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Theory of surface noise under Coulomb correlations between carriers
and surface states
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We present a theory of the surface noise in a nonhomogeneous conductive channel adjacent to an
insulating layer. The theory is based on the Langevin approach which accounts for the microscopic
sources of fluctuations originated from trapping–detrapping processes at the interface and
intrachannel electron scattering. The general formulas for the fluctuations of the electron
concentration, electric field as well as the current-noise spectral density have been derived. We show
that due to the self-consistent electrostatic interaction, the current noise originating from different
regions of the conductive channel appears to be spatially correlated on the length scale
correspondent to the Debye screening length in the channel. The expression for the Hooge parameter
for 1/f noise, modified by the presence of Coulomb interactions, has been derived. ©2002
American Institute of Physics.@DOI: 10.1063/1.1512698#
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I. INTRODUCTION

IBM Corporation has announced recently1 the principal
strategy on silicon-on-insulator~SOI! technology as a key
platform to manufacture logic integrated circuits for digit
and rf low-power, low-voltage applications.2 Downscaling
SOI technologies in general raises the 1/f noise level due to
the increased role of the semiconductor–insulator interfa
which introduces specific noise sources.3 This is the so-
calledsurface noisecaused by random trapping and detra
ping of carriers to and from the surface states of conduc
channels. This noise is especially pronounced in the dev
operating in the high-field regime, since it is proportional
square of the electric field.4

The surface noise causes a great impact on the de
performance, as was observed in different scaled-down
vices. @See, e.g., recent experimental studies on met
oxide–semiconductor field-effect transistors~MOSFETs!,3,5

thin-film transistors ~TFTs!,6 polysilicon emitter bipolar
junction transistors~BJTs!,7 and heterostructure field-effec
transistors~HFETs!.8,9# In a class of heterostructure materia
based on the group-III nitride wide-gap semiconductor10

the fluctuations are caused mainly by the surface noise.9 The
use of the devices with reduced dimensions implies that
noise modeling for practical design purposes becomes m
complex. The demand for improved theoretical descriptio
is even more relevant from a device simulation viewpoi
most of the 1/f -noise models included in standard simulati
tools are too simple, since they ignore the electron corr
tions due to electrostatic effects and the inhomogeneous
ture of the channel transport. These effects may often
significant, as was recently demonstrated.11 Therefore, the
currently existing theories should be replaced by more ac
rate physics-based descriptions that include all those effe

a!Electronic mail: oleg@ffn.ub.es
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In this article, we present a theory of the surface noise
a nonhomogeneous conductive channel taking into acco
the electrostatic effects and transverse electron transport.
theory is based on the Langevin approach, which accou
for the microscopic sources of fluctuations originated fro
trapping–detrapping processes at the interface and intrac
nel electron scattering. The general formulas for the fluct
tions of the electron concentration, electric field as well
the current-noise spectral density have been derived.
show that the electrostatic~Coulomb! correlations among the
trapped and channel electrons considerably affect the sur
noise leading to its suppression.

The necessity of the self-consistent treatment require
additional discussion. In general, Coulomb correlations
pear when the average distance between the traps in th
electric is less or of the order of the Debye screening len
l D5(«kBT/q2n)1/2, where« is the dielectric constant,T is
the temperature,q the electron charge, andn the bulk elec-
tron concentration. This implies

p l D
2 Nt*1, ~1!

whereNt is the sheet concentration of traps in the dielectr
Therefore, the trap concentration should exceed some c
acteristic valueNt0[1/(p l D

2 ). For a channel of effective
thickness; l D , one may introduce the average sheet elect
concentrationN5nlD . Then, the substitutionn5N/ l D into
the expression for the Debye length givesl D

5(«kBT/q2N). Thus, condition~1! for the self-consistent
treatment of Coulomb correlations leads to the relation
tween the sheet concentration of traps and the sheet ele
density in the channel:

Nt*Nt05
1

p S q2N

«kBTD 2

}N2. ~2!
7 © 2002 American Institute of Physics
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The estimations of the critical valuesNt0 for different semi-
conductor materials and channel concentrations will be gi
below in Sec. VI C.

The article is organized as follows. In Sec. II, we d
scribe the physical model of a nonhomogeneous conduc
channel with Coulomb interactions between the trapped
channel electrons. The basic equations are given as we
Sec. III, the equation for the electric field fluctuations
solved analytically. Then, the spectral density of carrier nu
ber fluctuations is calculated with the emphasis on the dif
ence with the results of McWhorter’s model: the extra fa
tors associated with Coulomb correlations and transve
electron transport in the channel. In Sec. IV, the current-no
spectral density is calculated and the surface-noise supp
sion factor is defined. The spatial correlations of the no
arising due to the Coulomb interactions between the trap
and free electrons are considered in Sec. V. Next, in Sec
we discuss the results obtained for two different mode
traps uniformly distributed over the layer and in-plane dis
bution of traps at a certain distance from the interface. T
frequency and intensity behavior of the noise spectrum
analyzed. Finally, some additional derivations are presen
in the Appendices: the reduction of three-dimensional s
chastic equations to a one-dimensional form~Appendix A!,
and an analysis of the rate constants for trapping and de
ping processes~Appendix B!.

II. MODEL AND BASIC EQUATIONS

We consider a semiconductor channel with electron c
ductivity and with lateral dimensionsLx3Lz near an adja-
cent dielectric layer~Fig. 1!. The y axis is taken normal to
the plane of the interface. External electric fieldEi is applied
along the directionx parallel to the interface. In the transve
sal direction, the spatial profiles of the electrostatic poten
w(y,t) and electron concentrationn(y,t) inside the channe
(y.0) are strongly nonhomogeneous and they are de
mined by the surface potentialws and the Fermi level«F .
Below, we use the subscripts for the values taken at th
surfacey50. The concentration of trapped electrons in t
dielectric layer (y,0) is denoted bynk(y,t), where the sub-
index k indicates different traps levels. The trapping pote
tial is supposed to be of the short range, which is typical
deep levels in the dielectric.

The basic semiclassical transport equations for non
generate electrons, including both steady states and fluc
tions as well as Langevin noise sources, can be written
one-dimensional form with respect to the transversal coo
natey ~see Appendix A!:

i'~y,t !52mE'n2D
]n

]y
1dJ'~y,t !, ~3!

]E'

]y
5

r~y!

«
, ~4!

]n~y,t !

]t
1

] i'
]y

50, ~5!
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]nk~y,t !

]t
5Skn~0, t !2Kknk1dQk~y, t !. ~6!

Here, i' is the transverse electron flux,dJ' the correspond-
ing Langevin source usually called diffusion or thermal no
source,E'52(]w/]y) is the electric field perpendicular t
the interface,m the electron mobility,D the diffusion coef-
ficient, r(y) the channel charge distribution,Sk and Kk the
rate constants for trapping and detrapping processes, res
tively ~Appendix B!, anddQk the trapping noise source. W
assume that inside the channel far away from the interfac
local charge neutrality and zero transversal electric field
reached. In addition, the conservation of the total charge
the whole system: the channel and the dielectric layer is
posed. Then, the boundary conditions to Eqs.~4! and~5! can
be written as

r~`!50, E'~`!50, ~7!

and

i',s52E
y,0

dy(
k

~Skns2Kknk1dQk!. ~8!

We show in Appendix A that the spectral correlators f
the Langevin sources of noise are expressed as

^dJ'~y!dJ'~y8!&v54~D/A!n~y!d~y2y8!,

^dQi~y!dQk~y8!&v54~Kk /A!nk~y!d ikd~y2y8!, ~9!

^dJ'~y!dQk~y8!&v50,

wheren(y) andnk(y) are the steady-state concentrations
free and trapped electrons, respectively, andA5LxLz is the
effective area of the interface. Each Langevin sourcedJ' ,
dJi , anddQk is supposed to be correlated only with itse
Assuming further for simplicity that the conductive chann
is uniform in thexz plane, the electron density flux along th
channel can be written as

FIG. 1. ~a! Schematic view of a heterostructure formed by a semicondu
channel adjacent to an insulating barrier. The current flows from ‘‘source
‘‘drain’’ along the channel.~b! Cross-sectional band-energy diagram of t
heterostructure. Trap states (T) are at the dielectric–semiconductor (D –S)
interface.«c is the conduction-band edge,«F the Fermi level, andqws the
surface band bending.
 license or copyright; see http://jap.aip.org/jap/copyright.jsp
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i i~y,t !52mEin~y,t !1dJi~y,t !, ~10!

wheredJi is the Langevin longitudinal flux whose correlat
is similar to that for the transverse random flu
^dJi(y)dJi(y8)&v54(D/A)n(y)d(y2y8).

The instantaneous local variables in Eqs.~3!–~8! can be
split into steady-state and fluctuating quantities:

n~y,t !5n~y!1dn~y,t !,

E'~y,t !5E'~y!1dE'~y,t !,
~11!

i'~y,t !5 i'~y!1d i'~y,t !,

nk~y,t !5nk~y!1dnk~y,t !,

where the fluctuating components are denoted byd. The sta-
tionary problem is strongly nonlinear, however, all t
steady-state profilesn(y), E'(y), andnk(y) can be found as
implicit functions ofy.12 Our main goal is to solve the fluc
tuation problem. Substituting Eqs.~11! into Eqs.~3!–~6! and
retaining the terms linear in fluctuations,13 we have

d i'~y,t !52m~ndE'1E'dn!2D
]dn

]y
1dJ'~y,t !,

~12!

]dE'

]y
5

dr~y!

«
, ~13!

]dn~y,t !

]t
1

]d i'
]y

50, ~14!

]dnk~y,t !

]t
5Skdn~0, t !2Kkdnk1dQk~y, t !. ~15!

In the next section, we shall obtain the analytical solution
this system of partial differential equations subject to
boundary conditions~7! and~8!. This will allow us to evalu-
ate the spectral densities of fluctuations of the electric fi
and carrier density.

III. FLUCTUATIONS OF ELECTRIC FIELD AND
CARRIER DENSITY

First, we reduce Eqs.~12!–~14! for the channel variables
to a second-order differential equation for the fluctuation
the transverse electric field and find the analytical solution
this equation. Then, the density fluctuations of free a
trapped electrons,dn and dnk , which are coupled self-
consistently withdE' , can be obtained directly from Eqs
~13! and ~15!, respectively. Having found a full solution t
the problem described by Eqs.~12!–~15! and Eqs.~7! and
~8!, we can evaluate the spectral densities for fluctuation
carrier density and electric field that determine the exc
noise spectrum.

From Eq.~13! with dr52qdn and Eq.~14!, we find

qd i'~y,t !2«
]dE'~y,t !

]t
5C~ t !, ~16!

where the integration constantC(t) is independent of the
coordinatey. It has the meaning of the fluctuation of th
transverse current, which includes two components:
drift–diffusion and displacement contributions. By assum
Downloaded 19 Nov 2009 to 129.8.242.67. Redistribution subject to AIP
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that the fluctuation of the total transverse current is zero,
may putC(t)50. Moreover, the characteristic times of th
trapping–detrapping processesSk

21 and Kk
21 are usually

much greater than the dielectric relaxation timetd

5e/(qmn). Thus, for the relevant frequency rangevtd!1,
the displacement current component can be dropped,
then it follows from Eq.~16! that

d i'50. ~17!

Using Eq.~17!, one can easily find the equation for the Fo
rier component of the fluctuation of the transverse elec
field dE'

v(y) in the form

F ]2

]y2 1
m

D
E'~y!

]

]y
2

qm

eD
n~y!GdE'

v~y!52
q

eD
dJ'

v~y!.

~18!

Here, the second-order differential operator in square bra
ets may be transformed to a self-adjoint form by the sub
tution mE' /D52W8/W, where prime stands for the de
rivative with respect toy. Integrating this relation from 0 to
y, one getsW(y)5W(0)exp$m@w(y)2ws#/D%. In this result,
the constant factorW(0) can be taken equal to 1, since it wi
be canceled when the expression forW(y) is substituted into
the general solution~see below!. Now, Eq.~18! becomes

L̂dE'
v~y!52

q

«
dsv~y!, ~19!

with

L̂5
]

]y F 1

W~y!

]

]yG2
qm

eD

n~y!

W~y!
, ~20!

where we have denoted the effective Langevin sou
dsv(y)[dJ'

v(y)/@DW(y)#. The general solution to Eq.~19!
can be found in an analytical form by making use of t
method of finding solutions of stochastic equations dev
oped in our previous papers.14 We get

dE'
v~y!5

dE',s
v

u1,s
u1~y!1u1~y!E

0

y

u2~j!dr v~j!dj

1u2~y!E
y

`

u1~j!dr v~j!dj, ~21!

whereu1,2(y) are two linearly independent solutions of th
homogeneous equation corresponding to Eq.~19!, and
dr v(y)[(q/«)dsv(y). It is convenient to chooseu1(y)
5dE' /dy5r(y)/«, since it satisfies the equationL̂r(y)
50. Then, we can writeu2(y)5«r(y)*0

y@W(j)/r2(j)#dj,
sinceW is the Wronskian for the functionsu1,2. To obtain
Eq. ~21!, we have used the conditions:u1(`)50 and
u2(0)50. The correlation properties of the stochastic sou
dr v(y) follow from Eqs.~9!:

^dr ~y!dr * ~y8!&v5
4q2n~y!

«2ADW2~y!
d~y2y8!. ~22!

Having founddE'
v(y), we can evaluate the electron de

sity fluctuation in the channel throughdnv(y)52(«/q)
3(ddE'

v/dy). This yields
 license or copyright; see http://jap.aip.org/jap/copyright.jsp
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dnv~y!52
«

q H dE',s
v

u1,s
u18~y!1u18~y!E

0

y

u2~j!dr v~j!dj

1u28~y!E
y

`

u1~j!dr v~j!djJ . ~23!

In particular, at the surface it is given by

dns
v52

«

qu1,s
H u1,s8 dE',s

v 1E
y.0

u1~y!dr v~y!dyJ . ~24!

Introducing the average sheet electron density in the cha
N5*0

`n(y)dy and its fluctuationdN5*0
`dn(y)dy, one can

find thatdN is related to the fluctuations of the electric fie
at the boundaries

dNv5
«

q
@dE'

v~0!2dE'
v~`!#. ~25!

A useful consequence of Eq.~25! is the relation between th
spectral correlators

^dNdN* &v5S «

qD 2

^dE',sdE',s* &v , ~26!

in which we have taken into account the boundary conditi
~7!. It will be used in the next section in evaluation of th
noise spectrum.

The electric field fluctuationdE',s
v is still unknown. To

find it, we employ the additional condition: the conservati
of the total charge in the conducting channel and dielec
layer

dNv1E
y,0

dy(
k

dnk
v~y!50. ~27!

The density fluctuations of trapped electronsdnk
v are ob-

tained from Eq.~15! as

dnk
v~y!5bk~v!Sk~y!dns

v1bk~v!dQk
v~y!, ~28!

where bk(v)[@Kk(y)1 iv#21, and the fluctuationdns
v is

given in Eq.~24!. Combining Eqs.~24!, ~25!, ~27!, and~28!,
we obtain

dE',s
v 52

~q/«!dNtd
v2~1/rs!h~v!*y.0r~y!dr v~y!dy

12~rs8/rs!h~v!
.

~29!

Here, we have denoted

dNtd
v5E

y,0
dy(

k
bk~v!dQk

v , ~30!

h~v!5E
y,0

dy(
k

bk~v!Sk . ~31!

Note that two different processes contribute to the fluctua
of the surface electric fielddE',s

v . One can see thatdNtd
v is

related to the random trapping–detrapping processes in
dielectric, while the second integral term in the numerator
the right-hand side of Eq.~29! is due to the random flux o
electrons in the channel towards the surface. Both proce
are self-consistently coupled by Coulomb correlations
tween the conducting and trapped electrons.
Downloaded 19 Nov 2009 to 129.8.242.67. Redistribution subject to AIP
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Having founddE',s
v , one can obtain any of the fluctu

ating quantities given in Eqs.~23!–~25!, ~28!, as well as the
spectral density~26! and the excess surface noise@see below,
Eq. ~43!#. In particular, the spectral correlator^dE',sdE',s* &v

by using Eq.~29! reads

^dE',sdE',s* &v

5G~v!H S q

« D 2

^dNtddNtd* &v1F uh~v!u
rs

G2

3E
y.0

dy r~y!E
y8.0

dy8r~y8!

3^dr ~y!dr * ~y8!&vJ , ~32!

with

G~v!5
1

u12~rs8/rs!h~v!u2
. ~33!

For convenience, leth(v)5h1(v)2 ih2(v) with posi-
tively defined functionsh1,2(v) given by

h1~v!5E
y,0

dy(
k

Sktk

11v2tk
2 , ~34!

and

h2~v!5vE
y,0

dy(
k

Sktk
2

11v2tk
2 , ~35!

with tk51/Kk . By using Eqs.~26! and ~29!–~31!, we find
the expression for the noise power of sheet-electron-den
fluctuations

SN~v![^dNdN* &v5M ~v!@11G~v!#G~v!. ~36!

It is considerably modified in comparison with the we
known result of McWhorter’s model.15 The factorM (v) is
due to the conventional McWhorter’s mechanism15 with dis-
regarded self-consistent electrostatic interactions between
conductive and trapped electrons,

M ~v![^dNtddNtd* &v5
4nsh2~v!

Av
. ~37!

The second factor in square brackets originates from
transverse electron transport in the channel, with

G~v!5
ILvuh~v!u2

Drs
2nsh2~v!

, ~38!

and

IL5E
0

`

n~y!@r~y!/W~y!#2dy. ~39!

The third factorG~v! on the right-hand side of Eq.~36! has a
meaning of the noise-suppression factor, since it is tota
due to the Coulomb interactions between electrons incor
rated into the model.11 It can be shown thatG(v)<1, which
follows from its definition given by Eq.~33!. The behavior of
the latter two factors, extra to McWhorter’s formula, will b
analyzed in detail in the next section.
 license or copyright; see http://jap.aip.org/jap/copyright.jsp



is
in

si
e,
is
n

s

e

e

t
d
a

te

n
t

ul

ou
-

tial

-

the
ic-
in
VI,
of

to
in

tion
-
uc-
er.
tral
f
the

ds

5351J. Appl. Phys., Vol. 92, No. 9, 1 November 2002 Kochelap et al.
IV. CURRENT-NOISE SPECTRAL DENSITY

In the previous section, we have obtained the no
power of the carrier-density and electric-field fluctuations
a conducting channel caused by the surface noise. By u
these results, we now examine the excess current nois
particular, the influence of Coulomb correlations on the no
spectrum. We employ the probability distribution functio
g(t) for the decapture timet, which runs all over the value
of the reciprocal rate constants 1/Kk . The functionsh1,2(v)
defined by Eqs.~34! and ~35! are expressed in terms of th
probability distribution functiong(t) as

h j~v!5
Nte

ns
Yj~v!, ~40!

Yj~v!5E dt~vt! j 21g~t!/~11v2t2!, ~41!

with the indexj 51,2 and the sheet concentration of trapp
electronsNte.

For the mean current along the channel we have

I 5qmEiLzE
0

`

n~y!dy. ~42!

The noise spectral density of the channel currentI is ob-
tained by using Eq.~10! in the form

SI~v!54q2NDLz /Lx1~qmEiLz!
2^dNdN* &v

[SI
eq1SI

ex~v!, ~43!

where SI
eq54kBT/R is the equilibrium Johnson–Nyquis

contribution,R5Lx /(qmNLz) is the channel resistance, an
SI

ex(v) is the excess surface noise. The latter, under the
sumed current-driven operation conditions, may be writ
as

SI
ex~v!5I 2 ^dNdN* &v

N2 5I 2S «

qND 2

^dE',sdE',s* &v .

It is seen that the excess current noise may be equivale
represented either as the number fluctuation noise or
noise of the electric field at the interface. By using the res
of the previous section, one gets

SI
ex~v!5G~v!SI

0~v!@11G~v!#, ~44!

where

SI
0~v!5

I 2

N2 M ~v!, M ~v!5
4Nte

A

Y2~v!

v
, ~45!

is the conventional surface-noise term for which the C
lomb correlations are disregarded.4,15 The surface-noise
suppression factorG~v! is obtained as

G~v!5
1

@11gY1~v!#21g2Y2
2~v!

, ~46!

with the parameterg defined by
Downloaded 19 Nov 2009 to 129.8.242.67. Redistribution subject to AIP
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Nte

ns
Urs8

rs
U. ~47!

It is important to note that suppression factorG~v! is a func-
tional of the steady-state solutions taken at the surfaceE',s

andns , which in turn are determined by the surface poten
ws . Thus, the level of suppressionG in practically important
gated structures can be controlled by the gate voltage.

The spectral factorG(v) is expressed through the inte
grals ~41! as well:

G~v!5
NteIL

Drs
2ns

2 vY2~v!F11
Y1

2~v!

Y2
2~v!G . ~48!

Thus, as seen from Eqs.~44!–~48!, the intensity of the sur-
face noise and its frequency behavior strongly depend on
functionsY1,2(v). These functions can be evaluated expl
itly by using suitable models for the distribution of traps
the dielectric. Such an analysis will be carried out in Sec.
where we consider two different models for distribution
traps in the dielectric:~i! uniformly distributed traps and~ii !
traps whose distribution is described by thed function.

V. SPATIAL CORRELATIONS OF NOISE

The results obtained in the previous sections allow us
study as well the spatial correlations of local fluctuations
the channel and to elucidate the characteristic correla
length l c . This is of obvious interest since it gives informa
tion about the intensity and frequency dependences of fl
tuations taken from different regions of the conduction lay
As an example, we consider the behavior of the local spec
correlator^dE',sdE'

* (y)&v , which gives the magnitude o
the correlation between the electric-field fluctuations at
surface and the point located at a distancey inside the chan-
nel. By using Eq.~21!, it can be expressed as

^dE',sdE'
* ~y!&v5

u1~y!

u1,s
^dE',sdE',s* &v1F̂$huy%, ~49!

whereF̂$ f uy% is an integral operator whose kernel depen
on y and its action on a functionf (y,v) is defined according
to

F̂$ f uy%5u1~y!E
0

y

u2~j! f ~j,v!dj

1u2~y!E
y

`

u1~j! f ~j,v!dj. ~50!

The spectral correlatorh(y,v)[^dE',sdr * (y)&v is calcu-
lated using Eqs.~29! and ~9!:

h~y,v!5
4q2r~y!n~y!

«2rsDAW2~y!

h~v!

12~rs8/rs!h~v!
. ~51!

Then, the second term on the right-hand side of Eq.~49!
becomes

4q2

«2rsDA
F̂H rn

W2 UyJ h~v!

12~rs8/rs!h~v!
. ~52!
 license or copyright; see http://jap.aip.org/jap/copyright.jsp
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Now, defining the corresponding spectral density for
electric-field fluctuations

SE'
~y,v!5 1

2 @^dE',sdE'
* ~y!&v1c.c.#, ~53!

we get

SE'
~y,v!5

q2r~y!

«2rs
G~v!M ~v!S 11G~v!

1
v@h1~v!2~rs8/rs!uh~v!u2#

Dnsh2~v!

1

r
F̂H rn

W2 UyJ D ,

~54!

with the factorF̂$(rn/W2)uy% determined according to Eq
~50!. It is seen that the obtained expression is comple
analogous in its structure to Eq.~44! of Sec. IV for the spec-
tral densitySI

ex(v). It contains the same factorsG~v! and
G(v) originated from the Coulomb correlations and t
transverse electron transport, respectively. In Eq.~54!, the
last factor in parenthesis appears due to the additional c
correlations between the surface and channel electric-
fluctuations coupled by the electron random flux perpend
lar to the surface. It is easy to see that Eq.~54! taken aty
50 coincides with the surface-noise spectral density
tained previously in Sec. III. Since the spatial dependenc
SE'

(y,v) is imposed by the space-charge profiler(y) across
the nonhomogeneous channel, it is clear that the spatial
relations of fluctuations induced by Coulomb interactions
determined by the Debye screening lengthl D . In other
words, the Coulomb correlations in our model result in t
frequency-independent correlation lengthl c5 l D .

VI. DISCUSSION OF THE RESULTS

In this section, we apply the results of the develop
general theory of surface noise with the incorporated C
lomb correlations for two practically important cases: 1f
noise and the generation–recombination noise spectrum

A. Traps uniformly distributed over the layer

As a first example, let us consider the McWhort
model15 corresponding to a set of identical traps uniform
distributed in the dielectric, for which the probability distr
bution function is given by

g~t!5H C/t, t1<t<t2 ,

0, otherwise.
~55!

Here, the normalization constantC5 ln21(t2 /t1). The differ-
ence between the characteristic timest1 andt2 may consti-
tute from 5 to 8 decades.15,16These parameters determine t
frequency interval

1

t2
,v,

1

t1
, ~56!

where the surface noise behaves as the flicker (1/f ) noise.
The results of our calculations fort2 /t15106 are presented
in Fig. 2. In Fig. 2~a!, the relative current noiseSI

r(v)
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5SI
ex(v)/SI

0(v)} f SI /I 2, the quantity often used in 1/f noise
literature,17 is shown. Forg(t) given by Eq.~55!, the inte-
grals ~41! become

Y1~v!5C ln
t2A11v2t1

2

t1A11v2t2
2

,

Y2~v!5C@arctan~vt2!2arctan~vt1!#. ~57!

It is easy to verify thatY1(v) decays monotonically from 1
at v50 to zero atv→`. The functionY2(v) is nonmono-
tonic. It increases fromY2(0)50 to its maximum value
Y2

max5C(arctanAt2 /t12arctanAt1 /t2) at v51/t0 with t0

5At1t2. Then, it decreases to zero asv→`. In the fre-
quency range ~56!, one has approximatelyY1(v)
.Cu ln(vt1)u, whereasY2(v).Cp/2, i.e., independent o
frequency@Fig. 2~b!#. It is important that the functionY2(v)
has a wide plateau in that frequency range. In the absenc
Coulomb correlations, which formally corresponds tog50,
this leads to the well-known McWhorter result: 1/f spectrum
of the surface noise

SI
0~v!5I 2

Nte

AN2

C

f
, ~58!

where f 5v/2p. Outside the frequency interval~56!, the
spectrum is white atv,1/t2 and decays asv22 at v
.1/t1 @see the curveg50 in Fig. 2~a!#.

For the probability distribution~55!, the functionG(v)
in Eq. ~48! can be approximated at low frequency byG(0)
5G0 /@C(t22t1)#.G0 /(Ct2), and at high frequency it in-

FIG. 2. Frequency dependences of~a! relative current–noise spectral den
sity SI

r(v)5SI
ex(v)/SI

0(v)}vSI
ex(v) and ~b! suppression factorG(v)

~solid! calculated under the trap distribution of the McWhorter model
different values ofg. IntegralsY1,2(v) are also shown~dashes!. Y2(v) is
normalized by its maximum value,t05(t1t2)1/2 andt2 /t15106.
 license or copyright; see http://jap.aip.org/jap/copyright.jsp
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creases to the valueG(`)5C2(t2 /t1)G0 , where G0

5NteIL /(Drs
2ns

2). Finally, within the interval~56!, the spec-
trum of G(v) is approximately

G~v!.
p

2
G~`!

vt1

11~4/p2!ln2~vt1!
. ~59!

Next, for the suppression factor~46! we obtain at low fre-
quencyG(0)51/(11g)2. This is the strongest suppressio
magnitude over the noise spectrum. It is seen that the lev
suppression is determined by the parameterg given by Eq.
~47!, and it may be significant wheneverg is not small with
respect to 1@Fig. 2~b!#. In the high-frequency limit, the sup
pression effect vanishes,G(`)51. Between these two limits
within interval ~56!, G~v! is approximated by

G~v!.
1

@11gCu ln~vt1!u#21~gpC/2!2 . ~60!

One can see that the suppression factor changes only sli
for frequenciesv,1/t1 over many decades. Forg*1, we
obtainG(v)'G(0)51/(11g)2, i.e., the suppression facto
is approximately constant, as shown by the two lower cur
in Fig. 2~b!. Thus, we can conclude that when the Coulom
correlations are included into analysis, 1/f law is practically
preserved, although with a suppressed value, up to relati
high frequencies. Forv.1/t1 , the suppression effect van
ishes@G(v)'1#, as well as the surface noise, since in th
case there are no trap states with characteristic times o
order of 1/v and the carrier exchange between the elect
channel and the traps becomes ineffective.

It should be noted that Coulomb correlations cause
nificant changes in the noise spectra. From the above an
sis and the results of Fig. 2, it follows that forg,1 the shape
of SI

r(v) varies considerably in interval~56!. The noise sup-
pression at low frequencies is much more pronounced tha
high frequencies. For largerg, however, the spectral curve
are almost flat, since the suppression factor is nearly cons
in this frequency range. It is remarkable that an abrupt
crease ofG~v! in the vicinity of v'1/t1 , from G'1/(1
1g)2 to G'1 @see Fig. 2~b!#, gives rise to a maximum in al
the calculated curves ofSI

r(v) in Fig. 2~a!. We believe that
this characteristic feature of the noise spectrum, when
served in the experiment, could be a valuable test of
effect of Coulomb correlations on the surface noise in se
conductor heterostructures. We would like to emphasize
the shift down of the spectral curves in Fig. 2~a! with in-
creasingg makes evident anabsolutenoise suppression: th
reduction of the noise power at all frequencies, rather than
redistribution over the spectrum. This means that the co
spondent integral over the noise spectrum also reduces.

To make numerical estimations, let us consider f
quency interval~56! where the surface noise varies as 1f ,
and its spectral density~44! can be written using the dimen
sionless Hooge parameter:18,19

SI
ex~v!5

I 2

f NA
aH , ~61!

with
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Nte

N~11g!2 ln~t2 /t1!
, ~62!

being a Hooge parameter19,20 modified by the suppressio
effect. Now, if we takeg52, Nte/N50.25, and log(t2 /t1)
56, we getaH5231023, i.e., the value usually observed i
conducting channels with the predominant surface mec
nism of the noise.16,18,21

Another important consequence of the Coulomb corre
tions is the prediction of a nonmonotonic dependence
noise spectrum~61! on the concentration of trapped electro
Nte. This can be seen by analyzing the Hooge parameteraH

as a function ofNte. For an electron channel with the loca
space charger52qn, the parameterg can be expressed
explicitly through the electron concentrationsNte andN. By
using Eqs.~3!, ~4!, and the condition for the transvers
steady-state electron flux in the channeli'50 @which is
analogous to Eq.~17! for fluctuations#, we find the following
relations:rs8/rs52(m/D)Es and ns5(«m/2qD)Es

2 . Here,
the surface fieldEs5E'(0) is related to the electron concen
tration N through the equationEs5(q/«)N @which is analo-
gous to Eq. ~25!#. Then, the parameterg is simply g
52Nte/N.

Figure 3 shows the calculated Hooge parameteraH as a
function of Nte/N. It is seen that without Coulomb correla
tions, it increases linearlyaH}Nte/N, while for the cases
when Coulomb correlations are included, it has a pronoun
maximumaH

max5C/8 at Nte/N51/2. We also note that for
small trap concentrationsNte!N, the Hooge parameter in
creases almost linearly for all the cases, since the Coulo
correlations are small to affect noticeably the noise intens
However, when the concentrations approachNte'N, the in-
crease slows down and even changes to theopposite~de-
creasing! dependence onNte. This effect is entirely due to
the Coulomb correlations between the channel carriers
trap states, which for such values ofNte considerably affect
the intensity of the surface noise.

Figure 4 shows the spatial correlations of the fluctuatio
of the transverse electric field across the conducting chan
In Fig. 4, the noise power is normalized according
SE

r (y,v)5SE'
(y,v)/SE',s

0 (v)}vSE'
(y,v). Here,SE',s

0 (v)

5(q/«)2M (v)}v21 corresponds to surface spectral co
relator ~32! in which the Coulomb correlations and electro
transverse transport are ignored. It is seen that the sp
correlations decay on Debye lengthl D independently of fre-
quency within 1/f noise interval~56! ~see, also, the discus
sion in Sec. V!. These results also demonstrate the reduct
of spectral intensity of the fluctuations with increasingg
caused by Coulomb correlations of charges.

B. d distribution of traps

As another example, we consider the case of a sin
time constantt0 , describing the exchange of charge carrie
between the channel and traps in the dielectric. Unlike u
formly distributed traps, assumed in the McWhorter mod
this situation may be relevant to thed distribution of traps
localized at a certain distance from the interface, as well a
the fluctuations in devices with small areas and low interfa
 license or copyright; see http://jap.aip.org/jap/copyright.jsp
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state densities.20 The probability distribution function can b
written as g(t)5d(t2t0) with the normalization factor
equal to unity. Then, integrals~41! yield

Y1~v!5
1

11v2t0
2 , Y2~v!5

vt0

11v2t0
2 . ~63!

The functionY2(v) reaches its maximum valueY2
max51/2 at

v51/t0 @Fig. 5~b!#. For these functions,G(v) and the sup-
pression factorG~v! read

G~v!5
G0

t0
, G~v!5

11v2t0
2

~11g!21v2t0
2 . ~64!

Note that the factorG is independent of frequency. The lim
iting values forG~v! at v→0 andv→` are the same as in
the previous case. However, in contrast to the McWho
model with widely distributed trapping/detrapping time p
rameters, now we get a Lorentzian shape of the excess n
spectrum

SI
0~v!5I 2

4Nte

AN2

t0

11v2t0
2 , ~65!

which is modified due to the Coulomb correlations as

FIG. 3. Illustration of the effect of Coulomb correlations on the Hoo
parameteraH plotted vsNte /N for different t2 /t1 ratios: 1 ~dashes!, aH

correspondent to the McWhorter model~no Coulomb correlations!; and 2–4
~solid!, aH modified by Coulomb correlations.

FIG. 4. Illustration of spatial correlations of the local field fluctuatio
across the channel. Electric-field spectral densitiesSE

r (y,v i)
5SE'

(y,v i)/SE',s

0 (v i) are plotted for different values ofg. For g50.3 and

g51, each curve is shown for two different frequencies taken from thef
interval: v150.1/t1 ~upper curve! and v2510/t2 ~lower curve!. y is in
units of the Debye lengthl D .
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SI
ex~v!5I 2

4Nte

AN2

t0

~11g!21v2t0
2 . ~66!

Figure 5~a! shows spectra of the normalized curren
noise powerSI

n(v)5SI
ex(v)3(AN2/4t0NteI

2) for several
values ofg. The suppression factorG~v! is plotted for the
same values ofg in Fig. 5~b!. The suppression effect due t
Coulomb correlations is clearly manifested in several
pects. First, again, the noise power falls down with incre
ing of g, attaining the low-frequency valueSI

ex(0)
5SI

0(0)/(11g)2 at vt0!1. As a result, the total noise
power over the whole spectrumSI

ex is also suppressed t
SI

ex5SI
0/(11g). Here, SI

05I 2(2pNte/AN2) is the corre-
spondent total noise power calculated with disregarded C
lomb correlations. Second, since the suppression facto
sensitive to frequency@see Fig. 5~b!#, the low-frequency con-
tributions to the noise are much more suppressed than
high-frequency contributions. The noise spectra are bro
ened with a half-power bandwidth given byDv5(1
1g)Dv0 , where Dv052/t0 is the bandwidth with disre-
garded Coulomb correlations. The corresponding magnit
of the normalized noise power is SI

n(Dvt0)
51/@2(Dvt0)2#51/@2(11g)2#. It is marked by filled
squares in Fig. 5~a!.

It is convenient to define the dimensionless noise pow
SId

ex(v)5SI
ex(v)3(AN/t0I 2) considered as a function of th

ratio Nte/N. It has a maximumSId,m
ex 51/(11A11v2t0

2) at
Nte/N5(1/2)A11v2t0

2, with both values dependent on fre
quency v. The correspondent dimensionless total no
power can be defined asSId

ex5SI
ex3(AN/I 2). The behavior of

FIG. 5. Frequency dependences of~a! normalized current–noise spectra
densitySI

n(v)5SI
ex(v)3(AN2/4t0NteI

2) and ~b! suppression factorG(v)
~solid! calculated with the probability distribution functiond(t2t0) for
different values ofg. The integralsY1,2(v) are shown by dashes, wher
Y2(v) is normalized by its maximum value.
 license or copyright; see http://jap.aip.org/jap/copyright.jsp
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these two quantities is shown in Fig. 6 for two cases: w
and without Coulomb correlations taken into account.
seen, both spectral and total noise powers are consider
affected by Coulomb correlations whenever electron de
ties Nte andN are of the same order of magnitude.

C. Restrictions of the model

We conclude this section with the following remar
concerning the validity of the approximations used. In E
~15! we assumed that the fluctuations of voltage drop acr
the dielectric layer due to the change in the self-consis
electrostatic potential do not affect the rate constants. F
the comparison of relevant terms on the right-hand side
Eq. ~15!, one can see that this assumption is justified
qdE',sd/(kBT)!dnk /nk , where d is the thickness of the
dielectric layer in which the traps effectively interact wi
the carriers of the conduction channel. This condition can
rewritten in terms of the sheet electron concentration
qdE',sd/(kBT)!dNte/Nte. This requires that the relativ
fluctuation of the concentration of trapped electrons mus
much greater than that of the voltage drop across the die
tric layer caused by this fluctuation ofdNte. Now, by using
charge neutrality condition~27!, we getNted/NlD!1. This
constraint is fulfilled, since the conditionsd/ l D!1 and
Nte/N&1 usually hold.

One of the assumptions of our model is the short-ra
character of the potential of traps, which is typical for de
levels in wide-band-gap materials used to design barrier
ers in heterostructure samples. If the potential would hav
long spatial range, one would need to take into account
screening of the potential. Evidently, for a short-range pot
tial, r 0! l D (r 0 is the effective radius of the trapping pote
tial!, the screening effect is not important. Thus, the r
constants in the form of Eqs.~B6! and~B7!, given in Appen-
dix B and used in Eq.~15!, are justified.

As we pointed out in Sec. I, the change in the se
consistent electrostatic potential caused by fluctuations
charges on the traps and in the channel is assumed to ex
over distances greater than the average distance betwee
traps. The corresponding condition is expressed by inequ
constraint~2!. Its right-hand side depends on the paramet

FIG. 6. Dimensionless noise spectral densitySId
ex(v0) at v051/t0 ~1,2! and

total noise powerSId
ex ~3,4! vs Nte /N calculated with thed(t2t0) probabil-

ity distribution function without~1,3! and with ~2,4! Coulomb correlations
taken into account.
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of the conducting channel. We list in Table I the characte
tic density of trapsNt0 estimated for typical conducting
channels made of materials used in traditional, as well
advanced, semiconductor heterostructure technologies.10,22,23

The results of these estimations indicate that for chann
with the electron density;1011 cm22, the corresponding
density of trapsNt0 is of the same order of magnitude. Fo
lower electron density in the channel, we obtainNt0,N,
while with increasingN, the opposite conditionNt0.N
holds.

The temperature dependence of the critical trap den
Nt0}T22 implies another restriction: For a given chann
concentrationN, the higher the temperature, the lower is t
critical value ofNt0 , for which the screening effect of Cou
lomb correlations in the noise suppression becomes ap
ciable. On the other hand, at fixedT, the increase ofN can
lead to the regime of quantum screening of charges in
system of two-dimensional conducting channel and dielec
layer. In this regime, Eq.~2! obviously gives overestimate
values ofNt0 , since the Debye screening length becom
independent of the electron densityN: l D5aB/2, whereaB

5«\2/m* q2 is the Bohr radius andm* is the effective
mass.22 In the low-temperature limit and for the lowest o
cupied subband, one can write, similarly to Eq.~2!, that

Nt05
4

paB
2 . ~67!

Actually, more rigorous estimations for the self-consiste
Coulomb correlations should give a less restrictive conditi
since screening in low-dimensional electron systems
known to be less effective. We use formula~67! for calcula-
tions of trap densityNt0 presented in Table I whenever th
quantum screening is relevant. We also note that one of
most important materials to which the developed theory
be applied, is a class of wide-gap nitride-bas
heterostructures.10 The estimates for this material are als
reported in Table I. This type of material is known to exhib
considerable surface noise with the Hooge param
*1023, and they are usually morenoisythan the good qual-
ity silicon or gallium arsenide-based devices.9

TABLE I. Estimation of characteristic trap concentrationsNt0 for electron
densitiesN according to Eq.~2! for conducting channels of different mate
rials at T5300 K ~the dielectric permittivity« is given in parenthesis!: Si
~11.8!, GaAs~12.8!, InAs ~12.3!, GaN ~9.0!, and SiC~9.7!.a

N
(1011 cm22)

Nt0 (1011 cm22)

Si GaAs InAs GaN SiC

10 - 13b 2.7b 190 160
5 27 13b 2.7b 47 40
1 1.1 0.95 1.0 1.9 1.6

0.5 0.27 0.24 0.26 0.47 0.40

aSee Ref. 10.
bThese values were estimated from Eq.~67! corresponding to a quantum
screening of charges in the channel and dielectric layer.
 license or copyright; see http://jap.aip.org/jap/copyright.jsp
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VII. CONCLUSIONS

In summary, we have revisited a long-standing probl
of the surface noise and proposed a model that includes
capture/decapture of carriers at the surface states and
tron transfer towards the surface treated self-consiste
This allowed us to discover a number of features of the s
face noise that have not been discussed previously in lit
ture.

We have developed a theory of the surface noise i
nonhomogeneous conducting channel adjacent to an ins
ing layer. The theory is based on the equations that gov
the carrier transport and fluctuations in the electron chan
and random trapping/detrapping processes at the channe
face. In contrast to previous studies, it also includes the C
lomb interactions between the trapped and conducting e
trons, and inhomogeneous nature of the channel trans
The Coulomb correlations are shown to be essential
should be included into the currently existing simulati
tools for device modeling. These correlations suppress
magnitude of the surface noise and could also modify thef
form of the noise spectrum in a certain frequency range.

We have studied the spatial correlations of fluctuatio
and found that the correlation radius is about the De
screening length. The expression for the Hooge param
aH for 1/f noise, modified by the presence of Coulomb
teractions, has been derived. We have shown that the m
fied Hooge parameter depends on the concentration of tr
electron density, as well as on the dielectric properties of
structure.

The numerical estimates indicate the significance of
Coulomb correlation effects for the active channels made
silicon, III–V compounds, silicon-carbide, and the group-
nitride-based structures. The studied surface–noi
suppression effect is quite universal and, according to
numerical estimations, may be relevant for a number of pr
tically important devices, like TFTs, BJTs, HFETS
MOSFETs, and, in particular, those used in SOI technolo2
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APPENDIX A: REDUCTION OF BASIC EQUATIONS TO
A ONE-DIMENSIONAL FORM

It will be shown how the system of basic thre
dimensional~3D! partial differential equations can be re
duced to a one-dimensional~1D! form for averaged vari-
ables. The original 3D equations governing both the car
transport and fluctuations are

i~r ,t !52mn~r ,t !E~r ,t !2D“n~r ,t !1dJ~r ,t !, ~A1!

div E~r ,t !5
r~r ,t !

«
, ~A2!
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]n~r ,t !

]t
1div i~r ,t !50, ~A3!

]nk~r ,t !

]t
5Skn~0, t !2Kknk~r ,t !1dQk~r ,t !, ~A4!

wherer5$x,y,z%, i(r ,t) is the electron flux,dJ(r ,t) the cor-
responding Langevin noise source,n(r ,t) and nk(r ,t) the
electron concentrations in the channel and dielectric, resp
tively, E52“w the electric field,w(r ,t) the electrostatic
potential, r(r ,t) the channel charge distribution,dQk(r ,t)
the trapping noise source, and the rest of notations are an
gous to those in Eqs.~3!–~6!. These equations must b
supplemented by the appropriate boundary conditions.

Next, we apply the double integration over the coor
natesx, z in the plane parallel to the interface at a fixe
value of the coordinatey, and then divide the result by th
cross-sectional areaA5LxLz . Thus, the averaged 1D var
ables, for example, the electron densityn̄(y,t), are intro-
duced as follows:

n̄~y,t !5
1

A E
0

LxE
0

Lz
n~x,y,z;t !dx dz. ~A5!

To illustrate the above approach, consider Poisson equa
given by Eq.~A2!. Performing the integration and introduc
ing the average variables according to Eq.~A5!, we obtain

]Ēy~y!

]y
1

1

Lx
$Ēx~Lx ,y!2Ēx~0,y!%1

1

Lz
$Ēz~y,Lz!

2Ēz~y,0!%5
r̄~y!

«
, ~A6!

where we have denoted

Ēx~x,y!5
1

Lz
E

0

Lz
Ex~x,y,z!dz,

Ēz~y,z!5
1

Lx
E

0

Lx
Ez~x,y,z!dx. ~A7!

The derivative in Eq.~A6! can be estimated as

Ēy52
]w̄

]y
;2

w̄

l D
, ⇒ ]Ēy

]y
;2

w̄

l D
2 , ~A8!

where w̄ is averaged in two-dimensions according to E
~A5!. The rest of the terms are of the same order and may
estimated as

Ēx

Lx
;2

w̄

Lxl D
,

Ēz

Lz
;2

w̄

Lzl D
, ~A9!

where w̄ is averaged in 1D according to Eqs.~A7!. It is
evident that both averages performed over the electros
potential are of the same order of magnitude. Then, for
channels with lateral sizes much greater than the De
length,

l D!Lx ,Lz , ~A10!

the derivative term in Eq.~A6! is dominant, while the next
two terms may be omitted, according to Eq.~A9!. Thus, the
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3D Poisson equation~A2! is reduced to a 1D form for the
averaged~local! field Ēy and the channel space charger̄:

]Ēy~y!

]y
5

r̄~y!

«
. ~A11!

The other 3D equations can be treated in a similar way,
assuming additionally that the conducting channel and
dielectric layer are uniform in thex andz directions.

At this point, we need to perform the averaging in t
Langevin sourcesdJa(r ,t) and dQk(r ,t). Their correlation
functions have the form4

^dJa~r ,t !dJb~r 8,t8!&52Dabn~r !dabd~r2r 8!d~ t2t8!,

^dQi~r ,t !dQk~r 8,t8!&52Kk~r !nk~r !d ikd~r2r 8!d~ t2t8!,
~A12!

^dJa~r ,t !dQk~r 8,t8!&50,

where the angular brackets denote ensemble averages
coordinate averaging in the above equations leads to the
eraged Langevin sources

dJa~y,t !5
1

A E
0

LxE
0

Lz
dJa~x,y,z;t !dxdz,

~A13!

dQk~y,t !5
1

A E
0

LxE
0

Lz
dQk~x,y,z;t !dxdz.

The correlation functions for these 1D random sources m
be evaluated in a standard way4 by making use of the corre
lation functions~A12!. Then, we obtain

^dJa~y,t !dJb~y8,t8!&5
2Dab

A
n~y!dabd~y2y8!d~ t2t8!,

^dQi~y,t !dQk~y8,t8!&5
2Kk~y!

A
nk~y!d ikd~y2y8!d~ t2t8!,

~A14!

^dJa~y,t !dQk~y8,t8!&50.

The Fourier transform of these equations leads to the spe
correlators of the Langevin sources in the form of Eqs.~9!
used in the text for the noise analysis~for compactness we
omit throughout the text the bar symbol over the avera
variables and random noise sources!.

APPENDIX B: RATE CONSTANTS FOR TRAPPING
AND DETRAPPING PROCESSES

Let NS(E) be the effective density of states at the ele
tron energyE in the conduction band of the semiconduct
channel, andND(Ek) be the effective density of states in th
dielectric, which depends on discrete trap energy levelsEk .
Introducing the electron thermal velocity normal to the s
face v and the trap capture cross sectionsSD(E,Ek), the
probability of capture of an electron with energyE to the
trap level Ek will be the productvsSD(E,Ek). Then, the
elementary electron fluxdik

SD from the energy interval be
tween E and E1dE in the semiconductor into the energ
interval betweenEk and Ek1dEk of the trap states in the
dielectric can be written as
Downloaded 19 Nov 2009 to 129.8.242.67. Redistribution subject to AIP
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dik
SD5NS~E! f S~E!vsSD~E,Ek!ND~Ek!@1

2 f k~Ek!#dEdEk , ~B1!

where f S,k is the Fermi–Dirac distribution function for elec
trons in the semiconductor (S) and in the localized states (k)
of the dielectric.

The net electron flux from the channel to the dielect
layer is obtained by integrating Eq.~B1! over the energies

i k
SD5E

E
dEE

Ek

dEkNS~E! f S~E!vsSD~E,Ek!ND~Ek!

3@12 f k~Ek!#. ~B2!

The opposite elementary electron flux from trap states to
channel is written in a similar way

dik
DS5ND~Ek! f k~Ek!sDS~Ek ,E!NS~E!@12 f S~E!#dEkdE,

~B3!

and for the net flux

i k
DS5E

Ek

dEkE
E
dE ND~Ek! f k~Ek!sDS~Ek ,E!NS~E!

3@12 f S~E!#. ~B4!

The rate constantsSk andKk are usually introduced with
the relations

i k
SD5Skn~0!, i k

DS5Kknk , ~B5!

and then, according to Eqs.~B2! and ~B4!, one gets

Sk5
1

n~0!
E

E
dEE

Ek

dEkNS~E! f S~E!vsSD~E,Ek!

3ND~Ek!@12 f k~Ek!#, ~B6!

and

Kk5
1

nk
E

Ek

dEkE
E
dE ND~Ek! f k~Ek!sDS~Ek ,E!NS~E!

3@12 f S~E!#, ~B7!

with the electron concentration at the surfacen(0)
5*ENS(E) f S(E)dE and on the traps nk

5*Ek
ND(Ek) f k(Ek)dEk .

In thermal equilibrium, the principle of detailed balanc
requires that the electron capture and decapture rates sh
be equal at all pointsy of the dielectric layer, that is
vsSD(E,Ek)5sDS(Ek ,E). As a consequence, both electro
fluxes, the direct flux~B2! and the opposite one~B4! are
equal as well. Thus, we get a remarkable relation betw
the rate constants

Sk~y!

Kk~y!
5

nk

n~0!
. ~B8!

Now, by using the well-known expressions for the electr
concentration at the surfacen(0)5Nc exp$@«F2Ec(0)#/kBT%
and for that on the trapsnk5Ntk /$11(1/g)exp@(Ek

2«F)/kBT#%, we find
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Sk~y!

Kk~y!
5gk~Ntk2nk!, ~B9!

where the parametergk5(g/Nc)exp@(Ec02Ek0)/kBT# is inde-
pendent of the Fermi energy«F . Here,Nc is the effective
density of states in the conduction band of the semicond
tor, Ntk is the concentration of traps with energyEk , g is the
spin degeneracy factor,Ek(0)5Ek02qws , andEc(0)5Ec0

2qws where the energiesEk0 and Ec0 correspond to the
flatband state (ws50).
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