeenssgelen;nag /I;eng\:};metr)ee:omes
fluctuation of the concentration of trapped electrons must be b B& B

= 21m* 2 i i * i H
much greater than that of the voltage drop across the dielec—Sﬁ [m"q” is the Bohr radius andn” is the effective

: : : . mass?? In the low-temperature limit and for the lowest oc-

tric layer caused by this fluctuation &N,.. Now, by using cupied subband, one can write, similarly to E2), that
charge neutrality conditio27), we getNd/NIp<<1. This ' ' '
constraint is fulfilled, since the conditiond/I;<<1 and
Ni/N=<1 usually hold.

One of the assumptions of our model is the short-range Ntozﬁ- (67)
character of the potential of traps, which is typical for deep B
levels in wide-band-gap materials used to design barrier lay-
ers in heterostructure samples. If the potential would have Actually, more rigorous estimations for the self-consistent
long spatial range, one would need to take into account th€oulomb correlations should give a less restrictive condition,
screening of the potential. Evidently, for a short-range potensince screening in low-dimensional electron systems is
tial, ro<<lp (rg is the effective radius of the trapping poten- known to be less effective. We use formu&¥) for calcula-
tial), the screening effect is not important. Thus, the rateions of trap densityN,, presented in Table | whenever the
constants in the form of Eq&B6) and(B7), given in Appen-  quantum screening is relevant. We also note that one of the
dix B and used in Eq(15), are justified. most important materials to which the developed theory can

As we pointed out in Sec. I, the change in the self-be applied, is a class of wide-gap nitride-based
consistent electrostatic potential caused by fluctuations dfieterostructure® The estimates for this material are also
charges on the traps and in the channel is assumed to extergported in Table I. This type of material is known to exhibit
over distances greater than the average distance between ttensiderable surface noise with the Hooge parameter
traps. The corresponding condition is expressed by inequality 10~ 2, and they are usually moreisythan the good qual-
constraint(2). Its right-hand side depends on the parametersty silicon or gallium arsenide-based devices.
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VIl. CONCLUSIONS an(r,t)

. . +divi(r,t)=0, (A3)
In summary, we have revisited a long-standing problem at

of the surface noise and proposed a model that includes both

. any(r,t)
capture/decapture of carriers at the surface states and elec-
tron transfer towards the surface treated self-consistently.
This allowed us to discover a number of features of the SUlywherer :{X,y,z}, i(r’t) is the electron f|ux§J(r't) the cor-

face noise that have not been discussed previously in litergesponding Langevin noise sourag(r,t) and ne(r.t) the
ture. ~ electron concentrations in the channel and dielectric, respec-

We have developed a theory of the surface noise in gvely, E=—V¢ the electric field,¢(r,t) the electrostatic
ponhomogeneous coqduct|ng channel adjac_ent to an insuladotential, p(r,t) the channel charge distributio®Q,(r,t)
ing layer. The theory is based on the equations that goverghe trapping noise source, and the rest of notations are analo-
the carrier transport and fluctuations in the electron channgjous to those in Eqs(3)—(6). These equations must be
and random trapping/detrapping processes at the channel s@izpplemented by the appropriate boundary conditions.
face. In contrast to previous studies, it also includes the Cou-  Next, we apply the double integration over the coordi-
lomb interactions between the trapped and conducting eleGatesx, z in the plane parallel to the interface at a fixed
trons, and inhomogeneous nature of the channel transpokfalue of the coordinatg, and then divide the result by the
The Coulomb correlations are shown to be essential angross-sectional area=L,L,. Thus, the averaged 1D vari-
should be included into the CUrrently eXiSting Simulationab|esy for examp|e, the electron densit_w,t), are intro-
tools for device modeling. These correlations suppress thgyced as follows:
magnitude of the surface noise and could also modify the 1/ o
form of the noise spectrum in a certain frequency range. — _ f Xf z .

; ) ) . ny,t)=— n(x,y,z;t)dx dz A5
We have studied the spatial correlations of fluctuations .0 Ao Jo (xy.2) (A5)

and found that the correlation radius is about the Debyel_ . . . .
. : o illustrate the above approach, consider Poisson equation
screening length. The expression for the Hooge parameter.

oy for 1/f noise, modified by the presence of Coulomb in.diven by Eq.(A2). Performing the integration and introduc-

teractions, has been derived. We have shown that the modlrjg the average variables according to E#5), we obtain

fied Hooge parameter depends on the concentration of traps, aEy(y)
electron density, as well as on the dielectric properties of the

=5.n(0, t) — Kyng(r,t) + 8Qy(r,t), (A4)

1 — — 1 —
+ L_X{EX(LX !y)_ Ex(oay)}+ L_Z{Ez(yil—z)

J
structure. y
The numerical estimates indicate the significance of the — p(y)
Coulomb correlation effects for the active channels made of —Eiy,0}= e ' (AB)

silicon, IlI-V compounds, silicon-carbide, and the group-Ili

nitride-based ~ structures. The studied surface—noise Where we have denoted
suppression effect is quite universal and, according to the __ 1 (L,

numerical estimations, may be relevant for a number of prac-  Ex(X,y)= L_J Ex(x,y,2)dz,
tically important devices, like TFTs, BJTs, HFETS, 270

MOSFETSs, and, in particular, those used in SOl technofogy. __ 1 (Ly
E,(y,z)= I—_xfO E,(x,y,z)dx. (A7)
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where ¢ is averaged in two-dimensions according to Eq.
(A5). The rest of the terms are of the same order and may be
estimated as

APPENDIX A: REDUCTION OF BASIC EQUATIONS TO E, ¢ E 73
A ONE-DIMENSIONAL FORM Lo oy LTy (A9)
X z VA

X

It will be shown how the system of basic three- where & is averaged in 1D according to Eq&A7). It is
dimensional(3D) partial differential equations can be re- gyigent that both averages performed over the electrostatic
duced to a one-dimensionélD) form for averaged vari- potential are of the same order of magnitude. Then, for the
ables. The original 3D equations governing both the carrieghannels with lateral sizes much greater than the Debye

transport and fluctuations are length,
i(r,t)=—pun(r,t)E(r,t)=DVn(r,t)+83(r,t), (Al Ip<L,,L,, (A10)
divE(r.t)= p(r,t) (A2) the derivative term in Eq(A6) is dominant, while the next
' e ' two terms may be omitted, according to E49). Thus, the
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3D Poisson equatiofA2) is reduced to a 1D form for the di?P=Ng(E)fs(E)vosp(E,EQNp(EQ[1

averagedlocal) field E, and the channel space chaige
’ —fi(E]dEdE,, (B1)

ELY) _ply)

2y (A11) wheref s is the Fermi—Dirac distribution function for elec-
&

trons in the semiconducto6] and in the localized state&)
The other 3D equations can be treated in a similar way, byf the dielectric.
assuming additionally that the conducting channel and the The net electron flux from the channel to the dielectric

dielectric layer are uniform in the andz directions. layer is obtained by integrating EB1) over the energies

At this point, we need to perform the averaging in the
Langgvm source®J ,(r,t) and 6Qy(r,t). Their correlation iED:f dEf dENs(E)f<(E)vosp(E,E)Np(Ey)
functions have the forfn E Ex
(83,(r,1)835(r" 1)) =2D ,gn(r)8,58(r —1") S(t—t"), X[1—f (Ep)]. (B2)
(8Qi(r,t) 8Q(r’,t"))=2K (r)ny(r) &y S(r—r")s(t—t"), The opposite elementary electron flux from trap states to the

(A12)  channel is written in a similar way

(83,(r,)8Q(r" 1)) =0, di2S=Np(E T(E) ops( Ex EINGE)[ 1 f<(E) JdELIE,
where the angular brackets denote ensemble averages. The (B3)

coordinate averaging in the above equations leads to the a%:; q for the net flux
eraged Langevin sources

— 1 (Lx (L, iDS_
5‘]“(y’t):Kf f 83,(x,y,z:t)dxdz I fEkdEkadE No (E) fk(Ex) ops(Ex,E)Ng(E)
o Jo
o 1 Ly (L, (A13) X[1-f4(E)]. (B4)
Quly )= A Jo fo OQu(xy,z;)dxdz The rate constantS, andK are usually introduced with

. . the relations
The correlation functions for these 1D random sources may

be evaluated in a standard Widyy making use of the corre- irP=Sn(0), iP%=Kn,, (B5)
lation functions(A12). Then, we obtain

_ _ 2D .5
(834(y,1)83p(y" 1)) =~ N(Y) 8op(y —y") (1 =1),

and then, according to EqéB2) and (B4), one gets

1
S | 28 dE B Bt

O SO (vt 2Kk(y) ' ’
(8Qi(y, ) 6Qu(Y",t")) = —1=—ni(y) S Sy —y") 8(t—t"), XNp(E)[1—f(EQ], (B6)

(A14)

_ _ and
(83,(y, 1) 8Qu(y’",t"))=0.

1
The Fourier transform of these equations leads to the spectral Kk:n_k JE dEkJ'EdE No (B fi(Ei) ops(Ei, E)NS(E)
correlators of the Langevin sources in the form of EE8. «
used in the text for the noise analysfsr compactness we X[1-f4(E)], (B7)

omit throughout the text the bar symbol over the averaged . .
variables and random noise sournces with the electron concentration at the surfacg€0)
=[eNg(E)fs(E)dE and on the traps ny

= J,No(Ei) fu(Ex)dEy.
APPENDIX B: RATE CONSTANTS FOR TRAPPING In thermal equilibrium, the principle of detailed balance
AND DETRAPPING PROCESSES requires that the electron capture and decapture rates should

be equal at all pointyy of the dielectric layer, that is,
vosp(E,Ex) =ops(Eg,E). As a consequence, both electron
fluxes, the direct fluxB2) and the opposite onéB4) are
equal as well. Thus, we get a remarkable relation between
the rate constants

Let Ng(E) be the effective density of states at the elec-
tron energyE in the conduction band of the semiconductor
channel, andNp(E,) be the effective density of states in the
dielectric, which depends on discrete trap energy lelgls
Introducing the electron thermal velocity normal to the sur-
face v and the trap capture cross sectiogp(E,Ey), the S(y) Nk
probability of capture of an electron with ener@yto the Ky) (o) (B8)
trap level E, will be the productvosp(E,Ey). Then, the
elementary electron fludiz® from the energy interval be- Now, by using the well-known expressions for the electron
tweenE and E+dE in the semiconductor into the energy concentration at the surfaa®0)= N, exp{[er—E(0)]/ksT}
interval betweerE, and E,+dE, of the trap states in the and for that on the trapsn,=N/{1+ (1/g)exd (E
dielectric can be written as —ep)/kgT]}, we find
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